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UNBOUNDED MULTIPLIERS ON COMMUTATIVE
BANACH ALGEBRAS

JAMES WOOD

In this paper the notion of an unbounded multiplier on
a commutative Banach algebra is introduced. It is proven
that, as in the case of bounded multipliers, unbounded
multipliers also have Gelfand transforms. Some of the
properties of these transforms are then developed. The
final result of the paper is a new characterization of the
bounded multipliers on A where A is a Banach algebra of
the type described below.

l Introduction* In general, by a multiplier on a commuta-
tive Banach algebra A one means a bounded linear operator T: A->
A such that T(xy) = xT(y) for all x, y eA. There is an extensive
literature on the subject. One can consult, for example, [2] and
[3]. There does not seem to be, however, a systematic treatment
of unbounded multipliers although such multipliers occur quite
naturally. For example, consider the Banach algebra L1(—oo9oo)
with the convolution product and define T by T(f) = / ', where the
domain &(T) of T is the set {f\feL\-oo9 oo) and / is absolutely
continuous}. It is easy to check that T(fg) = fT(g) almost every-
where for all feL\—oof oo) and for all ge2&(T). However, T is
not bounded. (Although it is closed.)

As another example, take the Banach algebra Co(— °°, <*>) of all
complex valued continuous functions on the real line which vanish
at infinity with T defined by T(f)(x) = xf(x). The domain &(T)
can be taken to be the set of all functions in Co(— oo, oo) with
compact support. Finally, let {Tt \ t ^ 0} be a semi-group of class
Co of bounded multipliers on the Banach algebra A. Then the
infinitesimal generator To of {Tt \ t ^ 0} is an (in general) unbounded
multiplier, for if x e ^ ( Γ o ) and y e A then

T0(xy) = limhτ(xy) - xy]
hlO k

lim
hϊo k

It is the purpose of this present paper to study some of the
properties of unbounded multipliers in the general setting of a
commutative Banach algebra. In particular, henceforth A always
denotes a regular, commutative semi-simple Banach algebra. We
also assume for the rest of the paper that A has a bounded
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approximate identity {ea} and that the Gelfand transform of each
{ea} has compact support. By Δ{A) we shall mean the maximal ideal
space of A with the Gelfand topology and the symbol x denotes the
Gelfand transform of x e A.

2* Definitions and general properties*

DEFINITION 2.1. Let A be a Banach algebra. The function T
defined on the dense ideal 2$\T) £ A is called a multiplier of A if
and only if for all x e &(T) and all ye A, T(xy) = yT(x).

The first theorem shows that, as in the bounded case, every
multiplier has a Gelfand transform.

THEOREM 2.1. Given a multiplier T on A there is a unique
complex valued continuous function T" on Δ(A) such that for all
τeΔ(A) and all xe&(T\ T(xΓ(τ) = T~(τ)x~(τ).

Proof. First of all observe that for each τeΔ(A) there is an
x e 22{T) with x~(τ) Φ 0. For otherwise, if for some τ0, αΓ(r0) = 0
for all xe&(T), then £&(T) is contained in some maximal ideal
which is a contradiction. Now if τo6zf(i), choose xe^(T) so that
of (r0) φ 0 and define T~(τ0) by T (τ0) = T(aΓ(τo)/αΓ(τo). The func-
tion 3Γ is independent of x, for if y e &(T) and y~(τ0) Φ 0, then
from T(xy) = xT(y) = 2/Γ(a?) follows of(r)T(i/Γ(r) = 3/"(r)Γ(α?)"(r) for
all τeΔ(A), so that T(yΓ(τo)/y^(τo) = T(#Γ(ro)/αf (τ0). It is clear that
Γ" is continuous. To show uniqueness suppose there is a continuous
function φ on Δ(A) such that T(aΓ(τ) = φ(τ)x~(τ) for all a? 6 &(T)
and all τeJ(A). Then T~(τ)x~(τ) = φ(τ)x~(τ) for all αje^CΓ) and
τeA(A) and since for each τ we can find an x such that αΓ(r) ^ 0,
it follows that T^ = φ.

COROLLARY 2.1. A multiplier is linear on its domain.

Proof Suppose x, y e £?(T) and let z = ax + βy where a and
β are complex numbers. Then from z^(τ) = ax"(τ) + βy^(τ) we get
successively

2Γ(τ)2f (τ) =

T{zT{τ) = aT{xT{τ) + βT{yT{τ)

T(zΓ(τ) = (αΓ(α?) + βT{y)T{τ)

T(z) = aT(x) + βT(y) ,

the last equation following from the semi-simplicity of the algebra.
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THEOREM 2.2. Every multiplier is closable.

Proof. Let T be a multiplier and assume {xn} is a sequence in
with lim xn = 0 and lim T{xn) = y. Since T(xn) -> 3/, 5Γ(r)aΛ~(τ) ->

lΓ(r). But 2r(τ)flc/(r)->0 also and thus iΓ(r) = 0 for all τeJ(A)
so that 7/ = 0.

THEOREM 2.3. // S and T are multipliers such that SA(r) =
y ( r ) /or all τ and in addition S and T are closed then S = T.

Proof. The algebra has a bounded approximate identity {ea}.
Now for each a and any ε > 0 there is an ef

a e @f{β) such that
II βα — e ί | | < e . Thus {βά} is an approximate identity in
Similarly we can construct an approximate identity e" in
Now letting /β = β X we have that fae jgr(S) f) &(T) and since
SΓ(r) = T » we get S A (rK(rK(r) - 2^(rX(rX'(τ) so that S(/β) =
Γ(/β). Now let / e ^ ( S ) . Then //β ->/ and S(//β) - /βS(/) -> S(/).
But S(//β) = fS(fa) - /Γ(/β) so that T(ffa) - S(/) also. Therefore,
since Γ is closed, fe&(T) and Γ(/) = S(/). By reversing the roles
of S and T we get the assertion of the theorem.

COROLLARY 2.2. If S and T are multipliers such that S~ = T~,
then S and T have the same closure.

Proof. If So and To denote the closures of S and T respec-
tively, then So~ = ST and T~ = T~. Therefore So~ = To~ so that
by the previous theorem So = To.

The previous theorem and corollary provide us in an obvious
way with a means to define an equivalence relation on the set of
multipliers. We say that S is equivalent to T, S — T, if and only
if S~ = T". Thus the set of multipliers can be split up into equiv-
alence classes such that all multipliers in the same class have the
same closure and the same transform.

The next theorem concerns inverses of multipliers.

THEOREM 2.4. Let T be a multiplier. Then T~λ exists and is
a multiplier if and only if Γ" never vanishes.

Proof. Assume T~x exists as a multiplier. Then for each
x e ̂ ( T " 1 ) there is a z e ̂ ( T ) such that T~(τ)s~(τ) = of (r). If
T~(τ0) = 0 for some τ0 then aΓ(r0) = 0 for all x 6 ̂ ( Γ " 1 ) which con-
tradictics the fact that ^ ( ϊ 7 " 1 ) is dense. On the other hand assume
that Γ" never vanishes. Then the set I = {y eA\xe &(T) with

Γ) = y^(τ)} is an ideal in A. If / is not dense, then its
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closure is a closed proper ideal and hence contained in a maximal
ideal. Therefore, there is a τ0 such that iΓ(r0) = 0 for all yel and
this in turn implies T"(τo)aΓ(ro) = 0 for all xe&(T). Thus αf(ro) = O
for all xe£&(T) which is a contradiction.

It is possible to characterize those functions on Δ(A) which are
transforms of multipliers. This is done in the following theorem.

THEOREM 2.5. In order that T" be the transform of a multiplier
it is necessary and sufficient that T~ belong locally to A^ at each
point of A{A).

Proof. If Γ" belongs locally to A" at each point of Δ(A), then
T^e^ belongs locally to A" at each point Δ(A) U {°°}. By a theorem
due to F. Birtel, ([1], p. 818), this implies that T~e~ belongs to A^.
Therefore, for any xeA, x^T^e^ belongs to AT and we define
T(xea) = ya where y~ = aΓT'βΛ If we then let &r(T) be {xea \ x e
A}, we have T(zxea) = ya where y* = z~x~T~ea~. But x~T~ea~ =
T(xeay and so ya = zT(xea). Thus T determines a multiplier. Con-
versely, if Γ" is the transform of a multiplier and p e Δ(A), there
exists an x 6 &(T) such that aΓ(r) ^ 0 on some compact neighbor-
hood V of p. There is then a y eA such that j/^(τ) = l/αΓ(r) for
all τ 6 F so that α?"(r)3/"(r) = 1 on F. But xy e &(T), so that if
we let z = Γ(a?i/), then «"(τ) = T~(τ)x~(τ)y~(τ) for all r e Δ(A) and Γ"
belongs locally to A" at p.

COROLLARY 2.3. // T" is ίλe transform of a multiplier, then
T~ is the transform of a bounded multiplier if and only if\p(T(x))\j
\\px\\ ^ M for all peA* and all xe&(T). (Here A* is the dual
of A and px is the functional defined on A by px(y) — p(xy) for all
ye A.)

Proof. The proof follows immediately by combining the above
theorem and the following theorem proved in [4].

THEOREM. Let F be a complex valued function on A(A). In
order that F determine a bounded multiplier of A, it is necessary
and sufficient that F belongs locally to Δ(A) at each point of Δ(A)
and that \p(F(x))\/\\px\\<^M, for all peA* and for all xeAF. (AF

is the set {x \ Fx = y for some y e A.)

3* Further results* In Theorem 2.5 we gave a necessary and
sufficient condition that a function on J(A) be the transform of a
multiplier. The next theorem gives a different necessary and suffi-
cient condition that a function be the transform of a multiplier.
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This identity, as it turns out, allows us to characterize those func-
tions which are transforms of bounded multipliers on the Banach
algebra A.

THEOREM 3.1. The function X belongs locally to A" at each
point of A(A) if and only if there is an approximate identity {ea}
whose Gelfand transforms have compact support such that for each
a, ea~(τ)X(τ) = /α~(r) for some fa e A.

Proof. By referring to the proof of Theorem 2.5 one can easily
see that if X belongs locally to AT then X{τ)ea^{τ) belongs locally to
A".

Conversely, given any r0 e Δ(A) there exists a neighborhood V
of r0 such that e«0(τ) Φ 0 for some a0 and all τ e V. Thus there is
a #C0 such that βC0(τ) = l/e^r) for all τ e V. But there is an faQ

such that e«0(r)λ(r) = /«u(r) for some τ. Hence, for r e F w e have
χ(r) — f2S?)92S?) so that X belongs locally to A".

In Corollary 2.3 necessary and sufficient conditions were given
in order that X be the transform of a bounded multiplier. However,
for specific algebras the inequality in that corollary may be hard
to check. The following theorem gives another necessary and suffi-
cient condition that λ be the transform of a bounded multiplier.

THEOREM 3.2. In order that the function X on Δ(A) be the
transform of a bounded multiplier it is necessary and sufficient
that Xβa = g2 where gaeA, and there exists M > 0 such that \\ga\\tί
M for all a.

Proof. The necessity is clear. Assume therefore, that Xe2 — g2
where gaεA and \\ga\\ ^ M for all α. Define T(x) = y where yΓ =
Xx~ and 3f(T) = {x e A \ Xx~ e A"}. It is easy to see that ^ ( T ) is
an ideal and, since {ea} is contained in £^(T), it is dense. It follows
directly from the definition that T is a multiplier. Now let fe
&(T). Then T(ea)f = T(eaf) = T(f)ea and T(f)ea-> T(f). There-
fore | | Γ ( / ) | | ^ sup α | | T ( O / | | ^ M\\f\\.
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