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COMPARISON THEOREMS FOR PARABOLIC
FUNCTIONAL INEQUALITIES

RAYMOND REDHEFFER AND WOLFGANG WALTER

Differential inequalities containing functional are as-
suming an increasing importance in problems of biomathe-
matics, mathematical medicine, chemistry, heat flow and
population growth. Many of these applications lead to an
equation which is of parabolic structure, in the sense that
the equation would be parabolic if the functional in it
were replaced by a known function. One way in which a
functional arises in such equations is through a Volterra
type memory term, which takes account of the past history
of the process.

We shall present a number of comparison inequalities
for parabolic functional operators. These can be used to
answer questions pertaining to uniqueness, monotonicity,
stability and qualitative behavior with the same simplicity
and directness as has long been available in the purely
parabolic case. As an application, we obtain new results
on the behavior of strongly coupled systems.

The particular formulation adopted here has its historical origin
in the concept of monotone operator, as introduced by Collatz [1].
Without getting involved in technical details, let us suppose that
we have an "interior operator" P and a "boundary operator" R
defined for functions in some suitable class Z. The pair (P, R) is
said to be monotone in the sense of Collatz if the implication

Pu ^ Pv, Ru ^ Rv => u^v

holds for u,veZ. In the case of an unbounded region one may
need a growth condition such as sup (u — v) < °°. Further general-
ization can be achieved by allowing an interior error δ and a
boundary error ε. The implication is now

( 1 ) Pu—Pv <; δ, Ru—Rv <Ξ ε, sup (u—v) < ^ ==> u — v <; p ,

where the bound p is supposed to be effectively computable in
terms of δ and ε. The usefulness of such results in the study of
uniqueness, stability, numerical estimation and existence is well
known [2, 12, 13].

The above formulation (1) is one-sided, in the sense that there
is a one-sided bound in both hypothesis and conclusion. Many im-
portant results (such as Harnack inequalities, for example) do not
hold in the one-sided case, but do hold when the estimates are two-
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sided. The two-sided version of (1) is

IPu - PvI <: δ, \Ru — Rv\ <; ε, sup | u — v| < c
( 2 )

\u — v\ <̂  p

Even in the case of purely parabolic operators, one-sided estimates
hold only for systems satisfying certain monotonicity conditions,
while two-sided bounds can be obtained for a much larger class of
equations.

The following results are formulated in the style (2). The
necessary additional assumptions needed for corresponding results
(1) are, roughly speaking, a quasimonotonicity condition with respect
to u and a monotonicity condition with respect to u(-). The modi-
fications in the proofs are easy and are left to the reader.

We point out that existence theorems for the type of problems
discussed here can be proved, using essentially the same methods as
in the purely parabolic case (a priori estimates combined with fixed-
point theorems or Leray-Schauder degree theory). We shall come
back to this matter in another paper.

2* Notation* We use | | for the Euclidean norm; the argu-
ment can be any finite-dimensional vector or matrix. Points of
Rn+1 are written in the form (x, t) with x e Rn and teR. The
letter G denotes a nonempty subset of Rn+1 which has the following
two properties:

( i ) inf t = 0, sup t = T > 0 f or (x, t) e G.
(ii) If (x, t)eG then a half-neighborhood of form

{(£, τ): t - a<τ ^ ί, \x - ξ \ < a}

with a — a(x, t) > 0 is also in G. We define Γ = Go — G where Go

is a given closed set containing G and we use the terminology

G = parabolic interior, Γ = parabolic boundary.

As explained in [9], introduction of Go is needed to ensure that
expressions like u(2xf t — 1) are defined in G. In purely parabolic
problems Go = G and Γ is the parabolic boundary in the ordinary
sense.

At certain points (x9 t)eΓ one can define an inner normal v(#, t)
by use of a sequence of points (xjft)eG; see [13; §31]. A point
(x, t)eΓ is called a boundary point of Type I if the normal deriva-
tive does not occur in the boundary condition at (x, ί). All points
in Γ—G are of Type I, as are all points (x, 0)eΓ. A point (x, t)e
Γ is of Type II if the boundary condition involves the normal
derivative at (x, t); this implies of course that v(x, t) exists.
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For functions w: Go —> Rm we assign to wu wp, wx, wxx the mean-
ings that have long been traditional in parabolic problems. Thus,
wt is a one-sided derivative from below with respect to t, wv is the
inner normal derivative, wx is the gradient, and wxx the Hessian.
At a given point (x, t) where these expressions exist we have

wteRm, wveRm, wxe(Rn)m, wxxe(Sn)m

where Sn denotes the set of real symmetric n by n matrices. Ex-
istence of wxx means that each coordinate of wx is differentiate in
the w-variable sense; mere existence of the second partial derivatives
is not enough.

We conclude this summary of notation by giving two definitions
and a notational convention.

DEFINITION 1. The class Zm of admissible functions is the class
of functions w: Go —> Rm such that

( i ) w is continuous in GQ,
(ii) wt, wx and wxx exist in G.

DEFINITION 2. For zeRm, φeZ1 and weZm, respectively,

l l w l l , - ( \ w ι \ u \ w 2 \ t , ••-, \wm\t) .

This use of the subscript t should be distinguished from its use to
denote partial differentiation, as in ut.

Notational convention. The letters u and v denote functions
of class Zm. The letters §, ε, p denote continuous functions
(— co? T] —> Rm which are constant for t <̂  0.

This convention is introduced to eliminate unnecessary clutter
in the statements of our theorems. The functions δ, ε, p are given
in the first instance as functions [0, T] ~> Rm, but are extended to
(— co; 0) so they will be defined on Go.

3* Inequalities and monotonicity* Inequalities between vectors
of Rm are interpreted componentwise, but inequalities between sym-
metric n by n matrices are interpreted by means of quadratic forms.

Thus, if zeRm and z e Rm, then

z <; z <=> z* <Lz\ z<z <=^ z* <z* (i = 1, 2, , m) .

But if seSn and seSn, then
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s ^ s — ξ(s - s)ξ £ 0 f or ξ 6 Rn ,

where ζ{s — s)f denotes the quadratic form Σ?,i=i <A y ~ «<y)f<fy Ine-
qualities are extended to functions by the usual pointwise definitions,
and we set Rm

r = {2: z e Rm, z ^ 0}, i?+ = .KV
In general a function i/r is increasing if

where the ordering is that which is appropriate to the category of
the variable. For example, if ψ is a function Sn —> R, then the
inequality s ^ s is a matrix inequality as introduced above, while
if i/r is a function Rm —> Rm both inequalities are vector inequalities
in Rm. A function p: [0, T] —> iίw is increasing if each coordinate pk

is; this is consistent with the above conventions.
In nonlinear problems it is essential to specify the "base value"

at which the monotony inequality is required. This is accomplished
here by use of an arrow which also specifies the relevant variable.
For example, if φ is a function G x Rm x Rn x Sn —> R the state-
ment

φ(x, t, u, uk

x, ulx t ) is monotone

means that

φ(x, t, u, uk

x, uk

xx + s) ^ φ(x, t, u, uk

c, uk

xx) ^ φ(x, t, u, uk, uk

x - s)

for seSn, s ^ 0. Here u is a specific function ueZm and u, uk, uk

x

are abbreviations for

u(x, t) , uk(x, t) , uxx(x, t) ,

respectively. The inequality is required for (x,t)eG.
In a like fashion, if φ is a function Γ x i?m x i? —» i2, the state-

ment

, ί, u,ul\) is monotone

means that

pO, ί, u, u]l + s) ^ ^(x, ί, w, %ί) ^ ^(α, t, u, ut - s)

for s e R, s ^ 0. Here ^ is a specific function wei?w, and u and ^
are abbreviations for u(x, t) and uk(x, t), respectively. The inequality
is required for (x, t) e Γ. Naturally, similar conventions apply if φ
has an extra argument u( ), as in the sequel.

Throughout this paper, monotonicity conditions are prescribed
at the argument u and continuity conditions at the argument v9

where u and v are specific functions entering into the statements of
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our theorems.

We conclude by introducing the following definition:

DEFINITION 3. The function ω: R x Rm x Rm —> Rm is quasimono-
tone increasing if the conditions

y SV , yk = yk , z <, z , zk = zk

together imply ωk(t, y, z)^ωk(t9 y9 z) for t e R and for ft = 1, 2, , m.

A similar definition applies to the function j(t, y), which does
not depend on z.

4* A preliminary result* Throughout the sequel we shall be
concerned with operators of the form

( 3 ) P — (Pl9 P 2 , , Pm) , R = (Rl9 R2, - - -, Rm) ,

where

\PkU = Ut — fh(%, t, U, Uk, Uk

x T , U(-))

Here n(-) denotes the function itself, as a member of Zm

9 while
the other arguments of fk and gk stand for the values at (a?, t).
Thus, /& and grfc are respectively of forms

G x Rm x Λ* x Sn x Zm > R , Γ x Rm x R x Zm > JB .

It is understood that the argument uk is absent from gk at points
of Type I. At these points, no monotonicity condition for gk is
required.

As continuity conditions we assume

zk)[fk(x, t,v + z, vk

Xi vk

xx, v(-) + w( )) - fk(x, t, v, vk

x, vk

XX9 v(-))]

^ωk(t,\\z\\,\\w\\t)

(sgΏzk)[gk(x, t,v + z, < v( ) + w( ))-gk(x, t, v, vt, v( ))l

^ τ f c ( ί , \\z\\, \\w\\t).

These inequalities are needed for ft = 1, 2, , m and' for

z ~ u ~ v , w( ) = u( ) — v(') .

However, since only one of the functions u or v is usually known,
we state conditions of this kind for arbitrary zeRm and w( )eZm,
here and below.

The following elementary result serves as a preliminary to
Theorem 1.
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THEOREM 0. Let Go be bounded and let (P, R) satisfy (4ab),
where ω and y are quasimonotone increasing. Suppose also that p
is an increasing solution of

p(0) > \\u - v\\, , pt > ω(t, p,p) + δ, p> γ(ί, p, p) + ε

on (0, T]. Then

\\Pu - Pi; 11 ̂ δ in G and \\Ru-Rv\\ ^ ε in Γ

==> \\u — v\\<^p in Go .

5* Proof* If the conclusion fails we can find an index k and
a point (£, τ) e GQ such that τ > 0 and

\u\ξ, τ) - v\ξ, τ)\ = p\τ) ,

while for j = 1, 2, , m

I %'"(&, ΐ) - ^"(x, ί) I ̂  pj(t) for (a;, t)eG0,t ^ r .

We assume uk — vk = +P10 at (£, τ); the discussion with — is similar.
Since p is increasing, we have

u\ξ, τ) - ^fe(f, r) = p\τ) , \\u(ξ, τ) - v(ξ, τ)\\ £ p{τ) ,

uk-vk\T = pXτ), \\u-v\\r£p(τ).

We consider three cases.

Case I. (f, τ) is a boundary point of type I. The relation

Rkv ^ p \ τ ) - 7*(τ, | | ^ - v\\, \\u - v\\v)

^ p\τ) - yk(τ, p{τ)y piτ)) > ε\τ)

holds at (f, τ) and contradicts the hypothesis \\Ru — Rv\\ ^ ε.

Case II. (f, τ) is a boundary point of type II. Here we have

0lk <1 4?fe Of /'S TΛ
^Ί; ^ V̂ a ΐ \ζj τ )

in addition to the relations above. The monotonicity of gk gives

Rku - Rkv ^ pk - gk(ξ, τ, uy vu, u(-)) + gk(ξf τ, v, v,, v( ))

^t (f, τ), and a contradiction is obtained as in Case I above.

Case III. (ζ, τ) e G. Here we have

at (f, r), in addition to the relations of Case I. Hence, by the
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monotonicity of fk,

pk £uk - vk = Pku + Λ(f, r, w, %£, w*«, w( ))

- fk(ξ, τ, v, < vk

x, v( ))

f, τ, u, < v£x, w( )) ~ /*(£, *", v, < v£,, v('))

£ δk + α>fc(r, | |tt - ι;||, ||% - v\\τ)

<^dk + ωk(τ, p(τ), p(τ)) < p\ ,

which is a contradiction.

6* Formulation of the main theorem. We now suppose that
the coordinates xl9 x?, , xt are unbounded as (x, t) ranges over G
and that the remaining coordinates are bounded. It is also assumed
that the boundary operator R does not depend on u(-), so that

\Pku = uk - fk(x, t, u, uk, uk

xx t , u(')) ,

The argument u\ is omitted at points of Type I. As continuity
conditions we require

(sgnz k )[ f k {x, t,

(sgnzk)[gk(x, t,v + z, vk. + s)-gk(x, t, v, vk)]^Ύk(t, \\z\\)

x\\s\ .

(5b)

In these relations zeϋm, p eRn, q e Sn, w( ) eZm, s eR and N is a
large constant that does not enter the final estimate. The inequality
(5b) for fk is required in the following two cases:

( i ) \x\>N, \p\ < 1/N\x\, \q\ < 1/N\x\\ pt = qiS = 0 for i, j>l,
( ϋ ) I x I ̂  N, p = 0, q = 0.

The inequality (5b) for #fc is required in these cases:
( i ) \x\ > N, \s\ <1/N\x\,
(ϋ) \x\ ^N, s = 0.

At points of Type I, the condition involving s is vacuous.
Finally, we assume that

/ c N ffl>*(ί, » + «, i/ + ϊ ) α ) f c ( ί , y, i/)^JK:(|2| + | J | ) for 2 ^ 0, z ^ 0 ,
(5c) i ^

(7*(ί, 2/ + z) - γ t(t, y ) ^ Σ £•««/ for 2
i

where ίΓ, Ki5 are constants satisfying Ê  ̂  0, iΓ^ ^ 0 for i

THEOREM 1. Let (P, R) satisfy (5abc) where ω and 7 are
quasimonotone increasing. Suppose also that p is an increasing
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solution of

p(0) ^ \\u - v\\0 , ρt ^ ω(t, p, p) + o , p Ξ> τ(ί, |θ) + ε

cm (0, T] . Tftew

\\Pu - Pv\\ ^δ in G , \\Ru - Rv\\ ^ε in Γ, s u p | | u - v\\ < co

The choice v = 0, p = z in Theorem 1 gives the following:

COROLLARY 1. Let P be as in Theorem 1, with v — 0 in (5b),
and let u be a bounded solution of Pu = P0. Suppose z e 22+ is
swcΛ £Aα£ α>(ί, 2;, «) <; O/o?* 0 < ί ^ Γ. JΆe^ | | ^ | | satisfies the maxi-
mum principle relative to z; that is, \\u(x, t) \\ ^ z in Γ implies
\\u(x, t)\\<,z in G.

This follows from Theorem 1 by taking g = y = 0 = 0, p = ε = z.
If ω(t, v, z) = L(t)y + K(t)z is linear the set of vectors z in

Corollary 1 is defined by

L(t)z + K{t)z ^ O ^ z , 0 <t ^ T ,

and hence is a convex cone. Further discussion of the linear case
is given in the following section.

7* Remarks and generalizations*

REMARK 1. The hypothesis (5c) with regard to 7 can be relaxed
as follows. It suffices to assume that

( i ) τ(ί, y + z) - τ(ί, V) ^ M{t)z for z ^ 0,
where lf(ί) is a matrix-valued function continuous in [0, T] such
that

(ii) σ(t) > M(t)σ(t) has a solution <j(ί) > 0 in [0, T],
First we note that this assumption is weaker than the original one.
Indeed, if M(t) = M = (ϋΓ )̂, where the Kί3 are the constants in (5c),
then σ(t) = (1, 1, , 1) satisfies (ii). Second, we may assume that
the function σ in (ii) is smooth. For, if (ii) holds, then the Heine-
Borel theorem gives a finite set of relatively open intervals I; covering
[0, T] and a set of constant vectors £t such that <?*> 0, ξi > M(t)ξτ

for ί e Ii. Ii μt are smooth functions R-* R such that

μ,(ί) > 0 for t e /;, /̂ O0 = 0 for ί e [0, T] - I, ,

then the function J(ί) = Σ £ij"t(ί) ίs smooth and satisfies (ii).

REMARK 2. The first part of hypothesis (5c) is needed only
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when y = σ(t) and z\\σ(t), where σ: [0, T] —> Rm is any continuous
function satisfying inf σt > — co as well as (i), (ii) above. Here
z\\σ(t) means z ~ X(t)σ(t), λ ^ 0. In any case (5c) is needed only
for \z\, \z\ ^ sup \u — v\ and the constants can depend on (u, v).
They do not enter into the statement of Theorem 1.

Remarks 1 and 2 are most easily understood when ω and 7 are
linear. Let

ω(t, y, z) = L(t)y + K{t)z , y(t, y) - M(t)y

where y e Rm, z e Rm and where L, K, M are m by m matrix-valued
functions of ί. The conditions for p now take the form

pt ^ Ĵ (*)|θ + K(t)p + δ , |0

and the quasimonotonicity of ω and j is equivalent to

Lίά{t) ^ 0 , JKΓ̂ ίt) ^ 0 , ΛΓ<y(t) ^ 0 for i Φ j , 0 S t ^ T .

The hypothesis (5c) as restricted by Remarks 1 and 2 becomes

L(t)σ(t) ^ const. , ίΓ(t) ^ const. , M(t)σ(t) < σ{t) .

Here the first and third inequalities pertain to the ordering in Rm

and the second means that each element Kiά(t) is bounded above.
Since the diagonal elements of L and M can be negative, these con-
ditions are much weaker than corresponding original conditions

Σ Jλ;(OZi S const. I z I for z ^ 0 , Miό(t) ^ Ki3 , Σ Ku < 1

When L is bounded above, any σ can be used with L, and hence
the σ from Remark 1 can be. Since the άth boundary operator Rk

must actually involve uh, it does not appear that the condition on
M given in Remark 1 can be significantly weakened.

If M is a diagonal matrix with diagonal elements bounded above
by iΓ0 < 1, the sole condition on the continuous function σ (other
than σ > 0, inf σt > — co) is L(t)σ(t) <̂  const. Such a condition can
hold when the elements of L are severely unbounded, as is evident.
It should be observed in this connection that σ, K and Ko do not
enter into the conclusion of Theorem 1. Only their existence is
important, not their values.

REMARK 3. The hypothesis \\u — v\\0 <£ p(Q) can be replaced by
the boundary condition

\\Ru-Rv\\ £> e(0) , t ^ 0,

provided the following conditions hold: p(0) ^ j[t, p(0)] + e(0) and
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(iii) Mit) - Λf(O) for t ^ 0,
(iv) ξ e Rm, ζ > M(0)ξ =>ξ>0.

To see this, note that the boundary condition 11 Ru — Rv \ | <; ε(0) for
t ^ 0 gives

| |u - v\\ £ 6(0) + Λf(O) ||w - v\\ (ί ^ 0) .

On the other hand the comparison function ψ used in the proof of
Theorem 1 satisfies

(/ - M)ψ ^ λ,(J - M)σ + (I - M)p > e(0) (t g 0) .

Putting these two results together gives ( I — M){ψ — \\u — v||) > 0
for £ ̂  0, and Property (iv) ensures

( * ) \\u{x91) - v{x, t)\\ < ψ(x, t) , t ^ 0 .

In the proof of Theorem 1, which is given below, it will be seen
that the only use of the condition ^(0) ^ \\u — v\\0 is to establish
(*). This completes the proof of Remark 3.

In view of the above remarks, Theorem 1 implies the theorem
for the linear case which was stated without proof at the end of
[9].

REMARK 4. In most cases of interest a term \\u\\t does not
occur in the original statement of the problem, but arises by asses-
sment of a Volterra-type functional. In such cases one would
naturally expect Kts ^ 0 for i = j as well as for ί Φ j . Even if
| |%I | t does occur in the original problem, the comparison function v
must be severely restricted, in general, before Ku<0 can be allowed.
As an illustration consider

Pu — ut — Δu + sup u(x, t) , m = 1 .
|ίel<o°

Here we can take K— — 1 provided v is a function of t alone. If
the sup were replaced by sup u(x, τ) for τ ^ t, or by a sup with
respect to both x and τ, we could take K= — 1 when v is constant.

Equations involving maximum operators such as the above do
arise in the theory of dynamic programming and elsewhere. How-
ever, we have allowed ω(t, y, z) to be merely quasimonotonic in z,
rather than monotonic, not with a view to any esoteric application,
but to show the parallelism between the dependence on u and that
on u(').

REMARK 5. Let |^|f and | |w| |* be defined as in Definition 2 in
§2, but with τ <̂  t replaced by τ = t (i.e., the supremum is taken
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only over x with t fixed). If the estimate (5b) for / holds with
||w||ί replaced by ||w||*, then the assumption in Theorem 1 that p
is increasing can be dropped.

This remark applies, e.g., when the functional in P is of the
form u(x + ζ(x, t), t), that is, when we have no delay in tf but a
deviating argument in x. Further discussion is given in § 10.

8. Proof of Theorem 1> The side conditions associated with
Theorem 1 involve an index I such that xlf x2, , xx are unbounded
in Go and the remaining coordinates are bounded. We define

X — \Xlf X2, * ' , Xi)

and increase N, if necessary, so that N > 1 and also

( x , t ) e G 0 , \ x \ ^ N = * \ x \ £ \ x \ £ 2 \ x \ .

We shall prove the theorem under the weaker assumptions outlined
in Remarks 1 and 2 of the preceding section.

Let σ be a smooth function satisfying (ii) in Remark 1, and let
σ0, σx be constants such that

( 6 ) 0 < σγ < 1 < σQ, σ,σ\t) > | σ(t) \ and (σ(ί) - M(t)σ(t))k > σx

f or 0 £ t ^ T, k = 1, , m. Let

( 7 ) μ = σoκ + (2 + 4T/¥)iV , β = σQK + sup \u - v\ .

By replacing σ by the function cectσ(t), where c is a large constant,
we can assume that a satisfies

( 8 ) σt > μσ and σk > 1 (k = 1, , m) in [0, T] .

Note that this change does not affect the properties (6) of σ.
It will be proved by induction that

( 9 ) \\u(x, t) - v{x, t)|| ^ p(t) + λ,(t)α(t) for i = 0, 1, 2, ,

where

λt(ί) - /5ί+1(ί + iγ/ίl (i = 0,1,2, .••).

Obviously, the conclusion of Theorem 1 follows from (9) for i—> °o.
Since |θfe > 0, (7fc > 1 and β > \u — v\, inequality (9) holds for i = 0.
Let us assume therefore that (9) holds for the index i — 1. In
order to prove (9) for the index i, we shall establish the estimate

(10) \\u(x, t) - <£, ί) | | ^ p(t) +

for all α satisfying
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0 < a < (4JYi/l&sup Iσl)""1 ,

where

ίO for \x\ <N

[a0 + log I x I for | x | > N .

a0 = —— sup I σ | + 1 .

In what follows, we set

w = u- v , ψ(x, t) = pit) + (ah(x) + \(t))σ(t) ,

and we define

p(t) - ^(0) , σ(t) = σ(0) , λ,(t) = X€(0) for t < 0 .

The conclusion \\w(xft)\\<ψ(x,t) holds for ί ^ 0 by virtue of
the hypothesis on ρ(0) together with the fact that σ(Q) > 0. If this
conclusion does not hold for all (x, t) e Go then we can find a point
(ς, τ) 6 Go and an index h such that τ > 0 and

I w\ζ, τ)I - olrXξ, τ) , || w f o ί ) I I ^ Ϋ & , t ) f o τ t £ τ .

A point of this kind is called a Nagumo point. We assume w/c— +α/rfe

at the Nagumo point; discussion with — is similar. Thus, the basic
conditions are r > 0 and

(11) w\ξ, τ) - ψ\ξ, τ) , \\w(x, t)\\ ̂  f(x, t) for t < τ .

The possible locations of (£, τ) lead to the cases considered below.

Case I. Boundary point of Type I, \ξ | > N. Using first the
quasimonotonicity of 7 and then the hypothesis on p, we get

Rku - Rkv ^ ψ\ξ, τ) - τ*(r, ^(ί, r))

^ εfe(τ) + λ(jfe(r) + 7*(r, /θ(r)) - 7,(

where we have introduced the abbreviation

λ = ah(ξ) + λ,(τ) .

We apply (5c) with y — p{τ) and z = Xσ(τ) > 0. Thus, we get a
contradiction,

Rku - Rkv ^ εk(τ) + Xσ\τ) - (M(τ)Xσ(τ))k > εk(τ) .

Case II. Boundary point of Type II, | ξ \ > N. Here we have,
besides the conditions used in Case I, the condition uk

u^
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Since \hu\ ̂  \hx\ ^ 2/\x\ because of | a5 |^2 |» | , the smallness of a
ensures | s | ^ 1/N\x\ for s = ah>σk(τ). Upon using first the mono-
tonicity of g, then the inequality involving 7, and finally the results
noted in Case I, we see that

Rku - Rkv ^ εk(τ) + X(σ(τ) - M(τ)σ(τ))k - 2aNσh(τ) .

Since X >̂ aa0 and aoσx> 2Ns\ιp\σ\9 a contradiction is obtained
again.

Case III. Interior point, \ξ | > N. Here we have (11) and also

wk ^ ψk

 9 uk

x — vlc

x = ahxσ
k, uk

xx — vk

xx ^ ahxxσ
k a t (ξ, τ) .

Since | &β | <£ 2/|»| and | λββ | ^ 4i/ ^ /|»|2, the smallness of a assures
the side conditions (i) following (5b). Using first the monotony with
respect to uxx given by (5a), and then the continuity hypothesis (5b),
we get

Pku~Pkv ^ ψk

t(ζ, τ)-ωk(τ, \\w(g, τ)\\, \\w\\T)-a(2+4V^)Na\T) .

By (11) and the quasimonotonicity of ω we can replace \\w(ζ, τ) | |
on the right by ψ(ξ,τ). To effect a similar substitution for \\w\\t

let us define seRm by

\% = ^(ί) + 8* if \wj\t ^

otherwise sj = 0. Then we can replace ||w||i by p(t) + s to get

Pku-Pkv ^ ψϊ(ξ, τ)-ωk{τ, ψ(ζ, τ), p(τ)+s)-a(2+4:V/'n)Nσ\τ) .

Upon recalling that

ψ(Xf t) = ah(x)σ(t) + λ4(ί)σ(ί) + p(t)

and that σt ^ μσ by (8), we see that ψ satisfies the differential
inequality

ψt > (ah + Xt)μσ + β\-xσ + <o(t, p, p) + δ .

On the other hand with λ = ah(ζ) + λέ(τ) the hypothesis (5c) gives

τ, p(τ) + Xσ(τ), p(τ) + s) - α>*(rf ^ ( τ ) , ̂ ( r ) ) ^ ϋΓ(λ \σ(τ)\ + \s\)

In the last step we used the fact that | σ \ ̂  ao^
fc by (6), and also

the induction hypothesis (9) for the index ΐ — 1. The latter gives
\s\ ^ λ^iίr) |CJ(T)|. Because of the inequalities satisfied by a0, β and
μ, the two inequalities above lead to a contradiction:
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at (£, τ).

Case IV. \ζ\ ^ N. If \\w\\^ψ fails, it has been seen that
there is no Nagumo point in | x | > N, and hence there must be one
in \x\ ^ N. This is true for every a > 0. In general, both the
point and the distinguished index k might be expected to depend on
a; thus, (f, τ) = (fα, τa), k = ka. However, since h(x) — 0 for \x\^N,
it is not hard to show that one and the same point (£, τ) and index
k can be used for all a as a —> 0 + . This point is also a Nagumo
point when a — 0, and a contradiction is obtained as in the proof
of Theorem 0 in § 5.

The result of the foregoing analysis is that (10) holds for α = 0,
hence (9) holds for the index i, and the proof by induction is com-
pleted.

9* Remarks on strongly coupled systems* In this section and
the next we give examples of the foregoing theory, making special
choices of the functional implied in u( ) .

Partial derivatives are denoted by the usual indicial notation,

Da = dlal/dx^dx? -dxl- , \a\ = a, + a2 + + an .

If 0 < θ < π/2 and h > 0, a cone C(θ, h) with vertex at 0, vertex
angle 2Θ and height h is the set of all xeRn satisfying

eox ^ \x\ c o s θ , \x\ ^ h .

Here e0 is a unit vector defining the axis of the cone and eQx denotes
the inner product. When n = 1 we agree that C(β, h) denotes a line
segment of length h. The set Ω c Rn belongs to the class K(θ, h)
if for each xeΩ there exists a cone C(β, h) such that x + C(θ, h)aΩ.

If ΩdRn is an open set, the class Cd(Ω, Rm) is the class of
functions Ω -> Rm such that all derivatives of order <^d are continu-
ous. The class C}(β, Rm) is the subclass of functions in C%Ω, Rm)
for which the derivatives of order d satisfy

(12) \D?u(x) - D>u(y)\ ^ φ{\x - y\) , \β\ = d ,

where φ is a modulus of continuity; that is, ψ is continuous and
0(0) = 0. In our applications we shall have Ω e K(θ, h) and (12) is
required only for (sc, y) such that

I x - y I S h , Xx + (1 - x)y e Ω , 0 £ x ^ 1 .

Hence, by the mean-value theorem, the condition holds with φ(s) =



COMPARISON THEOREMS FOR PARABOLIC FUNCTIONAL INEQUALITIES 461

(const)s if all derivatives of order d 4- 1 are bounded.
The following lemma is proved in [11]:

LEMMA 1. Let Ω a Rn be an open set of class K(θ, h), bounded
or unbounded, and let w e C}(Ω, Rm) for some modulus of continuity
φ. Let

Wk = svp{\D*w(x)\:\a\ = k,xeΩ) (k = 0,1, •••,<*)

where Wo < °°. Then Wk < °°, and there exists a modulus of con-
tinuity Φ, depending only on (θ, h, d, m, φ), such that

Wo+ W,+ ••• + Wd^Φ(W0) .

Actually the result is deduced in [11] from a hypothesis which
is much weaker than weCφ(Ω, Rm). However it follows from the
conclusion that in fact w e G}(β, Rm) for some φ and hence, the above
formulation has been preferred here.

These considerations are extended to functions u(x, t) defined on
the region G by means of the following definition:

DEFINITION 4. Let Gt denote the nonempty cross sections

Gt = {x e Rn: (x, t)eG} .

Then G belongs to the class K(θ, h) if each Gt does so, with {θ, h)
independent of t. The function w:G -»Rm belongs to C$(G, Rm) if
w(t9 •) belongs to C(f(Gt, Rm), where the modulus of continuity φ is
independent of t.

It is convenient to denote by Du the vector of m(l+n-\ \-nd)
components which contains all ^-derivatives Dau, \a\^d. Thus, D
is of order d. We consider the operators

{Pku = Ut - Λ(», *, u, uk

x, u
k

xx t , Du) in G
( a ) [Rku = uk- g(x, t, ut T ) in Γ = G - G ,

where Du is an abbreviation for (Du)(xf t) and where

( s g n zk)[fk(x, t,v + z, vm, vXXi Dv + s)

- Λ ( » , ί, v, vx, vXX9 Dv)] ^ ω ( ί , \z\,\s\)

for Λ = l, 2, , m. Here s = (sa), \a\<Ld, and the function ω: [0, T]x
R2-+R satisfies

ω is continuous, increasing in the last argument, and
( α)(0, 0, 0) = 0 .
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THEOREM 2. Let (P, R) satisfy (13abc) in a bounded region G c
K(θ, h) and let (u, v) belong to C$(G, Rm) with d^l. Then the
conditions

Pu — Pv\ = o(l) and \Ru — Rv\ = o(ί) as t > 0 +

uniformly in x

imply

I Du — Dv I = o(l) αwd | u — v | = o(ί) as £ > 0 +

uniformly in x .

Jw particular, if either of the forward derivatives du/dt or dv/dt
exists at (x, 0) then the other exists and has the same value.

Before giving the proof we illustrate Theorem 2 by two ex-
amples.

EXAMPLE 1. Let n — 1, x1 = x9 and let G be defined by t > x2.
Consider the problem

(14) 2u\ - ulx - 2u2

xx , 2u\ = wL - 2uL , (x,t)eG ,

subject to u1 — u2 = 0 on Γ. This problem has the two solutions

u = « ^2) = (ί — flc2, * — x2); v = « v2) = (0, 0) ,

which do not satisfy the conclusion of Theorem 2. Nevertheless,
all the hypotheses of Theorem 2, except one, are satisfied with a
great deal to spare, and both u and v are of class C°°. The only
condition which fails is GeK(θ,h). To be sure, each cross section
Gt satisfies Gt e K(θ, t1/2); but the parameter h = ί1/2 tends to 0 with
t, and hence the condition does not hold uniformly in the sense
required by Definition 4. This uniformity is therefore essential for
the truth of Theorem 2, even when Γ is smooth.

EXAMPLE 2. If the hypothesis of Theorem 2 is strengthened to
Pu = Pv and Ru = Rv, and ω is linear, one might expect that the
conclusion could be strengthened to u = v. However, this is not
the case. Using the notation of Example 1, let G be bounded by
the three lines x + t = 0, t — 0, x — 1, and consider the system

1 - x)u\x - Zu\
(x. t)e G

1 - φ ί , - 3u2

subject to u = 0 on Γ. This problem has the solution

u = (#4£ + x5, aΛ + x5) (a? ̂  0); u = (0, 0) (a? ̂  0)
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as well as the null solution v = (0, 0). All the hypotheses of Theo-
rem 2 hold and, in agreement with the conclusion, du/dt = dv/dt for
t = 0, 0 < x < 1. Nevertheless, u Φ v.

The proof of Theorem 2 is simple. By Lemma 1 we can find a
modulus of continuity Φ(s) such that w = u — v satisfies

\Dw\ <̂  Φ(sup \w\) .

The condition for p in Theorem 0 is therefore

p(0) > 0 , pt> ω(t, ft Φ(p)) + λ(ί) , |O > ίλ(ί) ,

where λ is continuous and λ(0) = 0. These can be regarded as
scalar equations with pk = ft ωk — ω for k — 1, , m. Given λ e
(0, 1/2), there exists μ > 0 such that

0 < ί < ! θ , 0< p<μ => λ(ί) + α)(ί, ft Φ(/θ)) < λ .

Hence we may take p{t) = Xt+r], 0 < η < j«/2f and we obtain |w — v|^
Xt + η for 0 <^t <* μ. Letting 57 —> 0, the result follows.

By using the full force of Theorem 1, one can readily extend
Theorem 2 to unbounded regions and to strongly coupled systems
containing functionals. Also one can obtain more detailed estimates
by means of the inequalities

(15) Wk rg (const) C l i m a x (Wo, Wd)]k/d , k = 0, 1, • , d

which are established for functions w e Cd(Ω, Rm) on regions Ω e
K(Θ, h) in [11]. For suitably restricted polynomials H(Dw) in the
elements of Dw, the inequalities (15) give an estimate of form

IH{Dw)I ^ (const)(sup \w\)* , p ^ 1 ,

and this can be used to establish uniqueness, stability, and asymp-
totic stability for the null solutions of certain rather broad classes
of strongly coupled systems. Details of these developments are not
difficult and are omitted.

In conclusion, we mention that the idea of using Kolmogorov-
type inequalities in the study of strongly coupled systems is due to
Nickel [4, 5], and the fact that these results can be subsumed
under a general theory of parabolic equations with functionals was
pointed out by the authors [9, 10]. An existence theory within the
context of Nickel's ideas is given in [8],

10* Systems with limited memory* The reason for requiring
p to be increasing in Theorem 1 is to ensure \\p\\t = \\p(t)\\, so that
p(t) gives an estimate not only for w(x, t) at the Nagumo point,
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but also for ||w||« The assumption of monotonicity does no great
harm on a finite interval [0, T], and, if the differential equation
for p would allow a decreasing p, we could generally take p — con-
stant. But on an infinite interval [0, ©o) the monotonicity of p is a
serious restriction. The trouble is that one would like to establish
asymptotic stability,

lim I u(x, t) — v(x, t) I = 0 uniformly in x ,
ί->oo

and this requires lim p(t) = 0.
To deal with this problem let μ be a specified function R—>R

satisfying μ(t) ^ t. Without bothering to introduce a new notation,
we alter the definition of \φ\t in Definition 2 as follows:

\Φ\t = supMf, τ)|: (f, τ)eG0, μ(t) £ τ £ t] .

This gives a corresponding value, depending on μ, for

= ( | w Ί * , \w*\t, -' , \ w m \ t ) .

Roughly speaking, an expression which can be assessed by \\w\\t

cannot involve values of w at times prior to μ(t). Such an expres-
sion can be thought to be of limited memory; a measure of the
memory at time t is given by t — μ(t). For example, the operator
w(x, f)-+w(xf t — 1) has memory 1. The operator w(x, t)—>w(2x—t,t)
has memory 0, as does also the operator w —> Dw introduced in
the foregoing discussion. Operators given by integration over the
subset of points (£, τ) 6 Go for which μ(t) ^ τ ^ t are of memory
t - μ(t).

When the foregoing theory is developed in this setting, the
hypothesis in Theorem 1 that p is increasing can be replaced by a
requirement that ω(t, y, z f ) is increasing and that

Pt ̂  α>(ί, p(t), p(t)) , pj{t) = max

In particular, if ω(t, y, z]) is increasing, and also p is decreasing,
it suffices to have

pt ^ α)(ί, !θ(τ), ^ ( ί ) ) ) .

Thus, the study of asymptotic stability leads to a specific class of
delay differential equations.

As a simple illustration, let ak, a and /3 be given functions of
type Rn+1 -• Jϊ, β%+1 -> Rn, and JB%+1 -> JB, respectively, and consider

(16a) i

\u*(x, t) = u(a(x, t), β(x, t)) , μ(t) ^ β(x, t) £ t .
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Thus, u-+u* is a Volterra displacement operator with memory
t> — J"(*) A s continuity condition we assume that there exist con-
stants A and B and an increasing function N: JB —> R such that

(16b)

ak(x, t) ^ A , A> B^O ,

\fk(x, t, v\ + j>, vk

xx + g, v* + s) - fk(x, t, vx, vxx, v*) I

^N(t)\x\\p\ + N(t)\x\2\q\ +Bmax\sj\
3

for (x, t)eG and k = 1, 2, , m. In each strip 0 < t <: T this is
subject to side conditions for \x\ > N(T) and |a?| ^ JV(JP) similar to
those in Theorem 1.

THEOREM 3. In the region G = R% x (0, ©o) ieί (16ab) ΛoίcZ
suppose also:

( i ) I w(#, ί) — v(x, t) I is bounded in each strip 0 ^ t S T,
(ii) lim μ(t) = oo as ί -> °o.

Then Pu = P-v implies lim^^ | u(x, t) — v(x, t) \ = 0 uniformly in x.

For proof, let w = w — v. To get a useful assessment for
||w*|| we ought to choose t0 so that μ(t) ^ 0 for t ^ t0 and work in
the region t *> ί0. However, since the main hypotheses are invariant
under a translation of ί, we shall use Theorem 1 as it stands. The
conditions for p are satisfied if p is a decreasing solution of

pk

t ^ - Ap\t) + B max pί{μ{t)) , /o(0) ^ ||w(», 0) || .

This can be solved by setting p = λ(σ, σ, , σ) where λ is a suffi-
ciently large constant and where σ is a decreasing solution of the
scalar equation

(17) σt ^ -Aσ(fi) + Bσ(μ(t)) , σ(0) > 0 , σ(t) ^ 0 .

There is no difficulty in finding particular solutions of form e~at,
(t + β)~a corresponding to particular choices μ(t) = t — 7 (τ> 0), μ(t) =
δt (0 < δ < 1). Such choices are useful in that, when they apply,
they give a specific estimate of the rate with which \u — v\ ap-
proaches 0. However, the general case depends on the following:

LEMMA 2. // A > B ^ 0 and l im^ e o^(ί)= °o, then (17) has a
decreasing solution σ such that lin^ ̂  σ(t) — 0.

The condition on μ is appropriate, since if μ is bounded and
B > 0, there can be no such function σ.

For proof suppose lim μ(t) = oo and construct a sequence {tn}
with t0 = 0, tn+1 > tn + 1, such that μ(t) > tn_x + 1 for ί ^ ίΛ. For
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σ we choose a continuous function which is linear in each interval
(*•» <« + 1) and is constant on the complementary intervals. It is
readily checked that such a σ can be constructed so as to be decreas-
ing and to satisfy (17) except at the corners, and also

0 < σ(tn) < (const)[ί± |

Thus, lim σ(t) = 0. A modification of this constructions gives a
continuously differentiable σ, but in fact a countable set of hyper-
planes t — const, in which ut — vt and σt fail to exist does no harm.

It is perhaps unnecessary to mention that the region and the
operator in Theorem 3 can be strongly generalized, by using the
full force of Theorem 1.

11 • Boundary conditions of the second kind* The foregoing
results extend to cases in which the boundary condition at some
points involves only the normal derivative u^ and not the undif-
ferentiated function u. Boundary conditions of this type are of the
second kind. A suitable regularity condition is given by the follow-
ing definition:

DEFINITION 5. The boundary Γ is regular if there exists a
function c{x) e Z1 satisfying cχ%) ̂  1 at all boundary points (x, t) of
Type II and also

0 ^ c ^ Co , \cx\ ^ d , \cxx\ ^ C2 in G .

The constants Ct are called the region constants relative to c.

This condition is satisfied by many regions, such as a cube,
that do not admit an internally tangent sphere in the sense of
Hopf. For further discussions see [7, 9].

We shall consider operators

(18a) Pku = u\ - f{x, t, u, < ul !,%(•))

subject to the following continuity condition:

- / ( * , *, v, < vt, * ( . ) ) ^ ω\t, z , \\w\\t, \p\, \q\) .

Here ωk(t, z, s, \p\, \q\) is quasimonotone increasing with respect to
the arguments s, z and monotone increasing with respect to |p | , |g|.
For simplicity we assume also that ω has continuous partial deriva-
tives with respect to each of the arguments z, s, \p\f \q\. Instead
of introducing a boundary operator R we assume boundary condi-
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tions such that

l. - . IS.' (I)
uk-vk > εk==>vk-uk^ εk, vk-uk > ek = > uk-vk ^ εk (II)

at boundary points of type I and II, respectively. Here ε is a given
vector of Rm, ε > 0.

THEOREM 4. Let (18abc) hold and let Γ admit the region con-
stants Co, Clf C2. Suppose p is an increasing solution of

p\ ^ ωk(t, p, p, εkClf ε
kC2) + δk , p(fl) ̂  (1 + Q ε ,

on (0, T]. Then \\Pu - Pv\\ ^ δ in G and sup \\u - v\\ <™ in
G0=>\\u - v\\ <> p in Go.

The proof follows by use of a comparison function φ(x, t) — εc(x),
where έ is slightly larger than ε and where ψ is the function used
in the proof of Theorem 1. It will be found that the hypothesis
involving p and q is needed in a region somewhat larger than that
defined by \p\ ^ C^maxs*), \q\ ̂  C2(maxεfc).

To illustrate the boundary condition, consider the operator R
defined by

Rku - ak(x, t)uk - bk(x, t)uk + gk(x, t,uk\) - hk(x, t, u\ \) ,

where the arrow denotes monotony as usual. For points (x, t) e Γo

of Type II we require

ak(x, ί) ^ 0 , bh(x, t) ^ 0 , ak(xf t) + bk(x, ί) = 1 .

At points of Type I we set ak(x, ί) = 1 and omit the terms involv-
ing u*. Then the condition \\Ru — Rv\\ ^ ε in ΓQ implies the bound-
ary hypothesis of Theorem 4.

12* A theorem without growth conditions* For a e Sn, a e
Sn, b e Rn, b eRn it is convenient to define

= Σ
ί,j=l

= Σ btbd , bob =
i l

The hypothesis involving N\x\2 and N\x\ in Theorem 1 corresponds
to classical growth conditions for the coefficients of the linear
inequality

ut <: auzx + bux , a ^ 0 , m - 1

where α = α(#, t)eSn, b — b{x, t)eRn and the products αw^, 6 ^ denote
contractions as above. Namely, the maximum principle holds for
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bounded solutions in unbounded regions if a = O(\x\2) and b = O(\x\),
uniformly in t, as \x\ —> ©o. It was noticed in [10] that these
growth conditions can be dropped if the elliptic problem associated
with auxx + bux = 0 has effective dimension ^ 2 in the sense of
Meyers and Serrin [3]; see Definition 6 below. Conversely, the latter
hypothesis is essential for the validity of the maximum principle in
the problem

(19) ut <; X(auxx + bux) , sup u < °° , m = 1

when G = Ω x (0, T], Rn - Ω is bounded, and the growth of the
function X:G-^R+ is unrestricted.

By means of the technique used in the proof of Theorem 1 these
results can be generalized to nonlinear systems containing functionals.
To this end, we introduce the following definition:

DEFINITION 6. Let a and b denote functions G->Sn, G->Rn,
respectively. The operator S defined for ueZ1 by Su = anxx + bux

is said to be of Meyers-Serrin type if a ^ 0 and for some rQ

, (x,t)eG, \x\ > r0| 8 | g 2

xa(x, t)x

where φ is a continuous function R-> R satisfying

The importance of this condition is that, when it holds, the equation
Sy <; 0 has a radial solution y = μ(\x\) > 0 for |cc| > r0 which satisfies
limu(τ) =oo a s r - > o o ; see [3].

We consider operators of the form

(20a) Pku = uk

t- fk(x, t, u, Sku
k | , u( ))

where fk is a function GxRmxRxZm->R and where each Sk is
an operator of Meyers-Serrin type. As continuity condition we
require

(sgn zk)[fk(x, t,v + z, Skv\ v( ) + w( )) - fh(x, t, v, Skv\ *(•))]

where ω satisfies the same conditions as in Theorem 1. Namely, ω
is quasimonotone increasing and

( 2 0 c ) ω ( ί , y + z , y + z ) - ω ( t , y , y) ^ K(\z\ + \z\) ( z ^ 0 , z ^ 0 ) .

The difference between this hypothesis and that of Theorem 1 is
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that here we have no restriction involving the arguments p and q,
which correspond to the dependence of / on ux and uxx, respectively.

THEOREM 5. Let (20abc) hold in a bounded or unbounded region
G and suppose p is an increasing solution of

pt ^ ω(t, p,ρ)+*δ, p ^ ε , 0 < t ^ T .

Then

\\Pu — Rv\\ <* d in G , \\u — v\\ <* ε in Γ, sup \\u — v\\ < oo
Go

==> \\u — v\\ ^ p in Go .

If G = Ω x (0, T], where Rn - Ω is bounded, the hypothesis
that each Sk is of Meyers-Serrin type is essential even when / is
linear and the arguments u, u( ) do not occur. This follows from
the above discussion of (19); cf. [10].

To prove Theorem 5 construct radial functions yk{x) = Yk(\x\)
such that Skyk <̂  0 for large | x \ and also lim yk(x) — oo for | x \ —> oo.
We choose r0 so large that every yk is positive (and satisfies its
differential inequality) for | x \ > r0, and we define yk{x) = 0 for
\x\^ rQ. Theorem 5 now follows by use of a comparison function

ψ(x, t) = ay(x) + \(t)σ(t) + ρ{t)

with y = (yu y2, , ym) and with λt and σ as in the proof of Theo-
rem 1. In the present case the boundary is ruled out automatically
as a possible location of the Nagumo point, and in other respects
the proof parallels the proof of Theorem 1.
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