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HOMOTOPY THEORY OF RIGID PROFINITE SPACES 1.

D. L. REcTOR

This paper is the first part of a study of profinite
completion and profinite spaces from a functorial point of
view. The study aims at understanding mapping spaces,
classifying spaces, and other notions involving higher homo-
topies in the setting of profinite spaces.

The term 7rigid profinite space will apply to a left filtered (see
below) actually commuting diagram of spaces with finite homotopy
groups, as distinguished from an Artin-Mazur profinite space which
is a homotopy commuting diagram. One advantage in working
with actually commuting diagrams is that a jfunctorial homotopy
limit exists relating diagrams of spaces to spaces. A homotopy
limit does not exist in general for diagrams in the homotopy
category. The actual relationship between rigid profinite spaces
and profinite spaces is not well understood. Theorem 3.4 and
Corollary 6.9 below suggest that the relationship is very -close.
Rigid profinite spaces arise naturally in many contexts; in particular,
the étale homotopy type of a nice variety may be made rigid [8],
[10].

The main results of this paper are as follows. In §2 we
construct a functorial profinite completion X for a connected space
X taking values in the category of rigid profinite spaces. We
employ a construction pioneered by Quillen [13] making use of the
profinite completion of a simplicial group. We show that this
profinite completion is weakly equivalent to that of Artin-Mazur.
A functorial nilpotent p-completion has been studied extensively
by Bousfield and Kan [5]; it gives equivalent results on spaces X
which are nilpotent and locally of finite type — i.e., H*(X; M) of
finite type for all finite local coefficient systems M. For spaces
which are not nilpotent, the Bousfield-Kan completion gives very
different results.

In §3 we construct a functorial discretization dY for a rigid
profinite space Y. We show that for X a connected space, dX
represents the Sullivan finite completion of X [17] in a strong
sense —i.e., for all connected spaces Z, the mapping space hom(Z, dX)
has the right higher homotopy groups (see Theorem 3.4). In part
II of this paper (in preparation), we will show that when X is
locally of finite type, X and dY are homotopy adjoint in a strong
sense — i.e., hom (X, dY) is weakly equivalent to hom (X, ¥) for a
natural definition of hom (X, Y).
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In §4 we state a partial generalization of a fibration theorem
of Artin-Mazur. We will show that if

F—sFE—B

18 a nilpotent fibration of conmected spaces such that F or B 1s
locally of finite type, then
F—E—B
18 a fibration up to weak equivalence. Artin-Mazur instead require
that B be simply connected [2; Thm. 5.9].
In §5 we begin a study of the homotopy groups of completions.
We define the left derived functors of profinite completion by a
construction reminiscent of Dold-Puppe [7]. We then apply these
derived functors to the classical case of a connected space which is

virtually nilpotent and locally of finite type. For X such a space,
there are short exact sequences

0— #,X) — 7,X — Lz, X)—0,

where L, denotes the first left derived fumctor of profinite comple-
tion. The calculations for nilpotent spaces are essentially the same
as those of Bousfield-Kan [5; Ch. VI]. The proofs given here are
new and from a different viewpoint. In Remark 5.6 we indicate a
critical idea for studying the homotopy groups of completions of
nonnilpotent spaces. Applications will appear in a future paper.

In §6 we consider the question: when is a rigid profinite space
X functorially realizable as a completion; i.e., when is (dX)~ weakly
equivalent to X? If (dX)" is weakly equivalent to X we call X
wntrinsic. For X virtually nilpotent, we show that X s intrinsic
i X 18 locally of finite tyve. In part II of this paper we will
show that if X and Y are connected rigid profinite spaces and X
18 intrinsic and locally of finite type them hom (dX, dY) is weakly
equivalent to hom (X, Y).

2. Rigid profinite spaces and completions. Let & be a
category. A pro-object in & [2] is a functor X:I— %, where [
is a left filtered index category, i.e., a small category satisfying

(i) i,jeI=»3k/;. in I.

(ii) if j334€l, 3k —>iel such that the compositions %k —
1 3 J are equal.

We will use the notations

X = {Xi}iel

for X: I—>%, and X,.; for X(t —>j): X, > X;. If X={X}, and
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Y = {Y;};., then one defines the set of pro-maps of X to Y to be

‘Hom (X, ¥) = lim lim Hom (X,, Y}) .

jed el

We will denote the category of pro-objects in & by Pro-z°. Pro-
& always has small filtered limits. If & has finite limits, then
Pro-z” has arbitrary small colimits [2; Prop. A4.3].

Let & be the category of groups, ®;, the subcategory of finite
groups, and, for [/ a set of primes, ®, the subcategory of (finite)
l-groups — i.e., groups whose order is divisible only by primes in .
Throughout this paper we will denote the identity of a multiplica-
tive group by * and that of an additive group by 0. The category
of profinite groups, G = Pro-®;;,, is equivalent to the category of
compact totally disconnected topological groups and continuous homo-
morphisms. Denote by @l the full subecategory of pro-l groups, @l:
Pro-®,. If [ = {all primes}, &, = 6.

If Ge@®, its l-completion is constructed as follows. Let I be
the category whose objects are the quotients G 2 G, such that G, e
®;. A map ¢—j is a commuting diagram

G

<l
G\ .
G;

Then G, = {G}ie;. If I = {all primes} G, is the finite completion of
G and is denoted by G. The functor ( )1 is left adjoint to the
forgetful functor d: @,-»(55 obtained by forgetting the topology on
lim G;,, where G = {G;}€®,. We call dG the discretization of G.
- For & a category, 4% will denote the simplicial objects of & .
If "% — < is a functor, T induces a functor T: 4% — 4 such
that TX[n] = T(X[n]), where for Xe 4%, X[n] denotes the “n-
simplices” of X. Also, for X, Ye 4%, T induces a natural map of
function complexes

T:hom (X, Y)— hom (TX, TY) .

In particular T preserves homotopies. Thus the adjoint pair of
functors ( ); and d induce an adjoint pair of functors

N

(G Y A
A® = A8,
d

preserving group homotopies.
We will make use of the categories of spaces (simplicial sets)
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& =4 (sets), simplicial groups 4G, simplicial profinite groups
A@, and simplicial pro-l groups A@l. We will also need the category
of reduced spaces & whose objects are simplicial sets with a single
vertex = and the homotopy category of reduced spaces 57 with the
same objects but with

Hom (X, V) =[X|,|Y]].

We will call an object of Pro-&” a rigid prospace to distinguish
it from an Artin-Mazur prospace which is an object of Pro-5#, 57
the homotopy category of spaces.

DEFINITION 2.1. A rigid profinite space is an object X={X};,
of Pro-& such that each X, has finite homotopy sets. Let & <
Pro-&” be the full subcategory of such objects. Similarly, X is a
rigrd pro-l space if in addition each x,X,, » =1, is a finite I-
group. These objects form a category .&. We will call a rigid
prospace reduced if each X, e.9%, and we denote the categories of
reduced rigid profinite spaces and rigid pro-l spaces by ,5% and ,9%1,
respectively. We will usually be concerned only with reduced spaces.

Our immediate object is to extend the l-completion functor &—
@, to a functor .5% — 2. We will use a construction pioneered by
Quillen [13]. In addition we will give in this section a review of
some useful properties of the cohomology of simplicial profinite
groups.

Consider a simplicial profinite group G. If U is an open normal
subgroup of G, then G/U is a simplicial finite group. Indeed, G
may be identified with lim G/U, U running over the open normal

simplicial subgroups of <G—, and 48 is equivalent to Pro-48., [13;
Lemma 2.3]. Denoting by W the simplicial classifying space functor,
we see that each W(G/U) is a reduced space with finite homotopy
groups. Thus we may associate with G a rigid profinite space

WG = {W(G/U)} .

W is then a functor from 48 to .&.

For Xe.94, let GX be its free group loop space [11; Ch. VI].
Let GX = (GX)" and G,.X = (GX);. Since G is left adjoint to W,
there is a natural map of rigid prospaces

X— WGX
where X is considered to be the constant prospace.

DEFINITION 2.2. For Xe.%, the rigid finite completion of X
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is X = WGX; the rigid l-completion is X, = WGX.

We will justify these definitions below.
These definitions may be extended to rigid prospaces. If Xe
PI’O-%, X = {Xi}ien then let

P
iel

GAIX = lim GAle

and X, = WG, X. We write X =X, and éf G.X when [ = {all
primes}. Clearly, there is a natural map X —X. In fact, a straight-
forward calculation demonstrates that

PrOPOSITION 2.8. Gl:fPro-.% — 4G, is left adjoint to W: @,—>
Pro-.<4,.

For X ePro-¢7 X = {X,},c;, the homotopy progroups of X are

ﬂ',,,,X = {ﬂ:an,} .

If Xe.&, then 7,Xe®,n=1. If X,Ye.S, and f: X— Y, we
say that f is a weak equivalence if

f*:an""—’ﬂ',,,,Y

is an isomorphism for each n = 1. For X ePro-<%, M a continuous
m, X-module, the continuous cohomology of X with coefficients in
M is
H*X; M) =lim H*(X,; M%) ,
ielrl
where U = ker (7, X — 7, X,). We will say that the coefficient system

M is an l-coefficient system if M is a finite abelian I-group and the
. X action 7,.X — Aut (M) factors through an l-subgroup of Aut (M).

PropoOSITION 2.4. (Artin-Mazur [2; Thm. 4.3]). Let X, Y €.,
f: X—Y. The following are equivalent.
(i) f s a weak equivalence.

(ii) m X5 Y, and for every l-coefficient system M,
H*Y; M)— H*(X; M) .
(iii) f s a B-isomorphism [2; §4].

Let G be a simplicial profinite group. Then we may define



418 D. L. RECTOR

homotopy groups 7,G for G in the usual way [11; §17] as the
homology of the non-abelian chain complex with

G, = (kerd;: G, — G,
i=1

and with boundary d:G,—G,,. w,G will thus be a profinite

group. Since filtered inverse limits of finite groups are exact,

r,G = lim7,(G/U) ,

U running _over the open normal subgroups of G. Furthermore,
t,.G~rw, ,WG. If M is a continuous 7,G module, the continuous
cohomology of G with coefficients in M is given by

H*(G; M) = lim H*(W(G/U); M~7) ,

where the limit is taken over all open normal subgroups of G.
This coincides with the usual notion of cohomology of a profinite
group in case G is a constant simplicial group. For both profinite
and discrete simplicial groups we have the following properties of
cohomology.

ProroOSITION 2.5. (Quillen [13; 2.1, 2.2]). Let G, H, and R
be simplicial (profinite) groups, and let M be a (continuous) w,G-
module.

(a) If f H— G is a weak equivalence, then

H*(f; M): H*(G; M) —— H*(H; M) .

(b) If f and g are homotopic then H*(f; M) = H*(g; M).
(¢) There is a canonical spectral sequemnce

Ept = g2 277Gy M) = H*(G; M)

where 227(G; M) is the cosimplicial abelian group whose n-simplices
are HY(G,; M).
(d) There is a canonical isomorphism

H'G; M) = M~

and HYG; M) is the (continuous) crossed homomorphisms from w,G
to M modulo principal crossed homomorphisms.

() If »>R—->G-—>H-—=x* is exact then there is a Serre
spectral sequence

Ept = H*(H; H'(R; M)) — H™(G; M) .
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(f) H*(G; M) is a cohomological fumnctor of M.
Recall [15] that a group G is I-good, (good when [ ={all primes}) if
H*(Gy; M) — H*(G; M)

for all continuous I[-coefficient systems M. We will say that a
simplicial group G is [-good if each G, is Il-good. A group is I-
virtually nilpotent if it is the extension of a finite [-group by a
nilpotent group.

LEMMA 2.6. Free groups are l-good; finitely generated l-virtually

nilpotent groups are l-good.

Proof. The argument of [13; 8.5] generalizes directly using
[15; Ch I, Prop. 16].

ProOPOSITION 2.7. If G is a simplicial group and | a set of
primes, then

TG = (@@ -
Proof. Let G, = ker d: G, — Gy, G, = ker d.: (G); — (Go);. The
diagram

* C~;1 G, & G, *

o

(G — (G — (G — *

commutes, and since l-completion is right exact [~1; Prop. 2], both
rows are exact. Therefore, the natural map (G); — G, is epic.
Similarly, the diagram

(G
/
7 on R
*— G1 — (Go)i — no(Gl) —*
l /!
/
(7G) s

l

%

commutes and has exact row and column. Thus (7,G); — 7,G..
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PROPOSITION 2.8. Let I be a set of primes and G an l-good
stmplicial group. Then for all continuous l-coefficient systems M,

H*G;; M) —> H*(G; M) .

Proof. The natural map G — G, induces a map of spectral
sequences

EP? = n”ﬁ/"(éz; M) — B = ﬂpy/q(G; M)

| |

H?+(Gy; M) —  H™(G; M)

which is an isomorphism on E,>?. Hence H *(@l; M) =S H *(G; M).

COROLLARY 2.9. If Xe.9%, then X — X . tnduces tsomorphisms

(X)) — X,
H*(X,;; M) —H*(X; M)

for all l-coefficient systems M.

COROLLARY 2.10. If Xe.5%, then

X— X;

18 a weak equivalance of profinite spaces.

Proof. First, for X = {X.}ics,

X, = lim7,(X)t = lim (r,X,)7 = lim 7, X, = 7,X .
«— — «—

Second, for M a continuous [-coefficient system.

H*X; M) =lim H*(X,)t; M) = lim H*(X,; M) = H*(X; M) .

Thus by 2.4, X — X, is a weak equivalence.

CQROALLARSA( 211, If X, YeS,, f: X—Y a weak equivalence,
then f:X,— Y, is a weak equivalence.

COROLLARY 2.12. If X €. 18 n-connected, then X . 18 m-conmected
and

T Xy = (Tu X)1 ©
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Proof. By (2.11) we may assume X, = x, 7 < n. The argument
of (2.7) then generalizes.

THEOREM 2.13. (a) The functor ( );: Pro-%4— .9% preserves
homotopies.

(b) If XePro-<%, Ye._(/%l, and f: X — Y, there is a functorial
commutative diagram

X'—’ le
Lol
Y‘_) i}l

such that Y — 17', 18 a weak equivalence.

() If XePro-& and PF(X) denotes the Artin-Mazur pro-l
completion of [2], then there is a mnatural B-isomorphism in Pro-
A

PF(X)— X, .

Proof. Only (¢) requires comment. By the universal properties
of PF(X) there is a natural commuting diagram

X

SN\
PF(X)— X,

in Pro-2#4. By 2.7, 2.8, and [2; 3.7, 4.3]
7, PF(X) — (X))
and for all.finite [-coefficient systems M,
H*(X,;; M) — H*(PF(X); M) .
Thus PF(X)— X, is a B-isomorphism.

COROLLARY 2.14. Let Fe.% have finite homotopy dimension
and suppose each w,Fe®, If Xe.5%, then the homotopy classes of
maps of prospaces X,— F are im ome-to-one correspondence with

[X; F].
Proof. [2; p. 40].
We have established that ( )7 is a good rigid profinite comple-

tion. We will now see that the completions for various sets of
primes ! are compatible.
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PROPOSITION 2.15. Let | and I be two sets of primes, l' < .
Then &5, < %%, and for X e€.%,, the natural map

X, — Xy
18 a weak equivalence.

Proof. First =, X, = 7,X,, since the l-completion of a finite I’
group 7 is again 7. Next, let M be a continuous [-coefficient group.
Since M is a finite abelian group it may be written

M=M®&N

where M, is a Sylow !’-group and N is a Sylow (I — l')-group.
Since for abelian groups, Sylow l-groups are characteristic subgroups,
the decomposition is compatible with the action of 7,.X on M. Thus

H*X; M) = H*X; M) ® H*(X; N) .

But H*(X; N) = lim H*(X,; N) where X = {X,};c;, and 7,X,;€®, for

all i, n. Thus IT‘TX; N) = 0. By the same arguments, H*(X,; N)=
0. Thus

H X M) = H*X; M) = H*(X; M) = H*(Xy; M) .

3. Discretization and the Sullivan completion. In this section
we will extend the diseretization funector defined on profinite groups
to a functor d:.&%, — .5 and show that, for Xe.o, dX, represents
the Sullivan l-completion of X [17].

Let G be a simplicial profinite group. Then dG is a (discrete)
simplicial group, and the functor d is right adjoint to finite comple-
tion. As we remarked in §2, the homotopy groups of G and dG
may be computed from the homology of certain non-abelian chain
complexes; also, inverse limits of profinite groups are exact. Thus

ProrosiTiON 3.1. (a) 7,dG = dn,G.
o) If x> H—G—G/H— * is an exact sequence in AS then
* — dH — dG@ — d(G/H) — * is exact in 4.

Since finite products of sets commute with inverse limits, we
also see that

WdG = lim W(G/U) ,
Pa—
U running over the open normal subgroups of G.

PROPOSITION 3.2. Let Ged®. Then WAG is fibrant (ie., a
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Kan complex) and the natural map

WdG — holim W(G/U) ,

U rumming over the open mormal subgroups of G, is a homotopy
equivalence [5; Ch. XIJ.

Proof. Since each z, W(G/U) is finite,
To hﬂim WGIU) = Ii}_n ., W(G/U) =z, WdG .
For Xe.o;, we define the discretization of X to be
dX = WdGX .
If X ={X.,}..,, there is a natural map
holim X; — holim W(GX/U)

«— —
i€l U1GX
open

which is a homotopy equivalence if each X, is fibrant. More
generally, for X ePro-.<4, we may define the discrete l-completion
of X to be

Xm = WdGAzX .
PROPOSITION 3.3. (a) For Xe.&%, x,dX = dr,X.

(b) For X e.?Agl, the matural map dX —dX, is a homotopy
equivalence.

(¢ If F->X— B is a fibration in .55, then dF —dX — dB
is a quast fibration in ..

Proof. Parts (a), (¢) follows from (3.1). Part (b) is just (2.15).

We will see that dX . is just a rigid Sullivan l-completion of X.

For X e.9, the Sullivan l-completion of X, X — S, X is charac-
terized as follows [17]. Let PF(X) = {F.};.; be the Artin-Mazur
l-completion. I is the category whose objects are maps in 57,

X_——)Fi:

where F, has homotopy groups which are finite I-groups. A map
14— 4 in I is a class of (homotopy) commuting diagrams

F;

F;
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Without loss of generality, one may assume [ is small. $,X is
characterized by

[Y, SiX] = lim [Y, F)
PF(X)

where [ , ] denotes pointed homotopy classes of maps and Y e.%5.
More generally, if X, Y €.9 are fibrant, let hom,(X, Y) be the
pointed simplicial function space [5; VIII, 4.8], and put

[X, Y], =7, hom (X, V).

If YZZ Y’ are two homotopic maps, they induce the same map
[X, Y].—[X, Y'].. Furthermore, a weak equivalence Y — Y’
induces an isomorphism [X, Y], = [X, Y'],. Thus[, ], may be made
a functor of two variables on the homotopy category .57. We will
show that dX, represents S, X in the following strong sense.

THEOREM 3.4. If X ePro-<4, then for Ye.o,

[Y,dX,], = lim [Y, F.]..
PF(X)

The main ingredient of the proof is the following.

PROPOSITION 3.5. Let I be a left filtered index category and
F.I— % a functor such that

(@) I s a partial order.

(b) for each iel, there ave only finitely many v' € I5¢— 1.

(¢) each F; is fibrant.

(d) for iel, let i//I be the objects strictly wunder i — i.e.,
1—i et/ if i#1. Then

i'eill
s a fibration.
(e) each F; has finitely many simplices in each degree. Then
F = lim F; is fibrant and
el
T, F=limzn,F,.
P
iel
Proof. We use the notation of [5; Ch. VIII]. First, let

a:d[n, k] - F. We must show that each &, may be extended com-
patibly to «,:4[n]— F,., We will use Zorn’s lemma. Consider
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compatible families {a;};c;, @, extending @, where I’ C I is such
that ie€I’ and 7 >4 =1 eI’. Choose a maximal such family I’.
If I' =1 we are done. Suppose not. Let 1€ be such that i//I <
I’ but 1¢I'. Then the a;, je1//I define

a: d[n] — lim F;
-
Je€ifill
extending the &;. By (d) 3a;: 4[n] — F, covering a and extending
a;. Thus we have extended {a;} to I'U {i}, contradiction. Suppose
now that each F); is reduced. Let {h;ex,F};,.; be a compatible
family representing helimz,F;,. We must construct a compatible

family {a;};e;, ;€ Fy[n], g—ﬁch that d,a; = = for all k, and «; repre-
sents h;,. For each 21€l, let A, = {aeFin]|dx = * Yk, and «
represents h,}. Then for ¢ — ' €1,

F.(4) < Ay .

Note that each A, is nonempty and finite. Thus lim 4, is nonempty
-
[3; Ch. I, App., Th. 1]. If {a}eclim 4,, {a;} represents an element
.
of n,F mapping to h. Thus #,F—limz,F, is epic. A similar
—

argument shows this map to be monic.
To complete the proof, note that, by the last argument, = F =
lim 7, F;, and apply the above result to each component.

REMARK 3.6. More generally it may be shown that if (a)
through (d) are satisfied, then

lim F,— holim F',

is a weak equivalence.

Proof of 3.4. We first show that we may restrict the limit on
the right hand side of (3.4) to the subcategory PF;(X)< PFy(X)

whose objects are classes of maps X 2 F, such that F, has finite
homotopy dimension. For let F' be a fibrant simplicial set with
finitely many simplices in each degree. Then the inverse system

{hom, (Y., F)},
where Y, runs over the finite subcomplexes of Y, satisfies the
hypotheses of (3.5). Furthermore, hom,(Y, F') = lim hom (Y,, F').
Thus a
Y, Fl, =lim[Y,, F], .

a
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Similarly, if F‘* denotes the k-th Postnikov complex of F, then

[Y,, F], =lim[Y,, F*], .
k

Thus we see that

lim [Y, F}], = lim lim [Y,, F], -
— — —
PF(X) a PF(X)

But by (2.14), PF/(X) = PF/(X); so

lim lim [Y,, Fi], = lim lim [Y, W(G.X/U)],,
— — e/
a PF(X) a U

where U runs over the open normal subgroups of G, X.
Now, consider the inverse system

{hom,, (Y., W(GX/U)} s -

Generalizing [11; 7.16], we see that this system satisfies the hypoth-
eses of (8.5). Thus

[Y, dX], = lim [Y,, W(G.X/U)]
Jm
(a, U)

as required.

COROLLARY 3.6. If Xe .2 Ye.%, [Y,dX],= lim [Y, X,],, where
X = {Xi}ieI'

Proof. If Xe.&5, X is cofinal in PF(X).

4. Fibration theorems and nilpotent spaces. In this section
we will discuss some circumstances under which finite completion
preserves fibrations up to homotopy. Two types of restrictions
arise — conditions on the action of fundamental groups and finite type
conditions. Throughout this section, ! will be a fixed set of primes.

DEFINITION 4.1. Recall that a (profinite) group G has property
(F') if for any finite group F there are only finitely many (continu-
ous) homomorphisms G — F. We will say that a connected space
X is locally of finite type if (. X)+ has property (F) and, for each
finite l-coefficient system M, H*(X; M) is finite for all n. We will
say G is locally of finite type if K(G, 1) is.

A fibration

F—FKF—B
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is l-virtually milpotent if for each N = 1 there is a normal subgroup
n & w,F such that w E/r is a finite l-group and = acts nilpotently
on 7, F for n < N. A space X is l-virtually nilpotent if the trivial

fibration X —» X — =« is.
Let F— E — B be a fibration in .&4, and let F' be the fibre of

the induced map E, — B,
F = W(ker (G.E— G,B)) .

Then there is a natural map F, — F.

THEOREM 4.2. (Artin-Mazur [2; Th. 5,9])). If B is simply
connecAted and either F or B s locally of finite type relative to 1,
then F, — F is a weak equivalence.

THEOREM 4.3. If F—FE— B is an l-virtually milpotent fibra-
tion and either F' or B is locally of finite type relative to 1, then
F,— F is a weak equivalence.

The proof of this theorem is not needed for the next two seec-
tions and is defered to §7.

REMARK 4.4. The finite type restrictions in Theorems 4.2 and
4.8 are necessary. For let A be a free abelian group on infinitely
many generators, » an integer, FF = B = K(4,n), and F = F X B.
Then a calculation with the Kiinneth theorem shows that

H*™E; Z|p) = H*™(F x B; Z|p)

for any »p.

The notion of a p-sylow subgroup G, of a finite group G
generalizes to profinite groups [15]. A profinite group G is pro-
nilpotent if it is the product of its »-Sylow subgroups. We say
that a G module A is pro-nilpotent if G, acts trivially on 4, when
» # q. Note that since the p-Sylow subgroups of an abelian group
are characteristic, the action of a group on A respects the decom-

position
A=114,.
»

We will say a profinite space X is pro-nilpotent if 7, X is pro-
nilpotent and each 7,X is a pro-nilpotent 7, X module.

THEOREM 4.5. If X e&% 18 pro-nilpotent, the natural map
X_—') H Xp »
»
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18 a weak equivalence.

Proof. Note that 7,.X = 7,n X, by assumption. We must show
that for any finite 7,X module M the cohomology map is an isomor-
phism. We may assume M is a simple 7, X module and is therefore
a Z/q vector space for some prime ¢q. Indeed, by [16; I. 8.2, III.
4.3] we may assume

M=@Q M,
»

where M, is a simple (7,X), module which is isomorphic to the
trivial one dimensional representation for almost all » and when-
ever p = q. Thus, by the Kiinneth theorem,

H*(I1 X5 M) = M™* @ H*(X,; Z/q) -
Now, assuming X is of the form WGY, we have a fibration
X— X— KN, 1)
where N = [[,, (@.X),. Then there is a spectral sequence
H*(N; H*(X; M)) — H*(X; M) .

Note that 7, X =7, X,n =2, and 7,X = (7,.X),. The action of N
on H*(X; M) is determined by that on (7,X), which is trivial; thus

H*(N; H*(X; M)) = H*(N; MQ H*(X; Z[q)) = M¥ Q H*(X; Z]q) .
But, by the same argument, H*(X; Z/q) = H*(X; Z/q). Thus
H*X; M) = M™* Q@ H*(X; Z[q)

as required.
COROLLARY 4.6. Let X €. be nilpotent, then X, is pro-nilpotent.

Proof. AApply the above argument to X noting that z, X is
dense in 7, X,.

COROLLARY 4.7. Let X €.% be nilpotent and I-locally of finite
type, then there is a weak equivalence

X, — 1 (Z/p).X

where (Z/p)., ( ) 18 the milpotent completion of Bousfield-Kan [5;
Ch. VIJ.
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We will conclude this section by elaborating on the local finite
type condition of Theorem 4.3. In particular, we wish to show
that a virtually nilpotent space is locally of finite type iff each of
its homotopy groups is. We first characterize abelian and nilpotent
groups which are locally of finite type.

PROPOSITION 4.8. Let A be an abelian group, n = 1 an integer
and | a set of primes. For pel put ,A={acA|pa =0}. Then
the following are equivalent:

(@) A s locally of finite type relative to l.

(b) H™(A, n; Z/p) and H"'(A, n; Z|p) are finite for each pel.

() K(A, n) is locally of finite type relative to l.

(d) ,4 and A/pA are finite for each pel.

Proof. By the computations of Cartan [6; §9, §10], H*(4, n;
Z|p) is generated as an algebra over the Steenrod algebra by
H"(A, n; Z|]p) and H"*' (A, n; Z/p). Thus (b) and (¢) are equivalent.
Also by Cartan’s computations, H"(A4, »n; Z/p) and H""'(A, n; Z/p)
are finite iff A/pA and ,A are finite. Part (a) is a special case for
n = 1.

LemMMA 4.9. If A and B are abelian groups such that H'(A;
Z|p) and H*(B; Z|p) are finite, then the same condition is true for
AP B and AR B.

Proof. H'(A; Z/p) is finitely generated iff A/pA is finitely
generated. Note that

(A @ B)/p(AD B) = (4/pA) ® (B/pB) ,

and

(AQ B)/p(AR® B) = AQ BR Z|p
= (A ® Z/p) @z, (BX Z/|p)
= A/pA @ B/pB.

LEMMA 4.10. If A— B is an epimorphism of abelian groups
and H'Y(A; Z|p) is finite, so is H'(B; Z/p).

Proof. H'(B; Z|p) — H'(4; Z/p) is monic.

ProrosiTION 4.11. If A is a milpotent group with H(A; Z[p)
and H*(A; Z|p) finite for all pel, then

(a) A 1s locally of finite type relative to .

(b) There is a filtration by normal subgroups,
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0cA"C -..CAiC.--CA'=A4,

such that each A'/A™+' is a trivial A module and is locally of finite
type relative to l. Furthermore, the lower central series of A may
be chosen.

Proof. Let A‘ be the ith term of the lower central series of
A, A' = A, and
At =[A, A7.
Then >}, A{/A‘+' is a Lie ring generated by A'/A* [9; Ch. 10, Ch.
11]. Thus by (4.9) and (4.10), H'(A*/A*; Z/p) is finite for pel.
We will induct on the degree of nilpotence n. Proposition 2.8

establishes the result for #» = 1.
Consider the exact sequence

00— A" — A— A/A" — =,

A acts trivially on A", so the Hochschild-Serre spectral sequence of
this exact sequence takes the form shown in figure 4.12. Since

H*A") cee

Hl(Au) Hl(Au) ®H‘(A/A”) Hl(Au> ® HZ(A/A") cee
\\
&
Zjp H(ASA" H¥A/A") HYA/AY)  ees

FiGure 4.12

H'(A) is finite, so is H'(A/A"). Since H*(A) is finite, so is E¥ =
H*A/A™)|d*(H(A™). But H'(A") is finite; therefore so is H*(A/A").
By induction we may now assume that H(4/A"®) is finite for all 7.
Thus H*(A/A"*) and H'(A") Q H*(A/A") are finite, and consequently
H*A™) is finite. By (4.8), H‘(A) is finite for all ¢; thus, E}? is
finite for all p, ¢ and H!(A; Z/p) is finite for all 7.

A similar argument yields

PROPOSITION 4.13. Let G be a group and A a mnilpotent G
module. If for all pel

(i) HYG; Z|p) is finite.

(ii) HYA4; Z/p) and H*(A; Z[|p) are finite,
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then there exists a G-invariant filtration

oA A - SA=A

such that

(a) Fach AYA™ is a trivial G-module.

(b) For each i, j, HI(A%; Z/p) is finite Vpel.
Furthermore, the filtration may be chosen to be the lower central
series A' = A,

A =[G, AT,

where for ge B,ac A, [g, a]l = a — ‘a.

LEMMA 4.14. Let G be a group and let G act nmilpotently on a
Z|p wector space A. If HNG; Z|p) is finite and H(G; A) is finite,
then A 1is finite.

Proof. Let 02 A" --- £ A' = A be a filtration of 4 as in
(4.18). We will induct on the length of such a filtration. If » =1,
@G acts trivially on 4 and H°(G; A) = A4, so A is finite. In general,
consider the exact sequence

0— A" — A —— AJA"— 0.
This induces a long exact sequence

0 —— H'(G; A") — H(G; A) — H(G; AJA™)
.___)Hl(G;A"").._—) cee

G acts trivially on A*, so HG; A") = A". H'G; A) is finite, so
A* C H(G; A) is finite. Thus HY(G; A") is finite, and consequently,
H(G; A/A™) is finite. Then, by induction, A/A" is finite implying
that A is finite.

PROPOSITION 4.15. An l-virtually nilpotent space X 1is locally
of finite type relative to Il iff each 7, X is locally of finite type re-
lative to 1.

Proof. If each 7, X is locally of finite type relative to [, then
so is X by a straightforward Serre spectral sequence argument.
Suppose then that X is locally of finite type relative to I. Then
so is any [-finite regular covering space of X. Thus we may assume
that 7, X acts nilpotently on 7,X for n < N, N any chosen integer.
Let X be the universal cover of X. We assert that H"(X; Z/p) is
finite for all pel and n < N. To see this, consider the spectral
sequence of the universal cover )N(,
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Ep" — H**(X; Z|p)
Ept = H*(n,X; H(X)) ,

shown in Figure 4.16. Since each H*(X; Z/p) is finite, so are
H'n,X; Z/p) and H*r,X; Z/p) for pel. Thus n,X is locally of
finity type with respect to I, and H"(x,X; Z/p) is finite for all n.
Consequently, H°z.X; H*X)) and H'(z X; HX)) are finite. By
(4.14), H(X) is finite; thus, so is Hi(z,X; H¥X)) for all i. Continu-
ing by induction, H*(X; Z/p) is finite for » < N. To complete the
proof, we apply a similar argument to the fibrations

Em—!—lX_—_) EmX — K(ﬂ:mX, m)

where E, X denotes the (m — 1)-connected cover of X.

H(=X; HY(X))

H'(=X; HY(X)) H{(mX; HY(X)) H(z, X; HY(X)) cee
\

0 & e T

Z/p H'(=X; Z/p) H(=X; Zlp)  HY=X; Z)p)

FiGURE 4.16

5. Homotopy groups of completions. In this section we define
derived functors of finite completion and use them to calculate the
homotopy groups of finite completions of virtually nilpotent spaces.
In view of (4.7), this computation is essentially the same as that
of Bousfield-Kan [5; Ch. VI].

Let n = 0 be an integer, G a group which is abelian if »n > 0.
We define the left derived functors of finite completion on G by

L(G;n) = Tpri(K(G, m + 1) .
Note that GK(G,n + 1) is a free simplicial group of type (G, n)
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and that L,G;n) = rrnh-@K(G, % + 1); thus the profinite groups
L.(G;n) are indeed derived functors of completion on the category
of groups by analogy with Dold-Puppe [7]. If I is a set of primes
we also define the derived functors of l-completion by

Li(G5m) = Tpsiea(K(G, m + 1)

To simplify the notation in the following discussion, we will denote
L,, by L, when [ is clear from context.

ProPOSITION 5.1. For I a set of primes
L(G;m) = G,
and L(G;n) is abelian for i > 0.
Proof. Immediate from (2.12).

ProPOSITION 4.2. If G 1is abelian and locally of finite type
with respect to 1, then

L(G;n) = L,G,n +1).
Proof. Apply (4.2) to the fibration
KG,n)— E— K@, n + 1)

with contractible total space.
In case G is locally of finite type or n = 0, we will denote
L,(G;n) by L,(G).

PROPOSITION 5.3. Let | be a set of primes. Then L, (G) =0
for all 1> 0 ¢ff G is l-good.

Proof. We have a natural map
(K@, 1)1 — K(G,, 1)

in 5% which is a weak equivalence iff G is l-good.

PROPOSITION 5.4. For | a set of primes, L,( ;n) is a functor
Jrom groups (abelian groups if n > 0) to pro-l groups.

Proof. If G—— H is a homomorphism, there is induced a map,
unique up to homotopy,

f: K(G, n)— K(H, n) .

By (2.13a) f induces a map unique up to homotopy
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K(G, n)p — K(H, n); .

THEOREM 5.5. Let

be a short exact sequence of groups such that G acts l-virtually
nilpotently on H and either

(i) H s locally of fimite type, or

(ii) G/H 1s locally of finite type.
Then there is a natural long exact sequence

c— Lz(H) a— Li(G) — Lz(G/H) I Li——l(H) —> e
- — L(G/H) — H,— G, — (G/H); — * .

Proof. Apply (4.3) to the fibration
K(H, n)— K(G, n) — K(G/H, n) .

REMARK 5.6. To generalize (5.5) to extensions which are not
nilpotent, it is necessary to define the notion of relative finite
completion and its derived functors. If H is a group with G
action, the finite completion of H relative to G is the profinite

group
Hy = {F}

where ¢ runs over the family of G—epimorphigms H z, F,, where F
is a finite G-group. Then H; has a natural G action. In case the
action of G on H i§ virtually nilpotent and either G or H has
property (F'), H; = H, reducing relative finite completion to finite
completion. If P= HSG is the semi-direct product of H and @G, the

sequence
* ‘E\[G p é —_—> %
is always split exact. Let F be the fibre of K(P, 1)" — K(G, 1)".

Then 7, F = H, and one may define the derived functors of G-com-
pletion as

Li(H, G) = w,.F .
It may be shown that there is always a long exact sequence

- — L,(H, G) — H,(G) — L,(G/H) — L, (H,G) —> - - -
o — L(G/H) —> H; — G — (G/H)" — » .

Proof of these facts and applications will appear in a future paper.
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ExamMPLE 5.7. Let G=Q,H=2ZG/H= Q/Z. Then since
H*@Q, M) = 0 for all finite abelian groups M, L.(Q) = 0. Thus

Zi=0

L(Q|Z) = L(Z) = 050

and L,(Q/Z) = 0. These groups may be computed directly by noting
that the map of Q/Z to the circle group U(l) given by x> e
induces isomorphisms

H*(CP~; Z|p) — H*(K(Q/Z, 1); Z|p)
for all p. We shall see that this example is typical.

THEOREM 5.8. If A is an l-virtually wilpotent group which is
locally of finite type with respect to I, them

L.(4) =0
for n = 2.

Proof. Using (5.5) and (4.11) we are reduced to the case when
A is abelian. By (4.5) we may assume [ = {p}.

Suppose A is torsion free. Then ,A =0. Let ¢, ---¢,€A be
elements whose images in A/pA are a basis. Let A’ be the free
abelian group on symbols [e;],7 =1, ---, » and let

fiA— A

send [e;] to e;. Then f induces isomorphisms A’/pA’ = A/pA. Hence
it induces an isomorphism

H*(4; Z|p) — H*(A'; Z|p) .
Therefore K(A', 1); and K(A4, 1); are weakly equivalent. But then
L.(4) = LAY =0 for i > 0.

Now since an abelian group is the extension of a torsion free
abelian group by a torsion abelian group, we may suppose A is all
torsion. Again, since A/pA is finite, there is a finite subgroup J
of A such that A/J is p-divisible. Since J is good, we may assume
A is a p-divisible torsion group. Now ,A is finite, so let ¢, ---, ¢, €
,A be a basis. Since A is p-divisible, there is a group A’ of the
form

A = g Z|p~

and a map A’ — A inducing an isomorphism ,4’— ,A. As before,
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H*(A; Z|p) — H*(A’; Z|p)

is an isomorphism. By example (5.7), L,(4) = 0,7=2.
We mention the following characterization.

PROPOSITION 5.9. (Kan-Bousfield [5; VI 2.2]). If A is abelian
and locally of finite type relative to 1, then

dLy(A) = Ext (Z/I°, A)
dL,(4) = Hom (Z/I", A)

where Z1° = @, Z/p”° and d denotes discretization.

For G not nilpotent, L,(G) may be very complicated. For
example, if G = 3., the automorphisms of N with finite support,
L,(G) is the (¢ + 1)-st stable homotopy group of SY[12].

PropPoOSITION 5.10.

(a) If A is nilpotent and locally of finite type relative to I,
then A acts nilpotently on L.(4).

(b) If A is abelian, locally of finite type relative to I, G s «a
group acting mnilpotently on A, and HYG; Z[p) is finite for all
pel, then G acts nilpotently on I:*(A).

Proof. Note that if G acts nilpotently on A, then applying
(4.8) to the fibration

K4, 1) — K<A SG, 1 ) — S KG, 1,

where ASG is the semi-direct product of A and G, shows that G
acts naturally on L,(4). Note also that if 0 S A*< ---CcA'C A4
is a filtration of A by G-subgroups which are locally of finite type,
then the action of G respects the long exact sequences of the
resulting tower of fibrations. By (4.13) such a filtration exists with
G acting trivially on A*/4+, 1 < ¢ < n. Part (b) then follows easily.
The proof of part (a) is similar.
Our main result is the following.

THEOREM 5.11. Let X €.94 be l-virtually nilpotent and locally
of finite type relative to l. Then there are matural short exact
sequences

0—> (7, X)t — 1, X, — Ly(x,_,.X)— 0
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for m = 1.

COROLLARY 5.12. If X is as above, X, is virtually nilpotent.

Proof of 5.11. Consider the Moore-Postnikov tower of X,

- — P"X — P"X e P°X P'X
K<n.n+1Xy n+1> K(n.an ’l’L) K(ﬂsz 2) K(n'l-X’ 1) .

By (4.15) each of the spaces above is locally of finite type with
respect to I, and each fibration is I-virtually nilpotent. Thus, by
(4.3), l-completion yields a tower of fibrations with fibres K(z,X, n);.
The homotopy exact couple of the tower of completions then yields
a strongly convergent spectral sequence

E; = Ty X
with
Ez?,'z = f‘p(ﬂqX) .

Now I:,,(n'qX) =0 for p > 1. Thus the spectral sequence collapses
to the exact sequence of 4.11.

6. Realizing profinite spaces as completions. Let X be a
rigid profinite space. Then the natural map dX — X induces a map
of rigid profinite spaces

@xXy — X .
We will say X is intrinsic if this map is a weak equivalence. In
this section we attempt to characterize intrinsic rigid profinite
spaces. A complete answer will be given for the nilpotent case.
In order that a rigid profinite space be intrinsic, its homotopy

groups must have a similar property. Let G be a profinite group.
We say that G is intrinsically topologized if the natural map

Gy — G

is an isomorphism. This notion first appeared in Sullivan [18].
It is easy to see that G is intrinsically topologized iff every normal
subgroup of finite index in G is open.

ExAmPLE 6.1 [18]. Let G = I,y Z/p, N the natural numbers.
Let H = @;.~Z/p be considered an abstract subgroup of G. Then
H 1is dense in G, and G/H is a Z/p vector space. Hence there is a
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nontrivial homomorphism G/H — Z/p. Let K be the kernel of the

composition G — G/H — Z/p. Then if K is open, K = G since HC K

and H is dense. But K # @, contradiction. Thus G is not intrinsie.
This example is typical.

THOREM 6.2. Let G be a pro-p group. Then G is intrinsically
topologized iff G is finitely gemerated.

Proof. Let G* be the Frattini subgroup of G [14; p. 70]. If
G is intrinsic, so is G/G*. Now G/G* is an abelian pro-p group
dual to HYG; Z/pZ). Thus for some index set X,

GIG* =11 Z/p ;

and, by Example 6.1, G/G* is intrinsic only if X is finite. But if
G/G* is finitely generated so is G [14; Cor. 1, p. 72].

To prove the converse, it suffices to show that the p-completion
of a finitely generated free group is intrinsic. But that is just
[4; Thm. 13.3].

THEOREM 6.3. A pro-nilpotent group Ge® s intrinsically
topologized iff each p-Sylow subgroup is finitely generated.

Proof. This theorem follows from (6.2) and the following more
general fact.

LOCALIZATION LEMMA 6.4. If G is a profinite group, NS G a
normal subgroup of finite index m, then N is open tff NNG, is
open in G, for all primes p|n, where G, is any p-Sylow subgroup.

Proof. If N is open, then NNG, is open in G,. Conversely,
suppose NN G, is open in G, for p|n. Then for each such p, there
are open normal subgroups K, = NNG, Let K=,,K, Then
K is open. If K< N, N will be open. Let p, ---, », be the prime
factors of n. We claim that each g € K may be written

9 =99, "9,
where g,€G,,NK for i =1,.---,r G, some p-Sylow subgroup,
and g, is n-divisible. Since K and N are normal, ¢, ---, g,€N.

Since g, is n-divisible, g,€ N. Thus ge N and N is open. The
claim is the following lemma applied to K.

LEMMA 6.5. Let G be a profinite group, 9€G,l = {p, -+, 0,}
a finite set of primes, and n an integer divisible only by the primes
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in l. Then g may be written
9 =09 " "9:,

where g, is n-divisible and, for 1 < i < 7, g,€G,, for some p,-Sylow
subgroup G,,.

The proof is a lengthy but straightforward calculation using
elementary number theory.

Consider a finitely generated pro-abelian p-group A. Then A
has a natural structure as a Z,-module, Z, the p-adic integers.
Since Z, is a principal ideal domain,

A=2,0---DZ,OF

r-copies

where F is a finite p-group. Thus H*(A; Z/p) has finite type.
Theorem 6.3 now implies

COROLLARY 6.6. A mnilpotent profinite group G is intrinsically
topologized iff it is locally of finite type.

PROPOSITION 6.7. If G is a wmilpotent profinite group which is
locally of finite type, then dG s good.

Proof. First let A be a finitely generated pro-abelian p-group.
By the remarks above, to see that A is good, it suffices to see
that Z, is good. But Z, is n-divisible for p ++ n, torsion free, and
Z,|pZ, = Z[p. Thus

H*(dZ,; Z|q) = H*(Z,; Z]q)

for all primes ¢. In particular, if ¢ = p, H*(dZ,; Z/q) = 0.

Now in general, if G nilpotent, G = IIG, and each G, is a finitely
generated nilpotent pro-p group. Simple calculations with the
Kiinneth theorem and the Hochschild-Serre spectral sequence show
that G is good.

Our main result now follows from the results of §5.

THEOREM 6.8. Let X be a virtually nilpotent rigid profinite
space. Then X 1is intrinsic off it is locally of finite type.

It is not known if (6.8) is true for pro-nilpotent X. For it is
not known whether the p-completion of a finitely generated free
group has a good discretization.
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COROLLARY 6.9. If X is an Artin-Mazur profinite space which
18 virtually milpotent and locally of finite type, then X is weakly
equivalent to a rigid pro-finite space.

Proof. By Sullivan’s argument [17; p. 35-38] the functor
lim[ ;X,] on spaces is representable by a space SX. Then (SX)"

will be weakly equivalent to X by the same argument which proves
6.8.

7. Proof of Theorem 4.3. We will follow the proof by Artin-
Mazur [2; pp. 60-68] of Theorem 4.2, paying careful attention to
the actions of fundamental groups.

Let

S

* A D > C *

be an exact sequence of simplicial groups. Let <& be the category
of diagrams 7 of the form

p-L.¢c

(7.1) lﬁi . lri

-Di i

where D, and C; are simplicial I-groups; a map 7—j between
objects is a map of diagrams which is the identity on C and D.
Such a map of diagrams is necessarily unique.

LEMMA 7.2. Let & be the full subcategory of < consisting of
objects (1.1) satisfying f(ker B,) = kerv,. Then:

(1) For each object of %,

(i) Biker f) = ker f;,

(ii) the kermels of ker f — ker f; and ker 8, — ker v, are equal,
and

(iii) the natural map D— D; X ;C is epic.

(2) & s cofinal in =.

(8) The pro-simplicial finite groups represented by {D,},... and
{C}icor are equivalent to D and C respectively.

Proof. (1) is an elementary verification. (2) follows by noting
that, for any object ¢ of &, C/f(ker B3,) is a simplicial finite l-group;
therefore, the object je & with D; = D,, C; = C/f(ker B;), maps to
1. For a similar reason, {D,};.. represents D. To finish (3), let

C I»F, F a finite l-group. Then the object ¢ with C,=F, D, =
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~

D/f*(ker v) is an object of =7 thus, {C,},... represents C.
Let

F— FE—B

be a fibration of reduced spaces satisfying the hypotheses of (4.3).
We may assume that E — B is of the form Wf: WD — WC, where
f:D—C is a map of free simplicial groups. Applying W to the
category = of (7.2), we construct a family of commuting diagrams
of the form (7.3).

=7 — By

N e—Q

=~

(7.3)

l
&y e— e
l

o

o e—

o

UU)(_'_—

l

These diagrams satisfy

(a) each row and column is a fibration.

(b) each space is reduced and fibrant.

(e) {F}, {E’i}, and {E’i}, 1€ %, are rigid pro-l spaces and repre-
sent F, E’, and 3, respectively.

(d) E is fibred over E, X3, B.

(e) all maps in the diagram

B — B

L]

b, — m,B,

are epic.

(f) =y, — mpB, is epic.

Lft @ ={2, N = {771}, B =1{Bi}, 1e&’. By [2; Prop. 5.1], ﬁz
and A, are weakly contractible. Our strategy in proving (4.3) is
to first show that @l is weakly contactible; then, we will use that
fact to show that F— F is a weak equivalence. We begin by
showing that

H*(@; Z|p) =0

for all pel.

Let N be some large integer. Since F'— E — Bis an [-virtually
nilpotent fibration, for i€ %" sufficiently large — i.e., for all 7 in a
cofinal subcategory of @ — we may assume that Im (77, - 7. F)
acts nilpotently on 7,F for n < N.
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LEMMA 7.4. For all 1€ %, n, acts trivially on Im (3: 7, ", —
T,y N = 2.

Proof. Let @: (S*xI, S*xIU {x}xI)— (F, %), where I=4[1] is
the simplicial unit interval and S* the standard n-sphere, represent
[@]er,..F,, and let B: (I, [) — (,, *) represent [gleny,. Lift @ to
a map a:(S* X I, S" X {0}U {x} x I) > (F;, »). Then a«alS™ x {1}
represents d([@]). Let B denote @ composed with E— B. We will
construct a map v: S*x I x I »E as follows. Let v|S*xIx I be a
composed with projection onto S* x I; let 7|(S* x {0} U {*} x I) x I
be B composed with projection on I. By the covering homotopy
extension theorem, v may be extended to a map S* X I x I—
covering @ X B: S* x I x I— E, X3, B,. Then v(S™ x {1} x I) S 7,,
and 7 |gn,yy, represents PI3([@)) e 7, @;.  But v|gnx i« also represents

o).

COROLLARY 7.5. For i€ % sufficiently large, ), acts nilpotently
on w,J; n = N.

Proof. For 4 sufficiently large,
0 Imo T, D o

is an exact sequence of 7,»;, modules with Im ¢ and =,F nilpotent.

COROLLARY 7.6. For i€ sufficiently large, w3, acts nilpotently
on H*(D;; 4]p), m = N.

Proof. [5; 1 5.4].

LemMMA 7.7. Let X — Y — Z be a fibration of connected spaces
such that

(1) =47 is a finite l-group,

(ii) Z is of finite type, and

(i) H™(Y; M) is finite for all m» =0 and finite l-coefficient
systems M.
Then H™(X; Z|p) is finite for all n =0 and all pel.

Proof. Let * >mw—7w Y —>nZ —+ be exact, Y. the covering
space of Y corresponding to 7, and Z the universal cover of Z.
Then

X—Y.—Z
is a fibration. By (iii), H"(Y.; Z/p) is finite for all » = 0 and pel.
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Furthermore, Z is of finite type. A simple Serre spectral sequence
argument implies that H"(X; Z/p) is finite for all » = 0.

COROLLARY 7.8. If B (respectively F') s locally of finite type
with respect to 1, then H"(B;; Z|p) (respectively H™(D,;; Z|p)) is finite
for all m =0 and pel.

LEMMA 7.9. Let M be a Z/p wvector space, pEl and suppose
either

(i) M 1is finite dimensional, or

(ii) B 1s locally of finite type.
Then

H*(8; M) =0 .

Proof. H*(B; Z/p) =0 [2; Prop. 5.1]. If M has finite dimen-
sion, the result follows immediately. Suppose B is locally of finite
type. Then H"(B3;; Z/p) is finite for all 4, n. Write

where {M;};., is a direct system of finite Z/p-vector spaces. Then
H*(3,; M) = Hom (H,(Bs; Z/p), M)
= Hom (H,(8;; Z/p), lim M)
= lim (Hom (H,(8:; Z/p), M;))

since H,(B,; Z/p) is finite dimensional. But then
H*(3; M) =lim H"(8;; M)

v

= lim lim H"(3,; M)
i g

=lim H~(8; M.

—
J

=0.
LEMMA 7.10. H*(2;Z/p) =0, pel.

Proof. Consider the directed system of Serre spectral sequences
By = H"(B;; H(QDy; Zp)) == H ™ (9; Z[p) .

Taking direct limits, we obtain a spectral sequence
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Byt =1lim H'(8; HN@ g Z/p) == H™*(; Z[p) .

1
By [2; Prop. 1.10, p. 152],
E;" = lim H"(B;; H(QDy; Z/D))

1
= lim im H*B;; H(?,; Z|p))
i o
=1lim H"(B; H(2; Z|p)) .

K2

We assert that H'(8; H*(D,; Z/p)) = 0 for » > 0. For when ¢ suffi-
ciently large H*(Q,; Z/p) has a filtration

0 A C .-+ C A =H(D:; Z]p)

of 7,3; modules such that each A./A.., is a trivial 7,8, module.
Since 7,8 acts on H(Q,; Z/p) through m,3,, (7.9) implies

H'(B; AJA) =0,
7> 0. From the long exact sequence induced by
0— A — A — AJA,, —0,
we see that
H"(B; H(@ Z[p)) =0,
> 0. By the same argument,
H(5; H (D Z]p)) = H(Ds; 4[p) ,
since H(B; A.JA.+) = A.JA.,,. Thus,

e _ (H'(@32]9), 7 =0
0, r>0.
But then
H(@; Z|p) = H*(; Z|p) = 0
[2; Prop. 5.1].

LEMMA T7.11. If M s an l-coefficient system “om F, then
H'(F; H(@; M)) = 0 for s> 0. Therefore,

H™(F; M) — H"(F; M)
for »= 0.
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Proof. See [2; p. 67].
LEMMA 7.12. (7, @) = 0.

Proof. Let G be a finite I-group, a;:7,@, — G. Since =, is
nilpotent, we may suppose G is nilpotent. Therefore, we may
suppose G is abelian. But then a; represents an element of H(Q; G)
and is thus zero on some 7,Q;, j — 1.

The proof of Theorem 4.3 is now completed by the argument
of [2; p. 67-68].
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