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HOMOTOPY THEORY OF RIGID PROFINITE SPACES I.

D. L. RECTOR

This paper is the first part of a study of profinite
completion and profinite spaces from a functorial point of
view. The study aims at understanding mapping spaces,
classifying spaces, and other notions involving higher homo-
topies in the setting of profinite spaces.

The term rigid profinite space will apply to a left filtered (see
below) actually commuting diagram of spaces with finite homotopy
groups, as distinguished from an Artin-Mazur profinite space which
is a homotopy commuting diagram. One advantage in working
with actually commuting diagrams is that a functorial homotopy
limit exists relating diagrams of spaces to spaces. A homotopy
limit does not exist in general for diagrams in the homotopy
category. The actual relationship between rigid profinite spaces
and profinite spaces is not well understood. Theorem 3.4 and
Corollary 6.9 below suggest that the relationship is very close.
Rigid profinite spaces arise naturally in many contexts; in particular,
the etale homotopy type of a nice variety may be made rigid [8],
[10].

The main results of this paper are as follows. In § 2 we
construct a functorial profinite completion X for a connected space
X taking values in the category of rigid profinite spaces. We
employ a construction pioneered by Quillen [13] making use of the
profinite completion of a simplicial group. We show that this
profinite completion is weakly equivalent to that of Artin-Mazur.
A functorial nilpotent p-completion has been studied extensively
by Bousfield and Kan [5]; it gives equivalent results on spaces X
which are nilpotent and locally of finite type — i.e., H*(X; M) of
finite type for all finite local coefficient systems M. For spaces
which are not nilpotent, the Bousfield-Kan completion gives very
different results.

In § 3 we construct a functorial discretization d Y for a rigid
profinite space Y. We show that for X a connected space, dX
represents the Sullivan finite completion of X [17] in a strong
sense — i.e., for all connected spaces Z, the mapping space hom^, dX)
has the right higher homotopy groups (see Theorem 3.4). In part
II of this paper (in preparation), we will show that when X is
locally of finite type, X and dY are homotopy adjoint in a strong
sense — i.e., horn (X, dY) is weakly equivalent to horn (X, Y) for a
natural definition of horn (X, Y).
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In § 4 we state a partial generalization of a fibration theorem
of Artin-Mazur. We will show that if

F >E >B

is a nilpotent fibration of connected spaces such that F or B is
locally of finite type, then

Ê  "Θ* z3
Γ • XL/ >• Σ>

is a fibration up to weak equivalence. Artin-Mazur instead require
that B be simply connected [2; Thm. 5.9].

In § 5 we begin a study of the homotopy groups of completions.
We define the left derived functors of profinite completion by a
construction reminiscent of Dold-Puppe [7]. We then apply these
derived functors to the classical case of a connected space which is
virtually nilpotent and locally of finite type. For X such a space,
there are short exact sequences

0 > (πnX) > πnX > Uπ^X) > 0 ,

where Lx denotes the first left derived functor of profinite comple-
tion. The calculations for nilpotent spaces are essentially the same
as those of Bousfield-Kan [5; Ch. VI]. The proofs given here are
new and from a different viewpoint. In Remark 5.6 we indicate a
critical idea for studying the homotopy groups of completions of
nonnilpotent spaces. Applications will appear in a future paper.

In § 6 we consider the question: when is a rigid profinite space
X functorially realizable as a completion; i.e., when is (dXy weakly
equivalent to X? If (dX)Λ is weakly equivalent to X we call X
intrinsic. For X virtually nilpotent, we show that X is intrinsic
iff X is locally of finite type. In part II of this paper we will
show that if X and Y are connected rigid profinite spaces and X
is intrinsic and locally of finite type then horn (dX, d Y) is weakly
equivalent to horn (X, Y).

2. Rigid profinite spaces and completions* Let ^ be a
category. A pro-object in ^ [2] is a functor X:I->^, where /
is a left filtered index category, i.e., a small category satisfying

(i) i,ie/-3/j in /.
(ii) if jzXiel, 3fc —>iel such that the compositions k—>

izXj are equal.
We will use the notations

X = {Xi)iel

for X : J - > ^ , and X w for X(i ^> j): Xt-+Xd. If X={XJ< e/ and
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Y — {Yj}jej t h e n one defines t h e set of pro-maps of X t o Y t o be

Horn (X, Y) = lim lim Horn (Xit Y» .
jeJ i e l

We will denote the category of pro-objects in ^ by Pro-^. Pro-
^ always has small filtered limits. If <& has finite limits, then
P r o - ^ has arbitrary small colimits [2; Prop. A4.3].

Let © be the category of groups, ©fin the subcategory of finite
groups, and, for I a set of primes, ©, the subcategory of (finite)
Z-groups — i.e., groups whose order is divisible only by primes in I.
Throughout this paper we will denote the identity of a multiplica-
tive group by * and that of an additive group by 0. The category
of pro finite groups, © = Pro-@fin, is equivalent to the category of
compact totally disconnected topological groups and continuous homo-
morphisms. Denote by ©z the full subcategory of pro-l groups, ©f =
Pro-®*. If I = {all primes}, ®z = ©.

If G e ©, its l-completion is constructed as follows. Let I be
the category whose objects are the quotients G —> Ga such that Ge e
©z. A map i —> j is a commuting diagram

G,

Then Gι = {Gi}ieI. If I = {all primes} Gt is the finite completion of
G and is denoted by G. The functor ( )ΐ is left adjoint to the
forgetful functor d: ©z —> © obtained by forgetting the topology on
limGi, where G = {GJe©^ We call dG the discretization of G.

For ^ a category, Δr^ will denote the simplicial objects of ^ .
If T: & —> & is a functor, T induces a functor T: Δr^ —> J ^ such
that T I M = Γ(IW), where for XeΔ^,X[n] denotes the "n-
simplices" of X. Also, for X, YeΔ^, T induces a natural map of
function complexes

T: horn (X, Y) > horn (TX, TY) .

In particular T preserves homotopies. Thus the adjoint pair of
functors ( )t and d induce an adjoint pair of functors

( )ί ^
Δ% zzί z/©,

d

preserving group homotopies.
We will make use of the categories of spaces (simplicial sets)
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Sf = Δ (sets), simplicial groups Δ®, simplicial profinite groups
Δ®, and simplicial pro-l groups Δ®ι. We will also need the category
of reduced spaces &ζ whose objects are simplicial sets with a single
vertex * and the homotopy category of reduced spaces J%% with the
same objects but with

Hom(X, Y) = [\X\, | Γ | ] .

We will call an object of P r o - ^ a rigid prospace to distinguish
it from an Artin-Mazur prospace which is an object of Yτo-Sίf, £ίf
the homotopy category of spaces.

DEFINITION 2.1. A rigid profinite space is an object X={Xi}ieI

of P r o - ^ such that each Xt has finite homotopy sets. Let £? £
P r o - ^ be the full subcategory of such objects. Similarly, X is a
rigid pro-l space if in addition each πnXi9 n >̂ 1, is a finite l-
group. These objects form a category &\. We will call a rigid
prospace reduced if each Xt e £%, and we denote the categories of
reduced rigid profinite spaces and rigid pro-Z spaces by <9ζ and &ζl9

respectively. We will usually be concerned only with reduced spaces.
Our immediate object is to extend the Z-completion functor ©->

®ι to a functor Sζ-*^. We will use a construction pioneered by
Quillen [13]. In addition we will give in this section a review of
some useful properties of the cohomology of simplicial profinite
groups.

Consider a simplicial profinite group G. If U is an open normal
subgroup of (?, then G/U is a simplicial finite group. Indeed, G
may be identified with lim G/ U, U running over the open normal

simplicial subgroups of G, and Δ% is equivalent to Pro-z/©fin [13;
Lemma 2.3]. Denoting by W'the simplicial classifying space functor,
we see that each W(G/U) is a reduced space with finite homotopy
groups. Thus we may associate with G a rigid profinite space

WG - {W{G/U)} .

W is then a functor from Δ® to £>%.
For Xe&ζ, let GX be its free group loop space [11; Ch. VI].

Let GX = (GXΓ and &X = (GX)t Since G is left adjoint to W,
there is a natural map of rigid prospaces

X > WGtX

where X is considered to be the constant prospace.

DEFINITION 2.2. For I e y 0 , the rigid finite completion of X
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is X = WGX; the rigid l-completion is Xz = WGtX.

We will justify these definitions below.
These definitions may be extended to rigid prospaces. If Z e

ô, X = {XJiei, then let

GtX = lim GtX,

and Xι = fi^X. We write X - X, and G = G*X when I = {all
primes}. Clearly, there is a natural map X-*X. In fact, a straight-
forward calculation demonstrates that

PROPOSITION 2.3. G^TTO-S^ —> A®t is left adjoint to W: ®t

For XzVτo-SS X = {Xt}ieIf the homotopy progroups of X are

7Γ,X - {7Γ.XJ .

If I e Λ then ^ I e 8 l ( ) i M . If X, 7 e y 0 and / :X->F, we
say that / is a wβαλ; equivalence if

is an isomorphism for each n >̂ 1. For X 6 Pro-^ 0 ? Λf a continuous
TΓiX-module, the continuous cohomology of X with coefficients in
M is

H*(X; M) = lim H*{X,\ Mu) ,
iel

where U = ker (jζ1X-j>π1Xύ* We will say that the coefficient system
M is an l-coefficient system if M is a finite abelian i-group and the
πxX action πλX~> Aut (M) factors through an i-subgroup of Aut (Λf).

PROPOSITION 2.4. (Artin-Mazur [2; Thm. 4.3]). £e£ X,
f:X-> Y. The following are equivalent.

( i ) f is a weak equivalence.

(ii) TΓiX— T̂ΓLF, αweί /or every l-coefficient system M,

H*{Y; M)-^-+H*(X; M) .

(iii) f is a ^-isomorphism [2; §4].

Let G be a simplicial profinite group. Then we may define
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homotopy groups πnG for G in the usual way [11; § 17] as the
homology of the non-abelian chain complex with

and with boundary d0: Gn —> Gn_lt πnG will thus be a profinite
group. Since filtered inverse limits of finite groups are exact,

U running over the open normal subgroups of G. Furthermore,
πnGf=& πn+1WG. If M is a continuous π0G module, the continuous
cohomology of G with coefficients in M is given by

H*(fi\ M) = lim H*(W(G/U); M««u) ,

where the limit is taken over all open normal subgroups of G.
This coincides with the usual notion of cohomology of a profinite
group in case G is a constant simplicial group. For both profinite
and discrete simplicial groups we have the following properties of
cohomology.

PROPOSITION 2.5. (Quillen [13; 2.1, 2.2]). Let G, H, and R
be simplicial (profinite) groups, and let M he a (continuous) πQG-
module.

(a) If f: H -+G is a weak equivalence, then .

H*(f; M): H* (G; M) — H*(H; M) .

(b) / / / and g are homotopic then H*(f; M) = H*(g; M).
(c) There is a canonical spectral sequence

Ef>* = π*J%?q(G; M) = > Hp+q(G; M)

where £%?q(G\ M) is the cosimplicial abelian group whose n-simplices
are H*(Gn; M).

(d) There is a canonical isomorphism

H°(G; M) - M^G ,

and Hι(G; M) is the (continuous) crossed homomorphisms from π0G
to M modulo principal crossed homomorphisms.

(e) // * —> R -> G -» H -* * is exact then there is a Serve
spectral sequence

E™ = H*(H; Hq(R) M)) ==> Hp+q(G; M) .
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(f) H*(G; M) is a cohomological functor of M.

Recall [15] that a group G is l-good, (good when ϊ = {all primes}) if

for all continuous Z-coefficient systems M. We will say that a
simplicial group G is l-good if each G» is l-good. A group is Z-
virtually nilpotent if it is the extension of a finite Z-group by a
nilpotent group.

LEMMA 2.6. Free groups are l-good; finitely generated l-virtually
nilpotent groups are l-good.

Proof. The argument of [13; 3.5] generalizes directly using
[15; Ch I, Prop. 16].

PROPOSITION 2.7. If G is a simplicial group and I a set of
primes, then

π0Gι = (π0G)ϊ .

Proof. Let Gt = ker dt: GX->GU Gx = ker dx: (Gx)ϊ ~+ (<?„)?. The
d i a g r a m

* > Gx > G1 > Go > *

commutes, and since Z-completion is right exact [1; Prop. 2], both
rows are exact. Therefore, the natural map (G1)t-^G1 is epic.
Similarly, the diagram

> πo(Gd

1/

commutes and has exact row and column. Thus (π0G)t
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PROPOSITION 2.8. Let I be a set of primes and G an l-good
simplicial group. Then for all continuous l-coefficient systems M,

ff*(G,; M) -^ H*(G; M) .

Proof. The natural map G —> Gι induces a map of spectral
sequences

u M) > E2

pq = πv£ίf\G\ M)

H'+'ifit M) > Hp+q(G; M)

which is an isomorphism on E2

p*q. Hence H*{Gύ M)^> H*(G; M).

COROLLARY 2.9. // I e . 9 J , then X—>Xt induces isomorphisms

(π1X)i >7ΓiXz ,

H*{XX\ M) ~-^ίί*(X; M)

for all l-coefficient systems M.

COROLLARY 2.10. If I e ^ , then

X >Xι

is a weak equivalance of profinite spaces.

Proof. First, for X = {XJie/,

πιXι = lim π^Xύϊ = lim feXJt = liin Γ ^ = πjί .

Second, for M a continuous i-coeίficient system.

#*(-£,; Λf) = lim iί*((X,)f M) - lim ff*^; ikf) - H*(X; M) .
i i

Thus by 2.4, X-* Jfz is a weak equivalence.

COROLLARY 2.11. If X, Ye£^f f:X-*Y a weak equivalence,
then f: Xt —> Ϋι is a weak equivalence.

COROLLARY 2.12. If XeS^ is n-connected, then Xι is n-connected
and

πn+1Xι = (πn
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Proof. By (2.11) we may assume Xt = *, i <̂  n. The argument
of (2.7) then generalizes.

THEOREM 2.13. (a) The functor ( )f. Pτo-Sζ-> ̂  preserves
homotopies.

(b) 1/X e Pro-^, Γe,S%, and f:X—> Y, there is a functorial
commutative diagram

X >Xι

ι
Y >Ϋι

such that Y—>Yι is a weak equivalence.
(c) If X e P r o - ^ and PF(X) denotes the Artin-Mazur pro-l

completion of [2], then there is a natural ^-isomorphism in Pro-

PF{X) > Xι .

Proof. Only (c) requires comment. By the universal properties
of PF{X) there is a natural commuting diagram

X

/ \
PF(X) • Xι

in P r o - ^ . By 2.7, 2.8, and [2; 3.7, 4.3]

and for all.finite ί-coefficient systems M,

H*(Xt; M) — H*(PF(X); M) .

Thus PF(X)-+Xt is a ^-isomorphism.

COROLLARY 2.14. Let FeS^ have finite homotopy dimension
and suppose each πnFe®t. If Xe£%, then the homotopy classes of
maps of prospaces Xx —> F are in one-to-one correspondence with
[X; F].

Proof. [2; p. 40].

We have established that ( )f is a good rigid profinite comple-
tion. We will now see that the completions for various sets of
primes I are compatible.
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PROPOSITION 2.15. Let I and V be two sets of primes, V £ I.

Then ,9%v £ S^u an^ for l e . ^ , the natural map

is a weak equivalence.

Proof. First πjtx = πjtv, since the i-completion of a finite V-
group 7Γ is again π. Next, let M be a continuous i-coefficient group.
Since M is a finite abelian group it may be written

where Mv is a Sylow Z'-group and N is a Sylow (ί — Γ)-group.
Since for abelian groups, Sylow J-groups are characteristic subgroups,
the decomposition is compatible with the action of πλX on M. Thus

iϊ*(l z; M) = H*(Xu Mv) θ H*(X; N) .

But H*(X; N) = limH^Xt; N) where X = {XJiei, and 7ΓwX46®r for

all i, n. Thus H*{X; N) = 0. By the same arguments, H*(XV\ N) =
0. Thus

3* Discretization and the Sullivan completion* In this section
we will extend the discretization functor defined on profinite groups
to a functor d: .9^ —> .9% and show that, for X e ,9%, dXt represents
the Sullivan i-completion of X [17].

Let G be a simplicial profinite group. Then dG is a (discrete)
simplicial group, and the functor d is right adjoint to finite comple-
tion. As we remarked in § 2, the homotopy groups of G and dG
may be computed from the homology of certain non-abelian chain
complexes; also, inverse limits of profinite groups are exact. Thus

PROPOSITION 3.1. (a) πJLG = dπnG.
(b) If * —> H—>G —> G/H —> * is an exact sequence in Δ% then

* -> dH-> dG -> d(Gy.ff) -> * is exact in M.

Since finite products of sets commute with inverse limits, we
also see that

WdG = lim W(G/U) ,

U running over the open normal subgroups of G.

PROPOSITION 3.2. Let GeM. Then WdG is fibrant (i.e., a
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Kan complex) and the natural map

WdG > holim W(G/U) ,

U running over the open normal subgroups of G, is a homotopy
equivalence [5; Ch. XI].

Proof. Since each πnW(G/U) is finite,

πn holim W(G/U) = lim πnW(G/U) = πJVdG .

For X G .Vo> we define the discretization of X to be

dX = WdGX .

If X = {X^en there is a natural map

holim X, > holim W(OX/U)

*iel U<GX
open

which is a homotopy equivalence if each Xt is fibrant. More
generally, for XePro-.i/J, we may define the discrete l-completion
of X to be

dX% = WdGιX .

PROPOSITION 3.3. (a) For Xe,9%, πndX = ώττwX

(b) jPor X e . ^ , ίfee natural map dX-^dXi is a homotopy
equivalence.

(c) // F->X~>B is a fibratίon in .9%, then dF ~> dX -> dB
is a quasi fibration in .5%.

Proof Parts (a), (c) follows from (3.1). Part (b) is just (2.15).

We will see that dXt is just a rigid Sullivan l-completion of X.
For X G ._9£, the Sullivan Z-completion of X, X —> SiX is charac-

terized as follows [17]. Let PF^X) = {Ft}ieI be the Artin-Mazur
i-completion. / is the category whose objects are maps in 3£%i

X > Fi ,

where Ft has homotopy groups which are finite Z-groups. A map
i -> j in / is a class of (homotopy) commuting diagrams

F
X 3
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Without loss of generality, one may assume I is small. SiX is
characterized by

[Y, &X] = Jim [Y,F<\

PF\(X)

where [ , ] denotes pointed homotopy classes of maps and YeS^.
More generally, if X, YeS^ are fibrant, let hom^X, Γ) be the

pointed simplicial function space [5; VIII, 4.8], and put

[X, Y]n = πnhom,(X, Y) .

If Yz%Yf are two homotopic maps, they induce the same map
[X, Y]n->[X, Y']n. Furthermore, a weak equivalence Y-*Y'

induces an isomorphism [X, Y]n ~• [X, Y']n. Thus [ , ]Λ may be made
a functor of two variables on the homotopy category Sίf^ We will
show that dXι represents SiX in the following strong sense.

THEOREM 3.4. //XePro-,5^, then for

£ = Jim [Y,F

The main ingredient of the proof is the following.

PROPOSITION 3.5. Let I be a left filtered index category and
F: I —> 6^ a functor such that

(a) I is a partial order.
(b) for each iel, there are only finitely many i ' e / θ i — > i ' .
(c) each Ft is fibrant.
(d) for iel, let i//I be the objects strictly under i — i.e.,

i->ϊ e i//I if %Φ if. Then

F, • l i m J F V

belli

is a fibration.
(e) each Ft has finitely many simplices in each degree. Then

F = lim Fi is fibrant and

= lim

Proof. We use the notation of [5; Ch. VIII]. First, let
a: J[n, k] -> F. We must show that each at may be extended com-
patibly to at: Δ[n] -> Ft. We will use Zorn's lemma. Consider
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compatible families {αjίel/, α* extending aif where / ' £ I is such
that iel' and ί -*i' =>i'e Γ. Choose a maximal such family I ' .
If Γ — I we are done. Suppose not. Let iel be such that ijjl£
Γ but i g I ' . Then the ajf j e i//I define

a: A[n] > lim Fs

extending the a3-. By (d) lat: Δ[n] —> 2^ covering α and extending
α t. Thus we have extended {αj to / ' U {%}, contradiction. Suppose
now that each Ft is reduced. Let {hi eπnFi}ieI be a compatible
family representing helimπ^Fi. We must construct a compatible

family {a%)iel9 α* e i^M, such that dkai = * for all fc, and αέ repre-
sents hi. For each i e / , let At= {aeFi[n]\dka = ^9yk, and α
represents fej. Then for i -> V e I,

Note that each A+ is nonempty and finite. Thus lim A+ is nonempty

[3; Ch. I, App., Th. 1]. If {α je l im^, {αj represents an element

of πnF mapping to h. Thus πnF —> lim πnFt is epic. A similar
<—

argument shows this map to be monic.
To complete the proof, note that, by the last argument, π0F =

lim π0Fi, and apply the above result to each component.

REMARK 3.6. More generally it may be shown that if (a)
through (d) are satisfied, then

lim Fi • holim JF\

is a weak equivalence.

Proof of 3.4. We first show that we may restrict the limit on
the right hand side of (3.4) to the subcategory PFl(X) £ PF^X)
whose objects are classes of maps X —> Ft such that Ft has finite
homotopy dimension. For let F be a fibrant simplicial set with
finitely many simplices in each degree. Then the inverse system

{horn, (Γβf F)} ,

where Ya runs over the finite subcomplexes of Y, satisfies the
hypotheses of (3.5). Furthermore, hom^F, F) = limhom^Γ*, F).
Thus ^
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Similarly, if F{k) denotes the ft-th Postnikov complex of F, then

k

Thus we see that

lim [Γ, ^ L - l i m lim [Ya, F<]n .

But by (2.14), PF[(X) = PF!(X); so

Jim limJΓ,, Ft]n = Hm limJΓβ, W(GtX/U)]n

a PF(X) a V

where i7 runs over the open normal subgroups of GtX.
Now, consider the inverse system

Generalizing [11; 7.16], we see that this system satisfies the hypoth-
eses of (3.5). Thus

[ Y, _

as required.

COROLLARY 3.6. // I e ^ , 7 e ^ , [F, dX]n= lim [Y, X,]Λ, where

X —

Proof. If Xe^X is cofinal in PF(X).

4* Fibration theorems and nilpotent spaces* In this section
we will discuss some circumstances under which finite completion
preserves fibrations up to homotopy. Two types of restrictions
arise — conditions on the action of fundamental groups and finite type
conditions. Throughout this section, I will be a fixed set of primes.

DEFINITION 4.1. Recall that a (profinite) group G has property
(F) if for any finite group F there are only finitely many (continu-
ous) homomorphisms G -> F. We will say that a connected space
X is locally of finite type if (π1X)i has property (F) and, for each
finite ϊ-coefficient system M, Hn(X; M) is finite for all n. We will
say G is locally of finite type if K(G, 1) is.

A fibration

F >E >B
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is l-virtually nilpotent if for each N ^ 1 there is a normal subgroup
π £ πJΞ such that πjϋjπ is a finite ϊ-group and π acts nilpotently
on πnF for n <^ N. A space X is Z-virtually nilpotent if the trivial
fibration X -»X -> * is.

Let F-+E-+B be a fibration in <$£, and let F be the fibre of
the induced map Eι-^BU

F = W(keτ {GXE >GιB)) .

Then there is a natural map Fx —> F.

THEOREM 4.2. (Artin-Mazur [2; Th. 5, 9]). If B is simply
connected and either F or B is locally of finite type relative to I,
then Fι —> F is a weak equivalence.

THEOREM 4.3. // F->E—>B is an l-virtually nilpotent fibra-
tion and either F or B is locally of finite type relative to I, then
Fι~>F is a weak equivalence.

The proof of this theorem is not needed for the next two sec-
tions and is defered to § 7.

REMARK 4.4. The finite type restrictions in Theorems 4.2 and
4.3 are necessary. For let A be a free abelian group on infinitely
many generators, n an integer, F = B = K(A, n), and E — F x B.
Then a calculation with the Kϋnneth theorem shows that

H2n(E; Zjp) Φ H2n{F x B; Z/p)

for any p.
The notion of a p-sylow subgroup Gp of a finite group G

generalizes to profinite groups [15]. A profinite group G is pro-
nilpotent if it is the product of its p-Sylow subgroups. We say
that a G module A is pro-nilpotent if Gp acts trivially on Aq when
p φ q. Note that since the p-Sylow subgroups of an abelian group
are characteristic, the action of a group on A respects the decom-
position

We will say a profinite space X is pro-nilpotent if πxX is pro-
nilpotent and each πnX is a pro-nilpotent πjί module.

THEOREM 4.5. If X e ^ is pro-nilpotent, the natural map

x—>nχP,
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is a weak equivalence.

Proof. Note that πλX = πxπX9 by assumption. We must show
that for any finite πjζ. module M the cohomology map is an isomor-
phism. We may assume M i s a simple πxX module and is therefore
a Z/q vector space for some prime q. Indeed, by [16; I. 3.2, III.
4.3] we may assume

where Mp is a simple (π1X)p module which is isomorphic to the
trivial one dimensional representation for almost all p and when-
ever p = q. Thus, by the Kiinneth theorem,

H*( Π X,; M) ~ M*i* (x) H*(Xq) Z/q) .
P

Now, assuming X is of the form WGY, we have a fibration

X >X >K(N,1)

where N = Π^? (FXX)P. Then there is a spectral sequence

#*(iV; H*(X; M)) => H*(X; M) .

Note that πnχ = πnX, n^2, and π,X = {πxX)q. The action of N
on H*(X; M) is determined by that on (π*X)q which is trivial; thus

H*(N; H*(X; M)) = H*(N; M® H*(X; Z/q)) = MN (g) H*(X; Z/q) .

But, by the same argument, H*(X;Z/q) = H*(X;Zfq). Thus

H*(X; M) = M*i* (x) H*(X; Z/q)

as required.

COROLLARY 4.6. Let XeS^be nilpotent, then Xt is pro-nilpotent.

Proof. Apply the above argument to X noting that π±X is
dense in πtXι.

COROLLARY 4.7. Let I e ^ be nilpotent and l-locally of finite
type, then there is a weak equivalence

pel

where {Z/p)^ ( ) is the nilpotent completion of Bousfield-Kan [5;
Ch. VI].
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We will conclude this section by elaborating on the local finite
type condition of Theorem 4.3. In particular, we wish to show
that a virtually nilpotent space is locally of finite type iff each of
its homotopy groups is. We first characterize abelian and nilpotent
groups which are locally of finite type.

PROPOSITION 4.8. Let A be an abelian group, n ^ 1 an integer
and I a set of primes. For pel put PA = {aeA\pa — 0}. Then
the following are equivalent:

(a) A is locally of finite type relative to I.
(b) Hn(A, n; Z/p) and Hn+1(A, n; Z/p) are finite for each pel.
(c) K(A, n) is locally of finite type relative to I.
(d) PA and A/pA are finite for each pel.

Proof. By the computations of Cartan [6; § 9, § 10], H*(A, n;
Z/p) is generated as an algebra over the Steenrod algebra by
Hn(A,n;Z/p) and Hn+1(A, n; Z/p). Thus (b) and (c) are equivalent.
Also by Cartan's computations, Hn(A, n\ Z/p) and Hn+1(A, n; Z/p)
are finite iff A/pA and PA are finite. Part (a) is a special case for
rc = 1.

LEMMA 4.9. // A and B are abelian groups such that H\A;
Z/p) and H\B; Z/p) are finite, then the same condition is true for
A@B and A(g)B.

Proof Hλ(A; Z/p) is finitely generated iff A/pA is finitely
generated. Note that

(A 0 B)/p(A 0 5) = (A/pA) 0 (B/pB) ,

and

(A(g)B)/p(A(g)B) = A®

= (A®Z/p)®z/p(B(g)Z/p)

= A/pA (x) B/pB .

LEMMA 4.10. If A -^ B is an epimorphism of abelian groups
and H\A;Z/p) is finite, so is H\B;Z/p).

Proof H\B; Z/p) -» H\A; Z/p) is monic.

PROPOSITION 4.11. If A is a nilpotent group with H\A; Z/p)
and H2(A; Z/p) finite for all pel, then

(a) A is locally of finite type relative to I.
(b) There is a filtration by normal subgroups,
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0 £ An £ £ A* £ £ A1 = A ,

ί/iαί eαcfe A*/At+1 is a trivial A module and is locally of finite
type relative to I. Furthermore, the lower central series of A may
be chosen.

Proof. Let A1 be the ίth term of the lower central series of
A, A1 = A, and

Ai+1 = [A, A'] .

Then Σ? β l A7it<+1 i s a Lie ring generated by A1/A2 [9; Ch. 10, Ch.
11]. Thus by (4.9) and (4.10), H\A*/Ai+1; Z/p) is finite for pel.

We will induct on the degree of nilpotence n. Proposition 2.8
establishes the result for n = 1.

Consider the exact sequence

0 Ά/A*

A acts trivially on An, so the Hochschild-Serre spectral sequence of
this exact sequence takes the form shown in figure 4.12. Since

HHA")

Hι(A»)

Zip H\Λ/A")

Hι{A")®H2{AjA")

H2(A/A")

FIGURE 4.12

H\A) is finite, so is H\AjAn). Since H\A) is finite, so is EϋJ =
H\AjAn)jd\H\An)). But H\A%) is finite; therefore so is H*(A/A%).
By induction we may now assume that Hί(A/An) is finite for all i.
Thus H\A/An) and H\An) (x) H\AjAn) are finite, and consequently
H\An) is finite. By (4.8), H\A) is finite for all i; thus, Έtq is
finite for all p, q and H\A\ Z/p) is finite for all i.

A similar argument yields

PROPOSITION 4.13. Let G be a group and A a nilpotent G
module. If for all pel

( i ) H\G; Z/p) is finite.
(ii) H\A\ Z/p) and H\A; Z/p) are finite,
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then there exists a G-invariant filtration

such that
(a) Each A*/Ai+1 is a trivial G-module.
(b) For each i, j, Hj(Au, Z/p) is finite VpeL

Furthermore, the filtration may be chosen to be the lower central
series A1 = A,

A^ = [G, A*] ,

where for g e B, a e A, [g, a] = a — ga.

LEMMA 4.14. Let G be a group and let G act nilpotently on a
Z\p vector space A. If H\G\ Z/p) is finite and H°(G; A) is finite,
then A is finite.

Proof. Let 0 £ An C Q A1 = A be a filtration of A as in
(4.13). We will induct on the length of such a filtration. If n = 1,
G acts trivially on A and H°(G; A) — A, so A is finite. In general,
consider the exact sequence

0 > An > A > A/An > 0 .

This induces a long exact sequence

0 > H\G; An) > H%G; A) > H\G; A/An)

> i Γ ( G ; A * ) — . . . .

G acts trivially on An, so H\G; An) = A\ H%G; A) is finite, so
An c H\G; A) is finite. Thus H\G\ An) is finite, and consequently,
H°(G; A/An) is finite. Then, by induction, A\An is finite implying
that A is finite.

PROPOSITION 4.15. An l-virtually nilpotent space X is locally
of finite type relative to I iff each πnX is locally of finite type re-
lative to I.

Proof. If each πnX is locally of finite type relative to ί, then
so is X by a straightforward Serre spectral sequence argument.
Suppose then that X is locally of finite type relative to I. Then
so is any Z-finite regular covering space of X. Thus we may assume
that πxX acts nilpotently on πnX for n <> N, N any chosen integer.
Let X be the universal cover of X. We assert that Hn(X; Z/p) is
finite for all pel and n <̂  N. To see this, consider the spectral
sequence of the universal cover X,
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E*>* => Hp+q(X; Z/p)

Ef ' = H'faX; H\X)) ,

shown in Figure 4.16. Since each Hn(X;Z/p) is finite, so are
Ή.\πxX\Z/p) and H\πγX\ Z/p) for pel. Thus π,X is locally of
finity type with respect to I, and Hn(π1X; Z/p) is finite for all n.
Consequently, fPfaX; H\X)) and H\πxX\ H\X)) are finite. By
(4.14), H\X) is finite; thus, so is H'faX; H\X)) for all i. Continu-
ing by induction, Hn(X; Z/p) is finite for n <Ξ N. To complete the
proof, we apply a similar argument to the fibrations

Em+1X > EmX > K(πmXf m)

where EmX denotes the (m ~ l)-connected cover of X.

ZIP IPfaX; ZIP)

FIGURE 4.16

5. Homotopy groups of completions* In this section we define
derived functors of finite completion and use them to calculate the
homotopy groups of finite completions of virtually nilpotent spaces.
In view of (4.7), this computation is essentially the same as that
of Bousfield-Kan [5; Ch. VI].

Let n ^ 0 be an integer, G a group which is abelian if n > 0.
We define the left derived functors of finite completion on G by

£,(G; n) = πn+i+1(K(G9 n + 1)Γ .

Note that GK(G, n + 1) is a free simplicial group of type ((?, n)
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and that Ln(G;n) = πn+iGK(G, n + 1); thus the profinite groups
Li(G; n) are indeed derived functors of completion on the category
of groups by analogy with Dold-Puppe [7]. If I is a set of primes
we also define the derived functors of l-completion by

LUG; n) = πn+i+1(K(G, n + ΐ))t .

To simplify the notation in the following discussion, we will denote
Lhί by Li when I is clear from context.

PROPOSITION 5.1. For I a set of primes

L0(G; n)=Ol9

and Li(G; n) is abelian for i > 0.

Proof. Immediate from (2.12).

PROPOSITION 4.2. // G is abelian and locally of finite type
with respect to I, then

UG; n) = UG9 n + ΐ).

Proof Apply (4.2) to the fibration

K(G, n) > E >K(G, n + ΐ)

with contractible total space.
In case G is locally of finite type or n — 0, we will denote

UG n) by Lt(G).

PROPOSITION 5.3. Let I be a set of primes. Then £,((?) = 0
for all i> 0 iff G is l-good.

Proof. We have a natural map

(K(G,ΐ))t >K(Gl9ΐ)

in ^ which is a weak equivalence iff G is ϊ-good.

PROPOSITION 5.4. For I a set of primes, Lt( n) is a functor
from groups (abelian groups if n > 0) to pro-l groups.

Proof. If G > H is a homomorphism, there is induced a map,

unique up to homotopy,

/ : K(G, n) > K(H, n) .

By (2.13a) / induces a map unique up to homotopy
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K(G, n)t > K(H, n)t .

THEOREM 5.5. Let

* > H > G > G/H > *

be a short exact sequence of groups such that G acts l-virtually
nilpotently on H and either

( i ) H is locally of finite type, or
(ii) G/H is locally of finite type.

Then there is a natural long exact sequence

> L,(H) > L<(G) > L^G/H) > LUH) >

> L^G/H) >Hι >Gt > (G/H) t >*.

Proof Apply (4.3) to the fibration

K(H, n) > K(G, n) > K(G/H, n) .

REMARK 5.6. To generalize (5.5) to extensions which are not
nilpotent, it is necessary to define the notion of relative finite
completion and its derived functors. If H is a group with G
action, the finite completion of H relative to G is the profinite
group

Ho = {FJ

where i runs over the family of G-epimorphisms H—> Fif where Ft

is a finite G-group. Then ίϊG has a natural G action. In case the
action of G on H is virtually nilpotent and either G or H has
property (F), HG — H, reducing relative finite completion to finite
completion. If P= H\G is the semi-direct product of H and G, the
sequence

* >HG >P >G >*

is always split exact. Let F be the fibre of K(P, 1Γ -> K(G, iy.
Then πJΓ — HG and one may define the derived functors of G-com-
pletion as

UiM, G) - πi+1F .

It may be shown that there is always a long exact sequence

> L^H, G) > Ht{G) > LάG/H) > LUH, G) >

> L,(G/H) > HG > G > {G/HT > * .

Proof of these facts and applications will appear in a future paper.
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EXAMPLE 5.7. Let G = Q, H = Z, G/ίί = Q/Z. Then since
β*(Q, M) = 0 for all finite abelian groups M, L*(Q) = 0. Thus

0 ΐ > 0 ,

and L0(QIZ) = 0. These groups may be computed directly by noting
that the map of Q/Z to the circle group 17(1) given by x H-> e27Γΐ*
induces isomorphisms

iϊ*(CP~; Z/p) > H*(K(Q/Z, 1); Z/p)

for all p. We shall see that this example is typical.

THEOREM 5.8. If A is an l-virtually nilpotent group which is
locally of finite type with respect to I, then

Λ) = 0

for n^2.

Proof. Using (5.5) and (4.11) we are reduced to the case when
A is abelian. By (4.5) we may assume I = {p}.

Suppose A is torsion free. Then PA — 0. Let elf ---eneA be
elements whose images in A/pA are a basis. Let A! be the free
abelian group on symbols [ef], i = 1, - , n and let

f:A' >A

send [ej to βέ. Then / induces isomorphisms A!\pA! ^ A/pA. Hence
it induces an isomorphism

Therefore K(A\ 1)} and K{A, 1); are weakly equivalent. But then
L<(A) - L^A') = 0 for i > 0.

Now since an abelian group is the extension of a torsion free
abelian group by a torsion abelian group, we may suppose A is all
torsion. Again, since A/pA is finite, there is a finite subgroup J
of A such that A/J is p-divisible. Since J is good, we may assume
A is a p-divisible torsion group. Now PA is finite, so let eί9 , em e

PA be a basis. Since A is p-divisible, there is a group A! of the
form

A' = Π

and a map A' —> A inducing an isomorphism VA! —> 9A. As before,
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H*(A;Z/p) >H*(A';Z/p)

is an isomorphism. By example (5.7), Lt(A) — 0, i >̂ 2.
We mention the following characterization.

PROPOSITION 5.9. (Kan-Bousfield [5; VI 2.2]). // A is abelian
and locally of finite type relative to I, then

dL0(A) = Ext (Z/Γ, A)

dL^A) = Horn (Z/Γ, A)

where ZjΓ — ®pel Z\p™ and d denotes discretization.

For G not nilpotent, £*((?) may be very complicated. For
example, if G = Σoo, the automorphisms of N with finite support,
Lt(G) is the (i + l)-st stable homotopy group of S°[12].

PROPOSITION 5.10.

(a) // A is nilpotent and locally of finite type relative to I,
then A acts nilpotently on L*(A).

(b) If A is abelian, locally of finite type relative to l9 G is a
group acting nilpotently on A, and H\G; Z/p) is finite for all
pel, then G acts nilpotently on

Proof. Note that if G acts nilpotently on A, then applying
(4.3) to the fibration

K(A, 1) > K(A jσ, 1) > K{G, 1) ,

where A\G is the semi-direct product of A and G, shows that G

acts naturally on L*(A). Note also that if 0 £ An ςz £ A1 £ A
is a filtration of A by G-subgroups which are locally of finite type,
then the action of G respects the long exact sequences of the
resulting tower of fibrations. By (4.13) such a filtration exists with
G acting trivially on A*/At+1, 1 ^ i ^ n. Part (b) then follows easily.
The proof of part (a) is similar.

Our main result is the following.

THEOREM 5.11. Let XeS^ be l-virtually nilpotent and locally
of finite type relative to I. Then there are natural short exact
sequences

0 > (πnX)t > πnXt > Uπ^X) > 0
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for n ^1.

COROLLARY 5.12. If X is as above, Xt is virtually nilpotent.

Proof of 5.11. Consider the Moore-Postnikov tower of X,

• > P*+1X > PnX > > P2X > PιX

K(πn+1X, n + ΐ) K(πnX, n) K(π2X, 2) K{π,X9 1) .

By (4.15) each of the spaces above is locally of finite type with
respect to I, and each fibration is Z-virtually nilpotent. Thus, by
(4.3), Z-completion yields a tower of fibrations with fibres K(πnX, ri)f.
The homotopy exact couple of the tower of completions then yields
a strongly convergent spectral sequence

with

ElΊ = Lp(πqX) .

Now Lp(πqX) = 0 for p > 1. Thus the spectral sequence collapses
to the exact sequence of 4.11.

6* Realizing profinite spaces as completions* Let X be a
rigid profinite space. Then the natural map dX —> X induces a map
of rigid profinite spaces

{dly—>x.

We will say X is intrinsic if this map is a weak equivalence. In
this section we attempt to characterize intrinsic rigid profinite
spaces. A complete answer will be given for the nilpotent case.

In order that a rigid profinite space be intrinsic, its homotopy
groups must have a similar property. Let G be a profinite group.
We say that G is intrinsically topologized if the natural map

(dGΓ > G

is an isomorphism. This notion first appeared in Sullivan [18].
It is easy to see that G is intrinsically topologized iff every normal
subgroup of finite index in G is open.

EXAMPLE 6.1 [18]. Let G = Πie^^/p, N the natural numbers.
Let H = @ieNZ/p be considered an abstract subgroup of G. Then
H is dense in G, and G/H is a Z/p vector space. Hence there is a
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nontrivial homomorphism G/H-* Z/p. Let K be the kernel of the
composition G -> G/H—> Z/p. Then if K is open, K = G since ί ί £ i ί
and ifis dense. But KΦ G, contradiction. Thus G is not intrinsic.

This example is typical.

THOREM 6.2. Let G be a pro-p group. Then G is intrinsically
topologized iff G is finitely generated.

Proof. Let G* be the Frattini subgroup of G [14; p. 70]. If
G is intrinsic, so is G/G*. Now G/G* is an abelian pro-p group
dual to H\G;Z/pZ). Thus for some index set X,

and, by Example 6.1, G/G* is intrinsic only if X is finite. But if
G/G* is finitely generated so is G [14; Cor. 1, p. 72].

To prove the converse, it suffices to show that the ^-completion
of a finitely generated free group is intrinsic. But that is just
[4; Thm. 13.3].

THEOREM 6.3. A pro-nilpotent group Ge© is intrinsically
topologized iff each p-Sylow subgroup is finitely generated.

Proof. This theorem follows from (6.2) and the following more
general fact.

LOCALIZATION LEMMA 6.4. If G is a pro finite group, NgzG a
normal subgroup of finite index n, then N is open iff N Π Gp is
open in Gp for all primes p\n, where Gp is any p-Sylow subgroup.

Proof. If N is open, then NΓ\GP is open in Gp. Conversely,
suppose N f]Gp is open in Gp for p\n. Then for each such p, there
are open normal subgroups KPQ Nf]Gp. Let K=f]plnKp. Then
K is open. If K Q N, N will be open. Let plf , pr be the prime
factors of n. We claim that each g e K may be written

where gi e Gp. Π K for i = 1, , r, Gp. some ^-Sylow subgroup,
and g0 is -^-divisible. Since K and N are normal, gί9 -- ,greN.
Since g0 is ^-divisible, gosN. Thus geN and N is open. The
claim is the following lemma applied to K.

LEMMA 6.5. Let G be a profinite group, geG,l = {plf '—,pr}
a finite set of primes, and n an integer divisible only by the primes
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in I. Then g may be written

9 = 9o9ι - 9r ,

where g0 is n-divisible and, for 1 <; i <; r, gi e GPi for some p^Sylow
subgroup GPi.

The proof is a lengthy but straightforward calculation using
elementary number theory.

Consider a finitely generated pro-abelian p-group A. Then A
has a natural structure as a ϋΓp-module, Zp the p-adic integers.
Since Zp is a principal ideal domain,

A = Z , 0 : : φ Z ? 0 F

r-copies

where JF7 is a finite p-group. Thus H*(A; Z/p) has finite type.
Theorem 6.3 now implies

COROLLARY 6.6. A nilpotent pro finite group G is intrinsically
topologized iff it is locally of finite type.

PROPOSITION 6.7. If G is a nilpotent profinite group which is
locally of finite type, then dG is good.

Proof First let A be a finitely generated pro-abelian p-group.
By the remarks above, to see that A is good, it suffices to see
that Zp is good. But Zp is ^-divisible for p Φ n, torsion free, and
ZJpZp = Z!p. Thus

H*(dZ,; Z/q) = H*(ZP; Z/q)

for all primes q. In particular, if q Φ p, H*(dZp; Z/q) = 0.
Now in general, if G nilpotent, G = ΠGP and each Gp is a finitely

generated nilpotent pro-p group. Simple calculations with the
Kiinneth theorem and the Hochschild-Serre spectral sequence show
that G is good.

Our main result now follows from the results of § 5.

THEOREM 6.8. Let X be a virtually nilpotent rigid profinite
space. Then X is intrinsic iff it is locally of finite type.

It is not known if (6.8) is true for pro-nilpotent X. For it is
not known whether the ^-completion of a finitely generated free
group has a good discretization.
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COROLLARY 6.9. If X is an Artin-Mazur pro finite space which
is virtually nilpotent and locally of finite type, then X is weakly
equivalent to a rigid pro-finite space.

Proof. By Sullivan's argument [17; p. 35-38] the functor
lim [ Xi] on spaces is representable by a space §X. Then (SXT
will be weakly equivalent to X by the same argument which proves
6.8.

7* Proof of Theorem 43* We will follow the proof by Artin-
Mazur [2; pp. 60-68] of Theorem 4.2, paying careful attention to
the actions of fundamental groups.

Let

be an exact sequence of simplicial groups. Let 3P be the category
of diagrams i of the form
be an exact sequence of si
of diagrams i of the form

(7.1) Jft J
C

r.

where A and Ct are simplicial i-groups; a map i —> j between
objects is a map of diagrams which is the identity on C and D.
Such a map of diagrams is necessarily unique.

LEMMA 7.2. Let i f be the full subcategory of & consisting of
objects (7.1) satisfying /(ker βt) = kerY*. Then:

(1) For each object of ^,
(i) ft(ker/)=ker/o

(ii) the kernels of ker / —> ker f\ and ker βt —> ker y{ are equal,
and

(iii) the natural map D —> Dt x ^C is epic.
(2 ) ^ is cofinal in 3$.
(3) I%e pro-simplicial finite groups represented by {Dt}ie^ and

equivalent to D and C respectively.

Proof. (1) is an elementary verification. (2) follows by noting
that, for any object i of ^ , C//(ker βt) is a simplicial finite ί-group;
therefore, the object j e ̂  with Dό = A, C, = C//(ker &), maps to
i. For a similar reason, {AKβ^ represents D. To finish (3), let
C ^F, F a finite Z-group. Then the object i with d = F, A =
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D/f^Qtery) is an object of if; thus, {CJί6ί/ represents C.
Let

F >E >B

be a ίibration of reduced spaces satisfying the hypotheses of (4.3).
We may assume that E -> B is of the form Wf: WD -> WC, where
f:D—>C is a map of free simplicial groups. Applying W to the
category ^ of (7.2), we construct a family of commuting diagrams
of the form (7.3).

(7.3) .P > E > B

1 I
These diagrams satisfy

(a) each row and column is a fibration.
(b) each space is reduced and fibrant.
(c) {Fi}, {E%), and {J5J, ier^f are rigid pro-i spaces and repre-

sent F, E, and B, respectively.
(d) E is fibred over E.X^.B.
(e) all maps in the diagram

are epic.
(f) πfii -> πxβι is epic.
Let 0 - { 0 J , )7 = fa}, β = {/3J, i e ^ . By [2; Prop. 5.1], ^

and βt are weakly contractible. Our strategy in proving (4.3) is
to first show t h a t 0ι is weakly contactible; then, we will use t h a t
fact to show t h a t F ~> F is a weak equivalence. We begin by
showing tha t

for all pel.
Let N be some large integer. Since F —> E-+ B is an I-virtually

nilpotent fibration, for ί e ί f sufficiently large — i.e., for all i in a
cofinal subcategory of ^ — we may assume that Im ( π ^ —> πj£)
acts nilpotently on τznF for n ^ N.
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LEMMA 7.4. For all ier^f,πιηi acts trivially on Im (3: τrΛ+1jFV-»
π Λ 0i) , n ^ 2.

Proo/. Let α: (S* x J, S* x J U {*} x /) -> (F,, *), where 1 = 4 1 ] is
the simplicial unit interval and Sn the standard w-sphere, represent
[a] e πn+1Fit and let β: (I, I)-* (ηi9 *) represent [ ^ e ^ . Lift α to
a map α: (S* x I, Sn x_ {0} U {*} x I) -> (Fif *). Then a\Sn x {1}
represents 3([α;]). Let jS denote /3 composed with E-+B. We will
construct a map j : Sn x I x I-+E as follows. Let 7 |S" x J x / be a
composed with projection onto Sn x I; let y\(Sn x {0} U {*} x /) x /
be β composed with projection on /. By the covering homotopy
extension theorem, Ί may be extended to a map SnxIxI->
covering a x β: Sn x I x I-> ^ X ^ Bt. Then y(Sn x {1} x /) S 57,,
and T U UXHI represents m3([α]) e τrΛ0ί. But TU^u^m also represents

COROLLARY 7.5. For ie'^ sufficiently large, π{ηt acts nilpotently

on πn(Z)i, n <J N.

Proof. For i sufficiently large,

0 > Im 3 > πn0t > πnF

is an exact sequence of πxηt modules with Im 3 and πnF nilpotent.

COROLLARY 7.6. For ί e ^ sufficiently large, πφt acts nilpotently
on H*(0t; Z/p), n ^ N.

Proof. [5; I 5.4].

LEMMA 7.7. Let X—>Y—>Zbea fibration of connected spaces
such that

( i ) π^Z is a finite l-group,
(ii) Z is of finite type, and
(iii) Hn(Y; M) is finite for all n^O and finite l-coefficient

systems M.
Then Hn(X; Z/p) is finite for all n ^ 0 and all pel.

Proof. Let * —> π —> πλ Y —> πxZ —> * be exact, Yπ the covering
space of Y corresponding to π, and Z the universal cover of Z.
Then

X > YΓ >Z

i s a fibration. B y ( i i i ) , H n ( Y , ; Z / p ) i s finite f o r a l l n ^ 0 a n d pel.
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Furthermore, Z is of finite type. A simple Serre spectral sequence
argument implies that Hn(X; Z/p) is finite for all n Ξ> 0.

COROLLARY 7.8. If B (respectively F) is locally of finite type
with respect to I, then Hn(βi; Z/p) (respectively Hn(0i; Z/p)) is finite
for all n ^ 0 and pel.

LEMMA 7.9. Let M be a Z/p vector space, p e I and suppose
either

( i ) M is finite dimensional, or
(ii) B is locally of finite type.

Then

H*(β; M) = 0 .

Proof. H*(β;ZJp) = 0 [2; Prop. 5.1]. If M has finite dimen-
sion, the result follows immediately. Suppose B is locally of finite
type. Then #»(&; Z/p) is finite for all ί, n. Write

M = lim M3

—>

where {M3)jeJ is a direct system of finite Z/p-vectov spaces. Then

H*(β%\ M) = Horn (HΛ(βt; Z/p), M)

= Horn (Hu(βt; Z/p), lim Ms)

= lim (Horn (H%(βt; Z/p), M3))

since Hn{βτ; Z/p) is finite dimensional. But then

Hn(β; M) = lim H*(βt; M)

i

= lim lim Hn(βτ; M.)

i 3

= lim Hn(β; i¥/

3

= 0 .

LEMMA 7.10. i ? * ( 0 ; Z/p) = 0, pel.

Proof. Consider the directed system of Serre spectral sequences

Er = H'(βt; Hs(0i; Z/p)) — H'+ fr, Z/p) .

Taking direct limits, we obtain a spectral sequence
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Eζ =_lim^ H'(βt', # ' (0*; Zip)) ==- Hr+ (η; Z/p) .

i

By [2; Prop. 1.10, p. 152],

Eζ- =_liin Hr(β(; Hs(0i; Z/p))
i

= lim lim H\βά; #'(0,; Z/p))

= Iim H'(β; #'(0*; Z/p)) .

i
We assert that Hr(β; Hs(0i; Z/p)) = 0 for r > 0. For when i suffi-
ciently large Hs(0i', Z/p) has a filtration

o e A, c e Λ = #8(0*; ^/P)
of πβi modules such that each Aτ/Aτ+1 is a trivial πj3i module.
Since πxβ acts on Hs(0i; Z/p) through τc^βu (7.9) implies

Hr(β;Aτ/Aΐ+1) = 0,

r > 0. From the long exact sequence induced by

0 > A τ + 1 > A τ > Ar/Aτ+i >0 ,

we see that

?• > 0. By the same argument,

H\β; Hs(0i; Z/p)) = i ί s ( 0 ί ;

since H°(β; Aτ/Aτ+1) = Az/Aτ+1. Thus,

[H (0;Z/p),r =
E9

r>s = ,
0, r > 0 .

But then

[2; Prop. 5.1].

LEMMA 7.11. // M is an l-coefficient system *"on F, then
Hr(F; JEP(0; M)) = 0 for s > 0. Therefore,

Hr(F; M) - ^ Hr(F; M)

for r ^ 0.
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Proof. See [2; p. 67].

LEMMA 7.12. (πx0)Γ = 0.

Proof. Let G be a finite ϊ-group, ai:π10i—>G. Since πt0 is
nilpotent, we may suppose G is nilpotent. Therefore, we may-
suppose G is abelian. But then at represents an element of H\0; G)
and is thus zero on some πx0ά, j—>i.

The proof of Theorem 4.3 is now completed by the argument
of [2; p. 67-68].
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