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THE SCHWARZIAN DERIVATIVE AND

THE POINCARE METRIC

JACOB BURBEA

Dedicated to Z. Nehari

Let Ω £ 0G be a plane region and let λΩ{z) be its Poincarέ
metric. Let E$ be the complement of Ώ and write α(ζ)~α(ζ: Ω)—
i f ϊ 1 / 2

V 1 \ \z - ζ |~4 cfo(s)l , where d*(s) = efcd?/ and ζ e £ .
I Jββ )

Λ$(3) = α(z: 42) for all z e Ω only when Ω is a disk less (pos-
sibly) a closed subset of inner capacity zero. Let φ be
holomorphic and univalent in Ω and let SΦ{z,ζ)=—6(d2/dzdζ)X
log (φ(z) — Φ(ζ))I(z — ζ). Here Sφ(z, z) is the Schwarzian deriva-
tive of φ. We show

Sφ(z, ζ) I ̂  6^(z)^(ζ)Γl + (l ~-f§-)1/2] J «, C e ̂  .

l Introduction* In his paper [4] Gehring was concerned with
the problem of extending to an arbitrary simply connected plane
region Ω certain results relating the univalence of a function φ
holomorphic in the unit disk Δ with the magnitude of its Schwarzian
derivative

We shall be concerned with generalizing the following two proposi-
tions to an arbitrary plane region Ω.

PROPOSITION 1. If φ is holomorphic and univalent in Δ, then

and the constant 6 is sharp.

PROPOSITION 2. Let Ω be a simply connected domain and let
\Ω(z) be its Poincare metric. If φ is holomorphic and univalent in
Ω, then

, zeΩ ,

and the constant 12 is sharp.

Proposition 1 is due to Kraus [5] and Proposition 2 is due to
Lehto [6]. In this direction Nehari [7] has shown that if φ is
holomorphic with | Sφ(z) \ ̂  2(1 — | z |2)"2 in Δ, then φ is univalent in
Δ with the constant 2 being the best possible.
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We shall show that the above two propositions can be immediate-
ly read off from one single inequality (Corollary 3) which is valid
for any plane region. Our result can be easily extended to open
Riemann surfaces too but we shall not pursue this point. Our argu-
ments rely heavily on well known classical results of Bergman and
Schiffer [2]. In order to be self contained, however, we will attempt
to provide proofs to most crucial statements. The final result
obtained in this paper (Theorem 2) involves a string of sharp
inequalities amongst the Schwarzian derivative, the span or condenser
capacity, the analytic capacity, the capacity and the Poincare metric.
In this string of inequalities, the inequality between the span
(condenser) capacity and the analytic capacity is a well known result
of Ahlfors and Beurling [1]. Here we provide a different proof of
this result which is based on our Theorem 1. The representation
formula of Theorem 1 was first mentioned in Schiffer [9] in case
ζ = co G Ω and Ω has the largest complementary area amongst all
regions which are conformally equivalent to Ω.

2. Capacities and the Poincare metric* Let Ω be an open region
in the extended plane and let ζ e Ω. Usually, ζ Φ oo but the transi-
tion to ζ = oo is trivial. H(Ω) stands for the class of holomorphic
functions in Ω and HJβ) denotes the class of multivalued holomor-
phic functions / in Ω such that \f(z)\, zeΩ, is single valued. We
write

= sup \f(z)\ , D[f] = \ \Γ(z)\2dσ(z) ,

where dσ(z) = dxdy is the Lebesgue area measure. Consider the
following families:

{/ e H(Ω): | | / | U S 1, ΛQ = 0} ,

= {/ e Hm(Ω): H/IL £ 1, /(O = 0} ,

= {/ e H(Ω): D[f] g π, /(ζ) = 0} .

We now introduce (cf. [1]) the analytic capacity

CB(O = CB(ζ: Ω) = max {|/'(ζ)|: / e

the capacity

Cβ(ζ) = Cβ(ζ: Ω) = max {|/'(ζ) |: / 6

and the span or condenser capacity

CD{Q = CD(ζ: Ω) = max {|/'(ζ)|: / 6
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We note that Cβ(ζ) is well defined and that by /(ζ) = 0 in <g^(u) we
mean that at least one branch of f(z) vanishes at ζ.

Assume now that ΩgOG (i.e., Ω has a nontrivial Green's func-
tion) and thus Ω has the unit disk Δ as its universal covering space.
The Poincare metric XΩ(z) is defined as follows: For the unit disk
Δ, XΔ(ω) = (1 - I ft) I2)"1 while for Ω

XΩ(z) = XΔ(ω) I π\ω) I"1 , z = π(α>) e Ω ,

where π: Δ —> fl is a universal cover map. We denote by δΩ(z) the
distance from 2 to the boundary of Ω. XΩ{z) is monotonic decreasing
with Ω and thus

*>0(z)8a(z) ^ 1 , z e Ω .

Moreover, if Ω is simply connected then, in view of Koebe's 1/4
theorem,

^ 1/4 , zeΩ .

Clearly, CB, Cβ, CD and λ^ are conformally invariant and therefore

(2.1) C D ( z : Ω) = C B ( z : Ω) = C β ( z : Ω) = XΩ(z), z e Ω ,

whenever Ω is simply connected.
It is also evident that CB(z: Ω) ^ Cβ(z: Ω) and it is a theorem of

Ahlf ors and Beurling [1] (see also Corollary 2) that CD(z: Ω) ^ CB(z: Ω).
Moreover, Cβ(z; Ω) ^ XΩ. Indeed, let π; Δ —> Ω be a universal cover
map z = π(ω). Then

Cβ(z: Ω) = m*x{\f'(z)\: f e

g\ω)\:g

where (2.1) has been used. Consequently,

(2.2) CD(z: Ω) g CB(z: Ω) ^ Cβ(z: Ω) ^ \L(z) ^ δ^1^) ,

and we note that, if Ω £ 0AD, then CD(z: Ω) > 0 for all z e Ω. The
condition Ω <£ 0AD means that there exists a nonconstant holomorphic
function / in Ω with D[f] < oo.

We conclude this section by recalling the following well-known
lemma of Ahlf ors and Beurling [1]:

LEMMA 1. Let E be a measurable set with a finite Lebesgue
measure σ(E) in C. Then
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sup

with equality holding, if and only if E is a almost everywhere a
disk of radius VG{E)\% .

3* The slit mappings* Here we assume that the region Ω is
bounded by n closed analytic curves Clf , Cn and we denote by C
the boundary dΩ = U*=i Ck of Ω. We assume that Cx is outer and
we let ζeΩ. Let

p{z) = p(z: ζ) = — L - + α(s - ζ)
Z L,

and

- q(z: ζ) - - ^ — + b(z - ζ) +
z - ζ

be the horizontal and vertical slit mappings, respectively, of Ω.
We write

Φ(z) = Φ(z: ζ) = —(p(z) - q(z))
2

and

?F(2) = Ψ(z: ζ) = —(p(«) + q(z)) .

Then Φ(«) and (z - ζ)^^) are holomorphic on Ω with Φ(ζ) = 0.
Further, Ψ(z) is univalent on Ω with pole at ζ. It maps i2 onto Ω*
with E = C — Ω* being bounded. Clearly, dΦ = ώ?/ on C and there-
fore Φ = Ψ — Xk on Cfc, where λfc is a constant depending on the
component Ck, 1 ^ k ^ n. Also Φ{Ck) and ^(C^) are closed analytic
and convex curves. One easily shows that

(3.1) D[φ] = πC2

D(ζ: Ω) = σ{E) = — (a - b) .

Let

^(^) = ψ\£: ζ) = C + τfTz—pr
uj ί yγ* Π

α/τ maps Ω conformally onto Ω' = ψ(β) with ^(ζ) = ζ. We write
^ = Uί=iΛ = 3 β ' with Γfc = α/r(Cfc), 1 ^ & ̂  w. We now establish
an integral formula representing Φ in terms of Ψ (compare also
Schiffer [9]).
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THEOREM 1. The integral formula

x " πiBψ(z:Q-t'

holds.

Proof. We first note that if / is holomorphic on Ω then, using
the residue theorem,

— -—: \ J\τ)—— —aτ .

Specializing this formula for / = ΦΨ we obtain

= 1 ί
2τπ. J

Writing w — <f(z) and ω = ψ(τ), τ = C, and recalling the definition
of φ(z) = φ(z: ζ) we have

1 -dω
ω — ζ ft> —

which is zero for each k = 1, , n. Therefore, writing / = ΦΨ,

f(z) = — ( 1 d ω
2τriJr ft) — ζ | 2 ft) — w

Let Ef — C — Ω', then according to Green's formula,

dσ(ώ)
(ft) - ζ ) 2 (ft) - ζ)(ft) - W)

Hence

dσjω)
(ft) — ζ)2(ft) — ζ)(ft) — W)

dα (ft))

π

_ w - ζ f

7Γ J^ 1

" ft)-ζ

1
- ζ) 7Γ J^ Γ(ί5) ~ t

This concludes the proof.

REMARK. The theorem remains valid for the general case that
Ω £ 0AD. This can be accomplished via a canonical exhaustion of Ω
by regular regions {Ωm}.
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The following corollary was also obtained in Burbea [3] and
Sakai [8]. The methods in [8] are different from ours.

COROLLARY 1. Let ΩgQAD. Then WΦW* ^ CD{ζ) with equality
holding if and only if Ω is conformally equivalent to the unit disk
A less {possibly) a closed null CD-set.

Proof According to Lemma 1 and (3.1) we have

= π

The statement about equality follows from Lemma 1 too.
The theorem of Ahlfors and Beurling [1] is also a consequence

of the theorem as the following corollary shows.

COROLLARY 2. CD(Z) ̂  CB(ζ).

Proof We may assume that CD(ζ) > 0. Let f(z) = Φ(z)/CD(Q.
Since Φ(ζ) = 0 it follows from Corollary 1 that fe&ζ(Ω). Thus
IΦ'ΏI/C^ζ) ^ CB(ζ). However, Φ'(ζ) - (l/2)(α - 6) and the assertion
follows by appealing to (3.1).

REMARK. One can show (see [8]) that equality in the last
corollary occurs if and only if either (i) CB(Q = 0, or (ii) Ω is con-
formally equivalent to the unit disk A less (possibly) a closed null

4* The Schwarzian derivative* We again assume that Ω is a
regular analytic region as mentioned before. The more general case
can be always obtained by a canonical exhaustion. Let HS(Ω) be the
Hubert space of all holomorphic functions / in β, having single
valued integrals and so that

- \ \f(z)\*dσ(z) < CO

This space possesses the (reduced) Bergman kernel function KΩ(z, ζ).
We have the obvious identity

KΩ{z, I) = ±Φ'(z: ζ)

and therefore

(4.1) CD(ζ:Ω)=VπKΩ(ζ,ζ) .
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The "adjoint" kernel [2] is given by

LΩ(z, ζ) - - ! * " ' ( * : ζ) .
π

This kernel is symmetric in z and ζ. Since dΦ — dΨ on the boundary,

we have KΩ(z, ζ)dz = —Lfχz, ζ)dz for zedΩ and ζeΩ. Also,

LΩ(z,ζ) Z*(s,O,
π (s ~ O2

where iWz, ζ) is symmetric and holomorphic in (z, ζ) e Ω x 42. If
ζei2 is fixed then lΩ{ , ζ)eHs(Ω). We have (see also [2, p. 243])

IIU , Oil2 - 5, 1^^' O ! 2 d ^ ) - i^(C, Q ~ ΓΛ(C, ζ)

where

p (r γ\ _ 1 f dσ(z)
π2

Here EΩ = C — Ω. We also write

(4.2) α(ζ) - α(ζ: Ω) - τ/πΓfi(ζ, ζ)

and thus πa\ζ) represents the image area of E2 under the linear
mapping (z — ζ)"1. Therefore

C, ζ) = C^ζ: i2),

equality holding, for each ζeΩ, only if dΩ is a circle (including
circles passing through 00). Further, we have

Uz, 0 = M , ζ), KΩ{ , z))

and therefore

or

(4.3) I lΩ{z, ζ) |2 ^ KΩ(z, z)[KΩ(Z, ζ) - ΓQ(ζ, ζ)] .

A fortiori,

(4.4) \lΩ(z,ζ)\*£KΩ(z,z)Ko(ζ,Z)

Let ω = ^(») be a conformal mapping of i2 onto i2*. Then, for

(4.5) X ^ , ζ) = KiAfύ, τ)φ\z)φ\Q
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and

LQ(z, ζ) = LUω, τ)φ\z)φ\ζ) .

From the last formula it follows that

(4.6) lUω, τ)φ'(z)φ'(ζ) = lΩ(z, ζ) - -±-Sφ(z9 ζ) ,

where

dzdζ z —

we note that

SΦ(z, z) = Sψ{z) = ( £ ) - i - ( ^ j φ = ^(z), 2 6 β ,

is the Schwarzian derivative of φ(z).
From (4.4) we have

I lo.(ω, τ) |2 ^ KΩ*(ω, ώ)KΩ.(τ, τ) ,

and therefore, using (4.5) and (4.6),

Uz, ζ) - -±-Sφ(z, ζ) 2 ^ K0{z, z)KΩ{Z, ζ) .

Consequently,

\Sφ(z, C)| ^ 6π{[ i ί^, z)ifβ(ζ, ζ)]1/2 + | ί ^ , 01} .

In view of (4.1), (4.2) and (4.3) we therefore have

\sΦ(z, oi ^ β c ^ c ^ i + (i - - ^ ) V 2 ]

This is the desired result. If now we use (2.2), we arrive at our
main theorem:

THEOREM 2. Let Ω $ 0AD. If φ is holomorphic and univalent in
Ω we have the following sharp string of inequalities

\Sφ(z, 01 ̂  6CD(z)CD(ζ)[l
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Proof. The above holds for regular regions. The general case
is obtained by a canonical exhaustion.

COROLLARY 3. Let Ω £ 0̂  and let φ be holomorphίc and univalent
in Ω. Then

I S φ ( z , ζ ) ! : £ 6 λ a ( 2 ) λ a ( ζ ) | 1 + ( 1 - £ £ L ) | ; z , ζ e Ω ,

in particular

inequalities are sharp. The inequality

\SΦ(z)\ £ 6X%(z)

is sharp only when Ω is a disk less (possibly) a closed subset of
innear capacity zero. Otherwise, we have the sharp inequality

\S,(z)\ ^ 12Xl(z) .

Proof. This follows from the fact that a(z) = a(z: Ω) ̂  XΩ(z)
and equality at all points zeΩ holds if and only if Ω is a disk less
(possibly) a closed subsets of inner capacity zero.

This generalizes the contents of Propositions 1 and 2.

Added in proof. The author has learned A. F. Beardon and
F. W. Gehring have recently also generalized the contents of the
present Proposition 2.
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