COMPACT AND WEAKLY COMPACT DERIVATIONS OF C*-ALGEBRAS

CHARLES A. AKEMANN AND STEVE WRIGHT

In a forthcoming paper, the second-named author asks if every compact derivation of a C^* -algebra \mathscr{S} into a Banach \mathscr{S} -module X is the uniform limit of finite-rank derivations. We answer this question affirmatively in the present paper when $X = \mathscr{S}$ by characterizing the structure of compact derivations of C^* -algebras. In addition, the structure of weakly compact derivations of C^* -algebras is determined, and as immediate corollaries of these results, necessary and sufficient conditions are given for a C^* -algebra to admit a nonzero compact or weakly compact derivation.

To fix our notation, we we recall some basic definitions. A derivation of a C^* -algebra \mathscr{A} is a linear map $\delta: \mathscr{A} \to \mathscr{A}$ for which $\delta(ab) = a\delta(b) + \delta(a)b$, $a, b \in \mathscr{A}$. If $x \in \mathscr{A}$, the map $a \to ax - xa$, $a \in \mathscr{A}$, defines a derivation of \mathscr{A} which we denote by adx.

By an ideal of a C^* -algebra, we always mean a uniformly closed, two-sided ideal.

A C*-algebra \mathscr{A} is said to act atomically on a Hilbert space H if there exists an orthogonal family $\{P_{\alpha}\}$ of projections in B(H), each commuting with \mathscr{A} , such that $\bigoplus_{\alpha} P_{\alpha}$ is the identity operator on H, $\mathscr{A}P_{\alpha}$ acts irreducibly on $P_{\alpha}(H)$, and $\mathscr{A}P_{\alpha}$ is not unitarily equivalent to $\mathscr{A}P_{\beta}$ for $\alpha \neq \beta$.

If $\{\mathscr{M}_n\}$ is a sequence of C^* -algebras, $\bigoplus_n \mathscr{M}_n$ denotes the C^* direct sum of the \mathscr{M}_n 's, i.e., $\bigoplus_n \mathscr{M}_n$ is the C^* -algebra of all uniformly bounded sequences $\{a_n\}, a_n \in \mathscr{M}_n$, equipped with pointwise operations and the norm $||\{a_n\}|| = \sup_n ||a_n||$. $\bigoplus_n \mathscr{M}_n$ denotes the C^* -subalgebra of $\bigoplus_n \mathscr{M}_n$ formed by all sequences $\{a_n\}$ with $||a_n|| \to 0$.

Acknowledgment. The second-named author wishes to express his deep gratitude to V. S. Sunder for the warm hospitality he extended to that author during a stay at the University of California at Santa Barbara, which resulted in the initiation of the present work.

2. Compact derivations. The following lemma is due to Ho ([3], Corollary 1):

LEMMA 2.1. Let H denote an infinite dimensional Hilbert space, B(H) the algebra of all bounded linear operators on H. If δ is a compact derivations of B(H), then $\delta \equiv 0$. Let $M_n = n \times n$ complex matrices, and let $\mathscr{M} = \bigoplus_n^n M_n$ denote the restricted C^* -direct sum of $\{M_n\}_{n=1}^{\infty}$. If $x = (x_n) \in \mathscr{M}$, then adxis a compact derivation of \mathscr{M} and is the uniform limit of the finiterank derivations $\delta_n = ad(x_1, \dots, x_n, 0, 0, \dots)$. The following theorem, which determines the structure of compact derivations of C^* -algebras, shows that this seemingly very special example actually typifies the behavior of an arbitrary compact derivation.

Recall that a projection p of a C^* -algebra \mathcal{N} is said to be *finite-dimensional* if $p \mathcal{N} p$ is finite-dimensional, and has dimension n if $p \mathcal{N} p$ has dimension n.

THEOREM 2.2. Let \mathscr{A} be a C^{*}-algebra, $\delta: \mathscr{A} \to \mathscr{A}$ a compact derivation. Then there is an orthogonal sequence $\{x_n\}$ of minimal, finite-dimensional, central projections of \mathscr{A} and an element d of \mathscr{A} such that $\delta = add$ and $\sum_n x_n d$ converges uniformly to d.

Proof. Let π denote the reduced atomic representation of \mathscr{M} ([5], p. 35). π is constructed as follows: partition the class of irreducible representations of \mathscr{M} according to unitary equivalence, and from each equivalence class, choose a representation π_{α} , acting on a Hilbert space H_{α} . Then $\pi = \bigoplus_{\alpha} \pi_{\alpha}$, with π acting on $H = \bigoplus_{\alpha} H_{\alpha}$. Since π is a faithful *-representation of \mathscr{M} , we may hence assume with no loss of generality that \mathscr{M} acts atomically on a Hilbert space $H = \bigoplus_{\alpha} H_{\alpha}$.

Letting \mathscr{M}^- denote the closure of \mathscr{M} in the weak operator topology, we assert that δ extends to a compact derivation $\tilde{\delta}$ of \mathscr{M}^- . Identifying \mathscr{M} in the usual way with a subalgebra of \mathscr{M}^{**} , the enveloping von Neumann algebra of \mathscr{M} , we may extend the inclusion $\mathscr{M} \hookrightarrow \mathscr{M}^{**}$ to a representation π_w of \mathscr{M}^{**} onto \mathscr{M}^- which is $\sigma(\mathscr{M}^{**}, \mathscr{M}^*)$ -ultraweakly continuous ([6], p. 53). Let 1-z be the support projection of ker π_w . Then z is central in \mathscr{M}^{**} and $\mathscr{M}^{**}z$ is isomorphic to \mathscr{M}^- via the isomorphism $az \to \pi_w(a), a \in \mathscr{M}^{**}$. Now $\delta^{**}|_{a^{**}z}$ is a compact derivation of $\mathscr{M}^{**}z$. Thus, if we define $\tilde{\delta}: \mathscr{M}^- \to$ \mathscr{M}^- by

$$ilde{\delta}:\pi_w(az)\longrightarrow\pi_w(z\delta^{*\,*}(a)),\ a\in\mathscr{M}^{*\,*}$$
 ,

it follows that $\tilde{\delta}$ is a compact derivation of \mathcal{M}^- which extends δ .

Since \mathscr{A} acts atomically on $H = \bigoplus_{\alpha} H_{\alpha}$, by Corollary 4 of [2], $\mathscr{A}^{-} = \bigoplus_{\alpha} B(H_{\alpha})$. Let q_{α} = the orthogonal projection of H onto H_{α} . Since $\tilde{\delta}$ is ultraweakly continuous and q_{α} commutes with $\delta(\mathscr{A}) = \tilde{\delta}(\mathscr{A})$, q_{α} commutes with $\tilde{\delta}(\mathscr{A}^{-})$, so that if $\tilde{\delta}_{\alpha}$ denotes the restriction of $\tilde{\delta}$ to $B(H_{\alpha})$, then $\tilde{\delta} = \bigoplus_{\alpha} \tilde{\delta}_{\alpha}$.

Since $\tilde{\delta}$ is compact, its restriction $\tilde{\delta}_{\alpha}$ is a compact derivation

of $B(H_{\alpha})$. Furthermore, the compactness of $\tilde{\delta}$ implies that for each $\varepsilon > 0$, $\{\alpha: ||\tilde{\delta}_{\alpha}|| > \varepsilon\}$ is finite (see Lemma 3.2 in the next section). In particular, $\{\alpha: ||\tilde{\delta}_{\alpha}|| > 0\}$ is countable, say $\{\alpha_n\}_{n=1}^{\infty}$, and setting $\tilde{\delta}_n = \tilde{\delta}_{\alpha_n}$, we have $\lim_n ||\tilde{\delta}_n|| = 0$. Since $\tilde{\delta}_n \neq 0$, we conclude by Lemma 2.1 that H_{α_n} is finite-dimensional for each n.

We assert next that $\tilde{\delta}(\mathscr{N}^{-}) \subseteq \mathscr{N}$. This will follow from the identification of \mathscr{N}^{-} with $\mathscr{N}^{**}z$ via π_w as defined above, provided $\delta^{**}(\mathscr{N}^{**}) \subseteq \mathscr{N}$. But by the Kaplansky density theorem, the unit ball \mathscr{N}_1^{**} of \mathscr{N}^{**} is the $\sigma(\mathscr{N}^{**}, \mathscr{N}^{*})$ -closure of the unit ball \mathscr{N}_1 of \mathscr{N} , and so by [1], Theorem 6, p. 486, and the compactness of δ^* .

$$\begin{split} \delta^{**}(\mathscr{A}_1^{**}) &= \delta^{**}(\sigma(\mathscr{A}^{**}, \mathscr{A}^{*})\text{-closure of }\mathscr{A}_1) \\ &\subseteq \text{uniform closure of } \delta^{**}(\mathscr{A}_1) \\ &= \text{uniform closure of } \delta(\mathscr{A}_1) \end{split}$$

so that $\tilde{\delta}(\mathscr{M}^{-}) \subseteq \mathscr{M}$.

Let $q_n = q_{\alpha_n}$. We claim that $q_n \in \mathscr{A}$. This is true since $\mathscr{A} \cap B(H_{\alpha_n})$ is a nonzero ideal of $B(H_{\alpha_n})$ (it contains the range of $\tilde{\delta}_n \neq 0$, since $\tilde{\delta}(\mathscr{A}^-) \subseteq \mathscr{A}$), whence $B(H_{\alpha_n}) \subseteq \mathscr{A}$. Set $x_n = q_n$.

It follows that $\{x_n\}$ is an orthogonal sequence of minimal, finitedimensional, central projections in \mathscr{N} . Choose $d_n \in B(H_{\alpha_n}) = \mathscr{N}x_n$ such that $\tilde{\delta}_n = ad d_n$ and $||d_n|| \leq ||\tilde{\delta}_n||$. Since d_n is in $B(H_{\alpha_n})$, $\{d_n\}$ is an orthogonal sequence, and since $||\delta_n|| \to 0$, $\sum_n d_n$ converges uniformly to an element $d \in \mathscr{N}$. But then

$$egin{aligned} &\delta = ilde{\delta} \mid_a = igoplus_n \, ilde{\delta}_n \mid_a = igoplus ad \, d_n \mid_a \ &= ad igl(igoplus_n \, d_nigr)\mid_a = ad \, d \mid_a \, . \end{aligned}$$

COROLLARY 2.3. Every compact derivation of a C^* -algebra is the uniform limit of finite-rank derivations of that algebra.

COROLLARY 2.4. A C^* -algebra admits nonzero compact derivations if and only if it contains nonzero finite-dimensional central projections.

Motivated by the concept of strong amenability of C^* -algebras, in [7] a derivation δ of a unital C^* -algebra \mathscr{A} was called *strongly inner* if $\delta = adx$ for x in the uniformly closed convex hull of $\{\delta(u)u^*: u \text{ a unitary element of } \mathscr{A}\}$. Thus by Corollary 2.3 above and Corollary 2.5 of [7], we deduce

COROLLARY 2.5. Every compact derivation of a unital C^* -algebra is strongly inner.

3. Weakly compact derivations. In this section, the structure of weakly compact derivations of C^* -algebras is determined.

Let H be a Hilbert space, B(H) the algebra of bounded linear operators on H, and let \mathscr{K} denote the ideal of compact operators in B(H). The first theorem gives an analog of Ho's theorem for weakly compact derivations of B(H).

THEOREM 3.1. Let δ be a derivation of B(H). The following are equivalent:

(1) δ is weakly compact.

(2) The range of δ is contained in \mathcal{K} .

(3) $\delta = ad T \text{ with } T \in \mathscr{K} \text{ (and } ||T|| \leq ||\delta||).$

Proof. (1) \Rightarrow (2). Since δ is inner, $\delta(\mathscr{K}) \subseteq \mathscr{K}$, and $\mathscr{K}^{**} = B(H)$, whence $\delta = (\delta|_{\mathscr{K}})^{**}$. Now $\delta|_{\mathscr{K}}$ is weakly compact, so by Theorem 2, p. 482 of [1], $\delta = (\delta|_{\mathscr{K}})^{**}$ maps B(H) into \mathscr{K} .

 $(2) \Rightarrow (3)$. This is an immediate consequence of Lemma 3.2 of [4].

 $(3) \Rightarrow (1)$. By considering real and imaginary parts of T, we may assume that T is self-adjoint. Since T is compact, the spectral theorem allows us to approximate T uniformly by linear combinations of finite-rank projections, and so we may approximate $\delta = adT$ uniformly by linear combinations of derivations of the form ad p, p a finite-rank projection. By [1], Corollary 4, p. 483, we may hence assume that T is a finite-rank projection. But then $\delta = adT$ is a sum of derivations of the form ad p, p a rank-one projection, so we assume that T = p is a rank-one projection.

Let X denote the Banach space $H \bigoplus H$ endowed with the norm $||(x, y)|| = \max \{||x||, ||y||\}$. Simple matricial computations show the existence of a one-dimensional subspace S of pB(H) + B(H)p such that (pB(H) + B(H)p)/S is isometrically Banach space isomorphic to X, and is hence reflexive. It follows that pB(H) + B(H)p is reflexive. Since $\delta = ad p$ maps B(H) into pB(H) + B(H)p, we conclude by [1], Corollary 3, p. 483 that δ is weakly compact.

LEMMA 3.2. Let $\{H_{\alpha}\}$ be a family of Hilbert spaces, and let $\delta: \bigoplus_{\alpha} B(H_{\alpha}) \to \bigoplus_{\alpha} B(H_{\alpha})$ be a weakly compact derivation. Then for all $\varepsilon > 0$, $\{\alpha: ||\delta|_{B(H_{\alpha})}|| > \varepsilon\}$ is finite.

Proof. Suppose the lemma is false. Then there exists a sequence $\{\alpha_n\}_{n=2}^{\infty}$ of indices and $a = (a_{\alpha}) \in \bigoplus_{\alpha} B(H_{\alpha})$ such that $||\delta(a)_{\alpha_n}|| > 1$, for all n.

Since any compression of δ is weakly compact, we can assume that δ acts on $\bigoplus_n B(H_{\alpha_n})$. Let $\bigoplus_n B(H_{\alpha_n})$ denote the restricted direct sum

of $\{B(H_{\alpha_n})\}$. Then since $||\delta(a)_{\alpha_n}|| > 1$, for all *n*, there is a linear functional *f* such that $f(\delta(a)) = 1$ and *f* vanishes on $\bigoplus_n B(H_{\alpha_n})$.

Define $\{b_k\} \subseteq \bigoplus_n B(H_{\alpha_n})$ by

$$(b_k)_{lpha_n} = egin{cases} 0 ext{ ,} & ext{if } n < k ext{ ,} \ a_{lpha_n} ext{ ,} & ext{if } n \geq k ext{ .} \end{cases}$$

Then $b_k \to 0$ in the weak operator topology (WOT), and so $\delta(b_k) \to 0$ (WOT) (since δ is inner, it is WOT-continuous), whence by weak compactness of δ , $\delta(b_k) \to 0$ weakly. But $\delta(b_k) - \delta(a) \in \bigoplus_n B(H_{\alpha_n})$, for all k, and so by the choice of f, $f(\delta(b_k)) = f(\delta(a)) = 1$, for all k, a contradiction.

The next theorem determines the structure of weakly compact derivations.

THEOREM 3.3. Let $\delta: \mathscr{M} \to \mathscr{M}$ be a derivation of a C*-algebra \mathscr{M} . The following are equivalent:

(1) δ is weakly compact.

(2) There exists a sequence $\{I_n\}$ of orthogonal ideals of \mathscr{S} such that each I_n is isomorphic to the C^{*}-algebra \mathscr{K}_n of compact operators on a Hilbert space H_n , and an element $d \in \bigoplus_n I_n \subseteq \mathscr{S}$ with $\delta = add$.

Proof. $(1) \rightarrow (2)$. We use Theorem 3.1 and Lemma 3.2 to adopt the proof of Theorem 2.2 to the present situation. As before, we may assume that \mathscr{M} acts atomically on $H = \bigoplus_{\alpha} H_{\alpha}$. As in the proof of Theorem 2.2, we extend δ to a weakly compact derivation $\tilde{\delta}$ of \mathscr{M}^- and use Lemma 3.2 to deduce the existence of a countable set $\{\alpha_n\}$ of indices such that $\tilde{\delta}_{\alpha} \equiv 0$ except when $\alpha = \alpha_n$, $\tilde{\delta}_n = \tilde{\delta}_{\alpha_n}$ is a weakly compact derivation of $B(H_{\alpha_n})$, and $||\tilde{\delta}_n|| \rightarrow 0$. By the weak compactness of $\tilde{\delta}$ and [1], Theorem 2, p. 482, we also deduce as before that $\tilde{\delta}(\mathscr{M}^-) \subseteq \mathscr{M}$. By Theorem 3.1, $\tilde{\delta}_n$ has range in $\mathscr{K}_n = \text{compact}$ operators in $B(H_{\alpha_n})$ and $\tilde{\delta}_n = ad c_n$ for $c_n \in \mathscr{K}_n$ with $||c_n|| \leq ||\tilde{\delta}_n||$. Since $\mathscr{M} \cap \mathscr{K}_n$ is a nonzero ideal of $\mathscr{M}q_{\alpha_n} \supseteq \mathscr{K}_n$ (it contains the range of $\tilde{\delta}_n \neq 0$), $\mathscr{M} \cap \mathscr{K}_n$ is a nonzero ideal of \mathscr{K}_n , whence $\mathscr{K}_n \subseteq$ \mathscr{M} . Thus $I_n = \mathscr{K}_n$ and $d = \sum_n c_n$ satisfy the conditions of (2) for δ .

 $(2) \Rightarrow (1)$. Since $d = \sum_n d_n \in \widehat{\bigoplus}_n I_n$, $\delta = ad d$ is the uniform limit of the derivations $\delta_n = ad(\sum_{i=1}^n d_k)$, and so it suffices to show that each $ad d_k$ is weakly compact.

We suppress the k's and assume with no loss of generality that $d \ge 0$. Theorem 3.1 implies that every inner derivation of \mathscr{K} is weakly compact, and so $ad d|_{I}$ is weakly compact. It hence follows by induction and the formula

$$ad \, d^{n+1} = d^n a d \, d \, + \, (ad \, d^n) d$$

that $ad d^n|_I$ is weakly compact for all positive integers *n*. We conclude that $ad d^{1/2}|_I$ is weakly compact; but since

$$ad \ d(a) = ad \ d^{_{1/2}}(ad^{_{1/2}}) + ad \ d^{_{1/2}}(d^{_{1/2}}a)$$

and $d^{1/2}a$, $ad^{1/2} \in I$, for all $a \in \mathcal{A}$, it follows that ad d is weakly compact on \mathcal{A} .

COROLLARY 3.4. A C^* -algebra admits nonzero weakly compact derivations if and only if it contains a nonzero ideal isomorphic to the C^* -algebra of compact operators on a Hilbert space.

The next two corollaries determine the von Neumann algebras which admit nonzero compact or weakly compact derivations. We first preface them with the following remarks.

Let R be a von Neumann algebra, and let $R = R_I \bigoplus R_{II} \bigoplus R_{III}$ be the decomposition of R into its type I, II, and III parts. Since R_I is type I, there exists a family $\{p_{\alpha}\}$ of pairwise orthogonal central projections in R_I such that $\bigoplus_{\alpha} p_{\alpha} =$ identity of R_I and $p_{\alpha}R_I \cong$ $p_{\alpha}Z_I \otimes B(H_{\alpha}) \cong$ denotes isomorphism), where H_{α} is a Hilbert space and $Z_I =$ center of R_I ([6], §2.3). We set $R_{\alpha} = p_{\alpha}R_I(Z_{\alpha} = p_{\alpha}Z_I)$ and call $\{R_{\alpha}\}(\{Z_{\alpha}\})$ the discrete components of $R_I(Z_I)$.

COROLLARY 3.5. A von Neumann algebra R admits a nonzero weakly compact derivation if and only if a discrete component of the center of its type I part contains a one-dimensional projection.

Proof. (\Rightarrow). Let $\delta: R \to R$ be a nonzero weakly compact derivation. We show first that $\delta \equiv 0$ on R_{II} and R_{III} . Suppose $\delta \not\equiv 0$ on R_{II} . δ maps R_{II} into R_{II} , so $\delta|_{R_{II}}$ is a nonzero weakly compact derivation of R_{II} . Hence by Corollary 3.4, R_{II} contains an ideal \mathscr{I} isomorphic to the C*-algebra of compact operators on some Hilbert space H. If $\mathscr{I}^{-\sigma}$ denotes the ultraweak closure of \mathscr{I} , then $\mathscr{I}^{-\sigma}$ is an ultraweakly closed ideal of R_{II} such that $\mathscr{I}^{-\sigma} \cong \mathscr{I}^{**} \cong B(H)$, and so $\mathscr{I}^{-\sigma}$ is a type I direct summand of R_{II} , which is impossible. The same argument shows that $\delta \equiv 0$ on R_{III} .

We conclude that $\delta|_{R_I}$ is a nonzero weakly compact derivation of R_I , so there is no loss of generality by assuming that $R = Z \otimes B(H)$ for an abelian von Neumann algebra Z and a Hilbert space H. Applying Corollary 3.4 and reasoning as before, we find a projection $p \in Z$ such that $pZ \otimes B(H) \cong B(K)$ for some Hilbert space K. Thus $pZ \otimes B(H)$ is a factor, whence pZ is one-dimensional.

(\Leftarrow). If p is a one-dimensional projection of the discrete component Z_{α} corresponding to $Z_{\alpha} \otimes B(H_{\alpha})$ and T_{α} is a nonzero compact operator on H_{α} , it is immediate from Theorem 3.1 that $ad(p \otimes T_{\alpha})$ is a nonzero weakly compact derivation of R.

COROLLARY 3.6. A von Neumann algebra admits a nonzero compact derivation if and only if its type I part has a nonzero finite-dimensional discrete component.

References

1. N. Dunford and J. T. Schwartz, *Linear Operators*, *Part I*, Interscience, New York, 1963.

2. J. Glimm and R. V. Kadison, Unitary operators in C*-algebras, Pacific J. Math., 10 (1960), 547-556.

3. Y. Ho, A note on derivations, Bull. Inst. Math. Acad. Sinica, 5 (1977), 1-5.

4. B. E. Johnson and S. K. Parrot, Operators commuting with a von Neumann algebra modulo the compact operators, J. Functional Anal., 11 (1972), 39-61.

5. R. V. Kadison and J. R. Ringrose, Derivations and automorphisms of operator algebras, Commun. Math. Phys., 4 (1967), 32-63.

6. S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

7. S. Wright, Banach-module-valued derivations on C*-algebras, to appear in Illinois J. Math.

Received November 17, 1978. The first author was partially supported by NSF grant MCS 78-01870. The second author was partially supported by an Oakland University faculty research fellowship.

Oakland University Rochester, MI 48063