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Quillen's proof of the Serre conjecture introduced a new tool for
passing from local to global results on affine schemes. We use this
to prove the theorem below characterizing the image of the injection
i: Br{X) —• H2(Xct, Gm) when X = Spec A, is a regular scheme. A
result of M. Artin then allows us to conclude that Br(X) = H%Xet, Gm)
if X = Spec A is a smooth, affine scheme over a field. For such rings,
this proves the Auslander Goldman conjecture [2], Br{Λ) — f)Br(Ap),
peP(A), the set of height one primes of A.

We begin with following theorem.

THEOREM. Let X = Spec A be a regular scheme. If ce H2(Xet, Gm)
and cy = i([^y) in H2(Sipec(Amy)et, Gm) for all closed points y e X, then
c -

Proof. If / e A , let cf denote the restriction of c to

H2(Sj?ec(Af).t, GJ .

Let S = {f e A\cf = ί([Λ]) for some Azumaya algebra A over Af}.
We will show that S is an ideal. Then S = A since the hypothesis
on c prevents S from being contained in any maximal ideal of A.

Suppose f19 f2eS and / e Afx + Af2. Then Spec(A/) = Dfι U Dfi

where Df. = Spec(A//l). Hence we may assume Af = A and Spec(A)
is covered by Dfl U Df2. Let Λu Λ2 be Azumaya algebras over Afί, Af2

with i([ΛJ) — Cft a n ( i i([Λ]) = o/z. Since i is injective, [Λ/2] = [Λ/Ji
that is, there are locally free coherent Aflfz modules Pl9 P2 such that
Λlf2 (x) End(Px) ~ Λ/2 (x) End(P2). Since K\Af) -> K\Aflf2) is onto (A
is regular) [3] and we may assume the rank of Pt is large, there
are locally free coherent Af. modules Qt such that Qifi ~ P̂  [3,
Chapter IX, 4.1]. Replacing Λt by Λ®End(Qi), we may assume
that Alfi = Λ2fl. Using this patching isomorphism we produce an
algebra A with Λfι ~ A1} Λft = A2. Since H\Xet, Gm) -> H\DheU GJ is
a monomorphism, c =

COROLLARY 1. Let X = Spec (A) 6e α smooth k scheme where k
is a field. Then Br(X) = H\Xety Gm).

Proof. Since X is regular, H\Xet, Gm) is torsion [4]. If c e
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H2(Xet, Gm) has order n and n is relatively prime to the characteristic
of k, then the Kummer sequence

o >μ% >Gm >Gm >0

shows that c is in the image of H2(Xet, μu). Now the existence of
good neighborhoods [1] on X = X®kk,k = algebraic closure of k,
shows that elements of H2(Xet, μn) are locolly isotrivial, i.e., there is
a Zariski covering {Ut} of X and a finite, etale covering space F*—>
Uζ which splits elements of H\XeU μn). Consequently X has a Zariski
open covering {Ua} and finite, flat coverings πa:Wa-+Ua such that
πS(fi\ua) = 0. Hence by the criterion in [6], c\Ua is in the image of
Br(Ua) and so by the theorem c is in the image of Br(X). If c has
order pn, p = char k, then we know that F?(c) — 0 where Fx is the
Frobenius map. Since it defines a finite flat covering of X, the same
criterion shows that c is in the image of Br(X) (see [7] where this
argument is given in more detail.).

COROLLARY 2. Let A be an algebra of finite type over a field
k such that A (x) fc is regular, i.e., Spec A is smooth over k. Then

Br(A) = Π Br(A>), p e P(A) - {p/height p = 1} .

Proof. We will use induction on n = dim A. If n = 0, 1, or 2,
the result was proven in [2, 4]. Since A is a regular ring, Bτ(A) c Π
Br(Ap), peP(A). Hence the argument of the theorem shows that

S = {fe A/Br(Af) = n Br(Ap)f p e P(Af)}

is an ideal in A and so is either A or is contained in a maximal
ideal of A. Hence we may assume A is a local ring of dimension
greater than 2.

Let c e i l Br{Ap)9 p e P(A), and X = Spec A and U be the punctured
spectrum. Since Br(Ap) — JEP(Spec(A,,)βί, Gw), there is a cohomology
class Cιe n iP(Spec(A»)et, GJ £ iP(Spec(ϋΓU GJ, |>eP(A), with β l -
i(c) where i ί is the quotient field of A. Now the Mayer-Vietoris
sequence, which may be viewed as the Cech spectral sequence for
the covering {Ulf U2} of Ux U U2, and the induction hypothesis show
that there is a c' e H\ Uet, Gm) whose restriction to iϊ2(Spec(Aeί, Gm)
is i(c). Suppose c' is of order n where (nf charΛ) = 1. Then the
Kummer sequence shows that there is a cohomology class in H\ Uet9 μn)
whose image in H\Uet, GJ) is c\ But H\Xet, μn) - H\Uet, μn) by
relative cohomological purity [1, Expose XVI] and so there is a
cohomology class c" in H\Xet, Gm) whose restriction to U is c'. By
the first corollary c" is in the image of Br(X) as desired.

If n — pm, p — char(fc), the same argument will work if we can
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show that c' is in the image of H\XeU GJ). We will then be done
since c' = c[ + c[ where the order of c[ — pm and the order of c[ is
prime to p. The obstruction to c' being in the image of H\Xetf Gm)
lies in the local cohomology group HP(X9U Gw) where P is the closed
point of X. Moreover since Fx*(cf) = pmc' = 0 where Fx: X —> X is
the purely inseparable Galois covering defined by the Frobenius map,
the obstruction lies in the kernel of Ff: Hϊ(Xetf GJ -> HP(X.tf GJ.

We have an exact sequence of sheaves on Xet [7]

0 >Gm-^Fx*Gm >2TX >ΩX >0

where %'x and Ωx are free A-modules (A is smooth and local) whose
definition is unimportant. If C denotes the cokernel of j9 then
m(Xet, C) is trapped between Hι

P{X.u Ω\) and HP(X.U %**). Since
Ωx and %*x are coherent sheaves, their local cohomology in the
etale and Zariski topology coincide and hence vanish because
iϊ*ml(Spec(A),A) = 0 if A is regular and i < dim A. Since dim A > 2,
we conclude that

Fl: HP(X.t, GJ > HP(Xβt, Fx*Gm) = m(Xet, GJ

is injective and so c' is in the image of H2(Xet, Gm).

COROLLARY 3. Let π:X—>Ybe a proper, smooth morphίsm of
fibre dimension one where X is a smooth scheme over a field. Then
R2π*Gm = 0.

Proof. We may assume that Y is a strictly local fc-scheme, k a
field, and we must show that H\XeU Gm) — 0. Since π has fibre
dimension one and is proper, X is a union of two affine schemes
which are limits of smooth ^-schemes. Consequently H\Xety Gm) =
Br(X). But Br(π~\y)) = 0 by Tsen's theorem. Thus Artin approxi-
mation may be used as in [5] to lift a trivialization of an Azumaya
algebra on the fibre to a trivialization of the algebra on X.
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