A COHOMOLOGICAL INTERPRETATION OF BRAUER GROUPS OF RINGS

RAYMOND T. HOOBLER

Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

Quillen's proof of the Serre conjecture introduced a new tool for passing from local to global results on affine schemes. We use this to prove the theorem below characterizing the image of the injection $i: Br(X) \to H^2(X_{ct}, G_m)$ when $X = \operatorname{Spec} A$, is a regular scheme. A result of M. Artin then allows us to conclude that $Br(X) \cong H^2(X_{ct}, G_m)$ if $X = \operatorname{Spec} A$ is a smooth, affine scheme over a field. For such rings, this proves the Auslander Goldman conjecture [2], $Br(A) = \cap Br(A_v)$, $\mathfrak{p} \in P(A)$, the set of height one primes of A.

We begin with following theorem.

THEOREM. Let $X = \operatorname{Spec} A$ be a regular scheme. If $c \in H^2(X_{et}, G_m)$ and $c_y = i([\Lambda_y])$ in $H^2(\operatorname{Spec}(A_{m_y})_{et}, G_m)$ for all closed points $y \in X$, then $c = i([\Lambda])$.

Proof. If $f \in A$, let c_f denote the restriction of c to

 $H^2(\operatorname{Spec}(A_f)_{et}, G_m)$.

Let $S = \{f \in A | c_f = i([A]) \text{ for some Azumaya algebra } A \text{ over } A_f\}$. We will show that S is an ideal. Then S = A since the hypothesis on c prevents S from being contained in any maximal ideal of A.

Suppose $f_i, f_2 \in S$ and $f \in Af_1 + Af_2$. Then $\operatorname{Spec}(A_f) = D_{f_1} \cup D_{f_2}$ where $D_{f_i} = \operatorname{Spec}(A_{ff_1})$. Hence we may assume $A_f = A$ and $\operatorname{Spec}(A)$ is covered by $D_{f_1} \cup D_{f_2}$. Let Λ_i, Λ_2 be Azumaya algebras over A_{f_1}, A_{f_2} with $i([\Lambda_1]) = c_{f_1}$ and $i([\Lambda_2]) = c_{f_2}$. Since *i* is injective, $[\Lambda_{ff_2}] = [\Lambda_{2f_1}]$; that is, there are locally free coherent $A_{f_1f_2}$ modules P_1, P_2 such that $\Lambda_{1f_2} \otimes \operatorname{End}(P_1) \cong \Lambda_{2f_2} \otimes \operatorname{End}(P_2)$. Since $K^0(A_{f_i}) \to K^0(A_{f_1f_2})$ is onto (A is regular) [3] and we may assume the rank of P_i is large, there are locally free coherent A_{f_i} modules Q_i such that $Q_{if_i} \cong P_i$ [3, Chapter IX, 4.1]. Replacing Λ_i by $\Lambda_i \otimes \operatorname{End}(Q_i)$, we may assume that $\Lambda_{1f_2} \cong \Lambda_{2f_1}$. Using this patching isomorphism we produce an algebra Λ with $\Lambda_{f_1} \cong \Lambda_1, \Lambda_{f_2} \cong \Lambda_2$. Since $H^2(X_{et}, G_m) \to H^2(D_{f_iet}, G_m)$ is a monomorphism, $c = i([\Lambda])$.

COROLLARY 1. Let $X = \operatorname{Spec}(A)$ be a smooth k scheme where k is a field. Then $Br(X) \cong H^2(X_{et}, G_m)$.

Proof. Since X is regular, $H^2(X_{et}, G_m)$ is torsion [4]. If $c \in$

 $H^{2}(X_{et}, G_{m})$ has order *n* and *n* is relatively prime to the characteristic of *k*, then the Kummer sequence

$$o \longrightarrow \mu_n \longrightarrow G_m \longrightarrow G_m \longrightarrow 0$$

shows that c is in the image of $H^2(X_{et}, \mu_u)$. Now the existence of good neighborhoods [1] on $\overline{X} = X \bigotimes_k \overline{k}, \overline{k} =$ algebraic closure of k, shows that elements of $H^2(\overline{X}_{et}, \mu_n)$ are locally isotrivial, i.e., there is a Zariski covering $\{U_i\}$ of \overline{X} and a finite, etale covering space $V_i \rightarrow U_i$ which splits elements of $H^2(X_{et}, \mu_n)$. Consequently X has a Zariski open covering $\{U_\alpha\}$ and finite, flat coverings $\pi_\alpha: W_\alpha \rightarrow U_\alpha$ such that $\pi^*_\alpha(c|_{U_\alpha}) = 0$. Hence by the criterion in [6], $c|_{U_\alpha}$ is in the image of $Br(U_\alpha)$ and so by the theorem c is in the image of Br(X). If c has order p^n , $p = \operatorname{char} k$, then we know that $F_X^{n^*}(c) = 0$ where F_X is the Frobenius map. Since it defines a finite flat covering of X, the same criterion shows that c is in the image of Br(X) (see [7] where this argument is given in more detail.).

COROLLARY 2. Let A be an algebra of finite type over a field k such that $A \otimes \overline{k}$ is regular, i.e., Spec A is smooth over k. Then

$$Br(A) = \cap Br(A_{\mathfrak{p}}), \mathfrak{p} \in P(A) = \{\mathfrak{p}/height \mathfrak{p} = 1\}$$

Proof. We will use induction on $n = \dim A$. If n = 0, 1, or 2, the result was proven in [2, 4]. Since A is a regular ring, $Br(A) \subset \cap Br(A_n)$, $p \in P(A)$. Hence the argument of the theorem shows that

$$S = \{f \in A/Br(A_f) = \cap Br(A_{\mathfrak{p}}), \mathfrak{p} \in P(A_f)\}$$

is an ideal in A and so is either A or is contained in a maximal ideal of A. Hence we may assume A is a local ring of dimension greater than 2.

Let $c \in \cap Br(A_p)$, $p \in P(A)$, and $X = \operatorname{Spec} A$ and U be the punctured spectrum. Since $Br(A_p) = H^2(\operatorname{Spec}(A_p)_{et}, G_m)$, there is a cohomology class $c_1 \in \cap H^2(\operatorname{Spec}(A_p)_{et}, G_m) \subseteq H^2(\operatorname{Spec}(K)_{et}, G_m)$, $p \in P(A)$, with $c_1 = i(c)$ where K is the quotient field of A. Now the Mayer-Vietoris sequence, which may be viewed as the Cech spectral sequence for the covering $\{U_1, U_2\}$ of $U_1 \cup U_2$, and the induction hypothesis show that there is a $c' \in H^2(U_{et}, G_m)$ whose restriction to $H^2(\operatorname{Spec}(A_{et}, G_m))$ is i(c). Suppose c' is of order n where $(n, \operatorname{char} k) = 1$. Then the Kummer sequence shows that there is a cohomology class in $H^2(U_{et}, \mu_n)$ by relative cohomological purity [1, Expose XVI] and so there is a cohomology class c'' in $H^2(X_{et}, G_m)$ whose restriction to U is c'. By the first corollary c'' is in the image of $\operatorname{Br}(X)$ as desired.

If $n = p^{m}$, p = char(k), the same argument will work if we can

show that c' is in the image of $H^2(X_{et}, G_m)$. We will then be done since $c' = c'_1 + c'_2$ where the order of $c'_1 = p^m$ and the order of c'_2 is prime to p. The obstruction to c' being in the image of $H^2(X_{et}, G_m)$ lies in the local cohomology group $H^3_P(X_{et}, G_m)$ where P is the closed point of X. Moreover since $F^m_{X^*}(c') = p^m c' = 0$ where $F_X \colon X \to X$ is the purely inseparable Galois covering defined by the Frobenius map, the obstruction lies in the kernel of $F^{m^*}_X \colon H^3_P(X_{et}, G_m) \to H^3_P(X_{et}, G_m)$.

We have an exact sequence of sheaves on X_{et} [7]

$$0 \longrightarrow G_m \xrightarrow{j} F_{X^*}G_m \longrightarrow \mathscr{K}^1_X \longrightarrow \mathscr{Q}^1_X \longrightarrow 0$$

where \mathscr{X}_{X}^{1} and \mathscr{Q}_{X}^{1} are free A-modules (A is smooth and local) whose definition is unimportant. If C denotes the cokernel of j, then $H_{P}^{2}(X_{et}, C)$ is trapped between $H_{P}^{1}(X_{et}, \mathscr{Q}_{X}^{1})$ and $H_{P}^{2}(X_{et}, \mathscr{X}_{X}^{1})$. Since \mathscr{Q}_{X}^{1} and \mathscr{X}_{X}^{1} are coherent sheaves, their local cohomology in the etale and Zariski topology coincide and hence vanish because $H_{(m)}^{i}(\operatorname{Spec}(A), A) = 0$ if A is regular and $i < \dim A$. Since $\dim A > 2$, we conclude that

$$F_{\lambda}^{*}: H_{P}^{\mathfrak{z}}(X_{et}, G_{m}) \longrightarrow H_{P}^{\mathfrak{z}}(X_{et}, F_{X^{*}}G_{m}) = H_{P}^{\mathfrak{z}}(X_{et}, G_{m})$$

is injective and so c' is in the image of $H^2(X_{et}, G_m)$.

COROLLARY 3. Let $\pi: X \to Y$ be a proper, smooth morphism of fibre dimension one where X is a smooth scheme over a field. Then $R^2\pi_*G_m = 0$.

Proof. We may assume that Y is a strictly local k-scheme, k a field, and we must show that $H^2(X_{et}, G_m) = 0$. Since π has fibre dimension one and is proper, X is a union of two affine schemes which are limits of smooth k-schemes. Consequently $H^2(X_{et}, G_m) = Br(X)$. But $Br(\pi^{-1}(y)) = 0$ by Tsen's theorem. Thus Artin approximation may be used as in [5] to lift a trivialization of an Azumaya algebra on the fibre to a trivialization of the algebra on X.

References

- 1. M. Artin and A. Grothendieck, *Theorie des Topos et Cohomologie Etale des Schemas*, III (S. G. A. A.), Lecture Notes in Mathematics, **305** (1973), Springer Verlag, 64-78.
- 2. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Transactions Amer. Math. Soc., 97 (1960), 367-409.
- 3. H. Bass, Algebraic K-Theory, Mathematics Lecture Notes Series (1968), W. A. Benjamin, New York.

4. A. Grothendieck, Le Groupe de Brauer II, Dix Exposes sur la Cohomologie des Schemas, North Holland, Amsterdam, (1969), 66-87.

^{5.} _____, Le Groupe de Brauer III, Dix Exposes sur la Cohomologie des Schemas, North Holland, Amsterdam, 1969.

6. R. Hoobler, Brauer groups of Abelian schemes, Annales Scientifique de l'E.N.S. (4), 5 (1972), 45-70.

7. _____, Cohomology of purely inseparable Galois coverings, Journal fur die Reine und angewandte Mathematik, **266** (1974), 183-199.

Received March 21, 1979. This work was partially supported by NSF Grant No. MSC 76-06768 and a RFCUNY FRAP Award No. 11670.

CITY COLLEGE CUNY New York, NY 10031