
PACIFIC JOURNAL OF MATHEMATICS
Vol. 86, No. 2, 1980

ON THE THEOREM OF HELLEY CONCERNING
FINITE DIMENSIONAL SUBSPACES

OF A DUAL SPACE

JAMES SHIREY

Let C and S denote Banach spaces for which C c S*.
Then (S,C) is said to have property [P] if f or any s** e S**
there is an seS such that s**(c) — c(s) for every ceC.
There is then a fixed M > 0 so that if ε > 0, s can always
be chosen so that | |β|| ^ M||s**|| + e. If Af = 1, then (S,C)
is a 1-Helley pair.

A classical theorem of E. Helley states that (S, C) is a
1-Helley pair whenever C is finite dimensional. It is shown
that such is the case whenever C is reflexive. As a partial
converse, if (S, C) has property [P] and if C is weak* closed,
then C is reflexive.

It is also shown that if X and Y are closed subspaces
of a Banach space, and if X-\- Y is closed, then there is
M> 0 so that for each zeX + Y, there are xeX and yeY
for which z = a? + y and | |# | |

Introduction* Let C and S denote Banach spaces for which
CaS*. The pair (S, C) is said to have the property [P] if for any
s**eS** there is an seS such that s**(e) = c(s) for every eeC.
That is, the canonical map S —> C* is sur jective. Then the canonical
map iS/Cj_ —> C* is an isomorphism and it follows that there is some
fixed M> 0 such that for any ε > 0, the seS above may be chosen
to satisfy | | s | | ^ Λf||s**|| + ε. If M is the smallest constant for
which this is true, then (S, C) is said to be an MΉelley pair. This
terminology is suggested by the classical theorem of E. Helley (cf.
[3], p. 103) to the effect that (S, C) is a 1-Helley pair whenever C
is a finite dimensional subspace of S*. It is shown in Theorem 1
below that such is the case whenever C is reflexive. As a partial
converse, if (S, C) has property [P], then C is reflexive provided
that C is also weak* closed. If C is not weak* closed, then (S, G)
is merely an lί-Helley pair for some M.

As a consequence of Theorem 2, (S, C) is an ikf-Helley pair for
some M if and only if S + CL — S**. There is then a constant K
such that for any s**eS**, there is an seS and yeGL for which

s** = g + 2/, | |β | | ^ #11***11, and the infimum of all such K is 1/M.
lί S + C1 is only a closed subspace of S**, then the norm on S/Cλ

induced by C is compatible with the usual equivalence class norm.
In either case, the closedness of S + C1 is equivalent to a

bounded decomposition property formalized as an "ikf-decomposition"
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below. This property is exemplified in the well-known theorem to
the effect that if W is a Banach space and if X and Y are closed
subspaces for which X + Y = W and X Π Y = {0}, then there is an
M such that for any weW, there are unique xeX and y eY for
which w = x + y and | |g| | <; Λf||w||. When there is no hypothesis
on Xf)Y, the uniqueness of x and y is lost, and the classical proof
of this theorem seems to break down irreparably. It is shown in
Theorem 4 that the existence of an M for which | |g| | <i;Λf||w|| is
retained.

Definitions and notation* Let A, B, and C denote Banach
spaces for which CdA and .BeA*.

(B, C) is an M-Helley pair if (i) for any α* e A* and for every
ε > 0 there is some beB such that a*(c) = b(c) for every ceC, (ii)
||61| ^ Λf||α*|| + ε and (iii) Mis the smallest constant for which this
is true.

If S is a Banach space, A = S*, B = S and the conditions (i)
through (iii) obtain, then (S, C) is an M-Helley pair where S is
identified with its canonical image in S**.

(B,G) is an M-semί-normed pair if for any βeB/B Π C1,
sup{δ(c): eC, \\c\\ = 1 and beβ} ^ M\\β\\ and ikf is the largest con-
stant for which this is true. Loosely stated, this means that the
norm on B/B Π C1 induced by C is equivalent to the usual equivalence
class norm.

Let X and Y denote closed subspaces of a Banach space Z. Then
[X, Y] is an M-decompositίon in Z if there is a constant K such
that for any zeX + Y there is an xeX and a yeY for which
z — x + y and | |g| | ^ JKΊ|S||, and M is the infimum of all such K.

Let X and F denote Banach spaces for which I c 7 * , and
suppose that X is closed in the weak* topology. Then Xw* denotes
the subspace of X* consisting of those linear functionals on X which
are continuous in the relative weak* topology.

Let X and Y denote Banach spaces and let T: X —» Y denote a
norm decreasing linear map. T is an M-isomorphism if M is the
largest constant for which Λf||α?|| ^ || Tx\\ <; II#11 holds for every
xeX.

All other notation, in particular the use of _]_, is consistent with
that of [1].

Main results*

THEOREM 1. Let S and C denote Banach spaces for which
C c S * .

(a) If C is reflexive, then (S, C) is a 1-Helley pair.
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(b) Suppose that for any s**6S** there is an s e S for which
s**(c) = c(s) for all ceC (property [P] above).

If C is weak* closed, then C is reflexive and (S, C) is a 1-Helley
pair. Otherwise, (S, C) is an M-Helley pair for some M.

THEOREM 2. Let A, B and C denote Banach spaces for which
C d A and S c A * . The following statements are equivalent.

(a) The canonical map B/B f] C1 —> C* is an M-isomorphic
embedding (resp. an M-isomorphism).

(b) (B, C) is an M-semi-normed (resp. a 1/M-Helley) pair.
(c) [B, C1] is a ijM-decomposition in (resp. of) A*.

COROLLARY 3. The following statements are equivalent.
(a) The canonical map B—>C* has closed range (resp. is onto).
(b) For some M, (B, C) is an M-semi-normed pair (resp. a

1/M-Helley pair).
(c) B + CL is closed in A* (resp. B + C1 = A*).

THEOREM 4. Let X and Y denote closed subspaces of a Banach
space Z.

(a) X + Y is closed if and only if [X, Y] is an M-decomposi-
tion in Z for some M.

(b) If X + Y is not closed, then there exists some w e cl (X + Y)
such that if {xn} c X, {yj c Y and Lim (xn + yn) = w, then Lim \\xn\\ =
Lim| |2/Λ|| = oo.

Proofs of main results•

LEMMA 1. Let S and C denote Banach spaces for which C c S * .
If C is reflexive, the C is closed in the weak* topology.

Proof. Let U denote any strongly closed, convex and bounded
subset of C. Since C is reflexive, U is σ(C*9 C) compact. An appli-
cation of the Hahn-Banach theorem shows that U is also σ(S**, S*)
compact. Then U is compact in the coarser σ(S, S*) topology. Thus,
every such U is weak* closed and it follows (cf. p. 141 of [4]) that
C is weak* closed.

Proof of Theorem 1.
(a) By [1], p. 25, Lemma 1, (S/Cλ)* is canonically isometric to

Cί, and since Lemma 1 above implies that C = Ci, it follows that
(S/CJ** is canonically isometrically isometric to C*. Since C is
reflexive, so is S/Cx, and it follows that S/C1 is canonically isometric
to C*. It is easily shown that this equivalent to the statement
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that (S, G) is a 1-Helley pair.
(b) Let V denote the unit ball of C Since V is strongly closed

and convex, V is weak1* closed relative to C. If C is weak* closed,
then V is weak* compact.

Choose yeC*. There is an s** e S * * for which s**(e) = y{c) for
all ceC. From the hypothesis there is then an s e S for which
y(c) = c(s) for all c e C. From this and the weak* compactness of
V, it follows that y attains its maximum value on V. Since this
holds for every yeC*, it follows from the well-known theorem of
R. C. James [2] that C is reflexive.

Without the assumption that C is weak* closed, it is still evident
from the hypothesis that the canonical map S —> C* is surjective.
The canonical map S/Cλ —> C* is then an M-isomorphism for some
M, and this is easily seen to imply that (S, C) is an Λf-Helley pair
(see Theorem 2).

LEMMA 2. Let A, B, and C denote Banach spaces for which
CaA and 5 c 4 * . The following statements are equivalent.

(a) The canonical mapping B/B Γ\ CL —> C* is a 1/M-isomorphic
embedding (resp. a 1/M-isomorphism).

(b) [5, C1] is an M-decomposition in A* (resp. of A*).
(c) The projection π of B + C 1 / ^ Π C 1 (m£o B/B Π C 1

CVS Π C 1 is 0/ worm M (resp. α^d B + C1 = A*).

1

Proof. The proof is an immediate consequence of the following
three statements. Proof of the parenthesized portions is omitted.

( I ) If B/B Π C1 —• C* is a 1/ikf-isomorphic embedding, then
[J5, C1] is a iί-decomposition in A* for some K ^ M.

( I I ) If [5, Cx] is a iΓ-decomposition in A*, then | |;r | | £ K.
(III) B/Bf)CL-*C* is a l/||τr||-isomorphic embedding.

Proof of (I). Let w = b + g where 6 6 B and g eC1, let /3 denote
the equivalence class of 6, let 2/ denote the linear map on C induced
by w and choose Mo > M. By hypothesis, M^1! 1/311 < II2/II, and it is
obvious that ||τ/|| < | |w| | . There is then an x in β such that ||&|| ^
MQIIw||, and it is clear that w — xeCL. Since this holds for every
Mo > M, it follows that [B, C] is a if-decomposition in A* for some

Proof of (II). Choose ξeB + CL/B Π C 1 and weξ. By hypothesis,
there are xeB and yeC1 for which w = α? + /̂ and if Ko > K, for
which ll&ll ^ lζ>l|ΐ0||. If [x] denotes the class of x, it then follows
that | |[OJ]|| ^Zol l ί l l . Since this holds for all Ko> K, we conclude
that | | π | | < K.
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Proof of (III). Let T denote the indicated map, choose ξs
C1 with Hfll = 1, choose xeξ, and let x0 denote the canonical

image of x in C*. Since A*/CL is canonically isometric to C* (cf.
[1], p. 26, Lemma 2), poll = inί{\\x - y\\:yeCλ}. The left side of
this equation has the same value for any xeξ and it follows that

\\Tξ\\ = wi{\\x - vU .xebveC1}

Therefore,

mί{\\Tζ\\:ζeB/BnC\\\ξ\\ =

It is easily shown that the right side of the above equation is
1/||TΓ||, and this completes the proof.

Proof of Theorem 2. The equivalence of (a) and (c) is a con-
sequence of Lemma 2, and the equivalence of the non-parenthesized
portions of (a) and (b) is a direct consequence of the definitions. It
only remains to show that (B, C) is a 1/M-Helley pair if and only
if the canonical map T: B/B Π C1 -> C* is an ikf-isomorphism. This
is a direct consequence of the following statements.

( i ) If (B, C) is a 1/ikf-Helley pair, then T is a ϋΓ-isomorphism
for some K^ M.

(ii) If T is a iί-isomorphism, then (B, C) is a Zo-Helley pair
for some Ko < 1/K.

Proof of (i). Choose yeC*, let (-)/C denote the canonical map
of A* onto C*t and let ε > 0. From the canonical isometry of A*/Cx

with C* (loc. cit.), it follows that there is an α* e A* for which

a*jC = y and || α* || £ \\y\\ + Me/2. By hypothesis, there is b e B for
which b/C=a*/C and | |δ | | ̂  Λf-1||α*H+6/2. Hence, | |6| | ^M^WvW+e.
Let β denote the class of b in B/B Γ) C1. Then Tβ = #, from which
we conclude that T is surjective, and the last inequality implies
that M\\β\\£\\Tβ\\.

Proof of (ii). Choose α*eA*. From the hypothesis, there is
some βeB/BπC1 for which Tβ = α*/Cand \\β\\ ^ JKΓ"1]^*| |. Then,
for any ε > 0, there is beβ for which ||61| ̂  if^Hα*|| + ε and
b/C = α*/C The desired conclusion follows from this.

Proof of Corollary 3. Parts (a) and (b) of Corollary 3 are respec-
tively equivalent to (a) and (b) of Theorem 2 where the value of M
is unspecified. To obtain the remaining equivalence, note that by
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Lemma 2, [J3, C1] is a 1/Jkf-decomposition in A* for some M if and
only if B/B Π CL and Cx/J5 Π C1 are complementary subspaces of
B + C1/!? Π C1, and this is the case if and only if B + C1 is a com-
plete (hence, closed) subspace of A*.

LEMMA 3. Let W and S denote Banach spaces for which S c W*.
If S is weak* closed, then Sw* is canonically isometric to W/S19

and Sw* is thereby a norm closed subspace of W*.

Proof. Since W/SL is canonically isometric to Si (loc. cit.), and
since S{ = S by hypothesis, it follows that (W/SJ** is canonically
isometric to S. The composition of this isometry with the canonical
map W/SL-*(W/SJ** is the canonical map T: W/SL-+W*, and it
follows that T is isometric onto its range. Since the weak* topology
in W* is locally convex, one may apply the Hahn-Banach theorem
(cf. [4], p. 108, Theorem 2) to conclude that the range of T is Sw\

LEMMA 4. Let X and Y denote closed subspaces of a Banach
space Z. The following statements are equivalent.

(1) The canonical mapping I / I f l Y-> (F 1 )* is a 1/M-isomor-
phic embedding (resp. 1/M-isomorphism).

(2) [X, Y] is an M-decomposition in Z (resp. of Z).
( 3 ) The projection ofX+ Y/Xf] Y onto X/Xf] Y along Y/Xf] Y

is of norm M (resp. and X + Y = Z).

Proof. The statements (I), (II) and (III) that were used to prove
Lemma 2 may be slightly modified and used to prove this lemma.
The proofs of the corresponding statements are the same with the
exception of statement (III). To prove the analogue of statement
(III), note that (Z/Y)* is canonically isometric to YL. Hence,
(Z/Y)** is canonically isometric to (F 1)*, and so the canonical map
of Z/Y into (F 1)* is norm preserving.

Choose ξeX/XΓ\Y with \\ξ\\ = 1, choose any xeζ and let x0

denote the canonical image of x in (Y^)*. From the above, ||go|| =
inf {\\x — y\\: ye Y}, and the rest of the proof follows the outline
of Lemma 2.

Proof of Theorem 4. The proof of (a) is essentially the same
as the proof of Corollary 3 with Lemma 4 playing the role of Lemma
2. As for (b), we prove the contrapositive. Let W = cl {X + Y),
let T: W-*{YL)W* denote the canonical surjection, and define

BN = {ye(YL)w*: \\y\\ ^ 1, and there is {xn}aX such that

Lim | | Txn - y\\ = 0 and \\xn\\ <: N for all n) .
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If V denotes the unit ball of (Γ1)**, then it is clear that BN is
a closed subset of V for each N. If w e W as described in (b) of
Theorem 4 does not exist, then V}BN — V. Lemma 3 implies that
(Yλ)w* is a Banach space and an application of the Baire category-
theorem then shows that BN contains a neighborhood in (Yλ)w* for
some JV. It follows that T is an open map. Then I / I n Γ-> (YL)W*
is an isomorphic embedding and by an application of Lemma 4, [X, Y]
is an ikf-decomposition in W for some M. Then by (a) of this
theorem, X + Y is closed.
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