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SUPPORT POINT FUNCTIONS AND THE
LOEWNER VARIATION

RICHARD PELL

l Introduction* Let U — {z: \z\ < 1} and £f the set of func-
tions /, f{z) — z + a2z

2 + , that are analytic and 1:1 in U. Denote
by σ the collection of support point functions of S^, i.e., functions
fe.9* that satisfy

Re L(f) = max Re L(g)

for some nonconstant continuous (in the topology of local uniform
convergence) linear functional on S^. Finally, denote by E(S^) the
set of extreme point functions of £f.

It is well known that if feσ{jE(^), then f(U) is the comple-
ment of a single Jordan arc extending from some finite point to oo
and along which \w\ is strictly increasing. Indeed, this has been
demonstrated for the class E{£f) by L. Brickman [1] and for the
class σ by A. Pίluger [5] (see also L. Brickman and D. Wilken [2]).
Consequently, if feσ U E(S^), there is a Loewner chain

f(z, t) - ef z
L

with f(z, 0) = f(z) and f(z, ty) subordinate to f(z, t2) if 0 ^ ί 1 < ί 2 < 0 0

(see [6, p. 157]). Note that e-tf(z9t)e^. Let w(z, t) = e~\z +
62(ί)2;2 + 63(i)^

3 + •) be analytic for t e {<: 0 ^ t < oo} and s e U, 1:1
in Z7 with \w(z, t)\ < 1, and such that /(#) = f(w(z, t), t) for each
te{t:0^t<oo} and all 2;eί7. Observe that we define w(z,t) =
<?w{z, t) = z+ S2(t)z2 + e S^ a n d t h a t | w(z, t)\<e* f o r z e U.

In §2 it is shown that if feE(<9*), then e~tf{z9t)^E{£^) and
also that if feσ, then e"*/(«, ί) e σ. This latter result is a generali-
zation of a theorem due to S. Friedland and M. Schiffer [3, p. 143].
Also, in the process of generalizing this theorem a fairly easy
method is established for finding for each t, 0 ^ t < °°, a continuous
linear functional which e~ιf(z, t) maximizes.

2* Preservation of the sets σ and E(S^) under the Loewner
variation* It is easy to show that if feE(S^)9 then e~*f(z,t)e
E(S^) also. Indeed, if this were not the case, then there would
exist distinct functions fίf f2 e £f and Xlf λ2 > 0 with \ + λ2 = 1 for
which Xίfι(z) + λ2/2(£) — e~*f(z, t). This would imply that etX1f1{w{z9

ty + e'XJάwiz, t)) = f(w(z, t), «)=/(«)• Since e'fάwiz, t)) and β'/2(w(z,t))
are in S^, the fact that f(z) e E(S^) is contradicted and therefore
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^ t < oo).

The following theorem contains the analogous result for the
class σ.

T H E O R E M . Let f e σ a ^ . Then e~ιf(zf t)eσ for all t such that

0 ^ t < oo.

Proof. Since / e σ, there exists a nonconstant continuous linear
functional, L, for which

Re L(/) = max Re L(g) .

At this point we need a representation theorem due to 0.
Toeplitz [7].

THEOREM (Toeplitz). Let f(z) = z + a2z
2 + eS*. Then L(f)

is a continuous linear functional on £f if and only if there exists
a sequence {&„} with lim sup^^ | bn \

1/n < 1 such that L(f) = Σ " = i α Λ

Now, f(z) = f(w(z, t), t) where e*w(z, t) = w(z, t) = z+S2(t)z2 + 6

£f and | w(z, t)\<et for zeU. Since

f(w(z, t), t) = e\w{z, t) + a,{t)w\z, « ) + • • •

= w(«, ί) + alt)e-ιw\z, t) +

+ an{t)e-{n-1]twn(z, t) + ••-,

and if L(/) = ΣSU α &̂̂ » t h e n it follows that

Σ αΛ6. = Σ [£ί1} + $
w=l n = ί

+

where b^k) is the ^th coefficient of wk(z, t) = [2; + 62(ί)2
2 + ]fc.

However, since ?ί)fe(2;, t) is analytic in C7 and bounded by ekt, it
follows from Cauchy's formula that

f
3ι«ι=

wk(e, t)dε w\eiθ, t)

2ττ Jo

for all n = 1, 2, . Also, since e"*/(», ί) = z + α2(£)z2 + e S^9

it follows from Littlewood's theorem [4] that | ak(t) \ ̂  ke. There-
fore,
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Σ \ak(t)e-ίk-Mbik)K\ ^ Σ \ke-e-*-w-eht-K
fc=l fc=l

= e(ί+D

Notice also that l i m s u p ^ \eιt+1) bn n(n + l)/2|1/% = l i m s u p ^ \K\1/n<
1. Consequently, the double summation, Σ~=i [Σfc=i a&(i)e~(fc"1)t6?l

A:)6J,
converges absolutely and therefore the order of summation can be
reversed and one obtains

= £ [ £ ah(t)e-»-»*6?bJ\
4=1L »=* J

Now, for feSs define Lt(/) = Σ M ( Σ ^ ^ ^ " ( M l ί K From the
theorem of Toeplitz it follows that Lt will be a continuous linear
functional on S^ provided that

„ 1/*

lim sup 0-{k-ί)t

Since lim sup^^ \bk\
υk = p < 1, there exists an N and an r such that

ρ<r<l and |S&»|̂ r* for all k^N. Therefore, | Σϊ=* ^ M " ' * " " * ! 1 " ^
(e«.e-(*-«*2,~=jfc r»)i'* = β*'*r/(l - r)1'* for all k^N. Since

(1 - T)V

it follows that lim s u p ^ | Σϊ=* δ ^ ί v Γ ^ T * ^ r < 1.
Since Re !/(/) = Re (Σϊ=i ^»6J is a maximum for the class S^,

it follows easily that B.eLt(e"*f(zf <)) is also a maximum for the class
S*. In order to see this one needs only to observe that if / and
/ are any two functions in S? related by a relation of the form
f(z) = e*f(w(z, t)), then L(f) = Lt(f). This completes the proof of
the theorem.

REMARKS. Since f(z) = f(w(z, t)91) for some w(z, t), one can
express Lt(e-(f(zf t)) = Σ?=i (Σ?=fe ̂ * }δ β"(*"1}')α*(ί). in terms of the
coefficients of the functions f(z) and e"*f(z, t). This can easily be
done provided that L(f) (L(f) — Σ?=i aJ>n) does not contain too
many terms. Then for each t, 0 < t < oo, the corresponding Schiffer
differential equation which e~ιf(z, t) must satisfy can then be com-
puted with little difficulty. Unfortunately, extracting useful infor-
mation from these new equations is not an easy task.
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Suppose, however, that it is known that ReL(/) is a maximum
for the class £f when / is one of the Koebe functions, f(z) = z\
(1 - eiθz)\0 ^ Θ < 2τr). Then since e'*f(zf t) = f(z) in this case, it
follows that Re Lt(f) is a maximum for the class Sf for all t (0 <^
ί < cx>). From this one can establish a one parameter family of
new coefficient inequalities for the class £f. S. Friedland and M.
Schiffer [3, p. 149] have done this for the case where L(f) = α4.
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