GOOD CHAINS WITH BAD CONTRACTIONS

Raymond C. Heitmann and Stephen McAdam

Abstract

Let $R \subset T$ be commutative rings with T integral over R. In the study of chains of prime ideals, it is often of interest to know about primes $q \subset q^{\prime}$ of T such that height $\left(q^{\prime} / q\right)<$ height $\left(q^{\prime} \cap R / q \cap R\right)$. In this paper we will consider a chain of primes $q_{1} \subset q_{2} \subset \cdots \subset q_{m}$ in T which is well behaved in that height $\left(q_{m} / q_{1}\right)=\sum_{i=2}^{m}$ height $\left(q_{i} / q_{i-1}\right)$, but which suffers the pathology that height $\left(q_{i} \cap R / q_{i-1} \cap R\right)>$ height $\left(q_{i} / q_{i-1}\right)$ for each $i=2, \cdots, m$. Our goal is to find a bound on how large m can be.

Our main result is that if T is generated as an R-module by n elements, then there is a bound b_{n} such that $m \leqq b_{n}$; moreover $b_{2}=2$ and in general $b_{n} \leqq b_{n-1}^{n-2}+b_{n-1}^{n-3}+$ $\cdots+b_{n-1}+2$. Let us quickly add that we do not claim that this formula gives the best bound possible. (We rather suspect not.) If $c=b_{n-1}+2$, we also have, as part of our main result, that $m \leqq$ height $\left(q_{c} / q_{1}\right)+b_{n-1}$. (If $m>b_{n-1}$, so that q_{c} exists.) Finally, if we have the added assumption that height $\left(q_{i} / q_{i-1}\right) \leqq r$ for $i=2, \cdots, m$, then $m \leqq 2(r+1)^{n-2}$.

The bulk of our effort is needed to discuss the case that $T=$ $R[u]$ is a simple integral extension of R. This is done in $\S 3$. That section also introduces a new "going down" technique of some interest. Section 2 treats a highly special situation in which we obtain a much sharper bound. This case has some interest in its own right and also starts an induction needed in §3. The fourth section gives the main result mentioned above. Lastly, in §5, we present some examples. These illustrate the point that there is no bound in general, even in the case of Noetherian domains, on m which is independent of the size of the integral extension $R \subset T$. Specifically, we show that $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Thus our bounds, while presumably not sharp, have the proper form.

Definition. The chain of primes $P_{1} \subset P_{2} \subset \cdots \subset P_{m}$ is taut if height $\left(P_{m} / P_{1}\right)=\sum_{i=2}^{m}$ height $\left(P_{i} / P_{i-1}\right)$.

Notation. The following notation will be standard throughout except when specifically indicated otherwise. $R \subset T$ will be an integral extension of domains, $q_{1} \subset \cdots \subset q_{m}$ will be a taut chain of primes in T lying over $p_{1} \subset \cdots \subset p_{m}$ in R. $\operatorname{Height}\left(p_{m} / p_{1}\right)$ will be finite and $\operatorname{height}\left(p_{i} / p_{i-1}\right)>\operatorname{height}\left(q_{i} / q_{i-1}\right), i=2, \cdots, m$. Finally, x will be an indeterminate.
2. Split simple extensions. In this section, as well as the next, we will assume, in addition to the standard assumptions mentioned in the introduction, that T is a simple integral extension of R. In order to be more specific, we make a definition.

Definition. Let the domain $T=R[u]$ be a simple integral extension of R with u a root of a monic polynomial $f(x) \in R[x]$. We will say that T is a simple integral extension of R via $f(x)$. Throughout $\S \S 2$ and 3 , without further mention, we will assume that $T=R[u]$ is a simple integral extension of R via $f(x)$ with $f(x)$ having degree n and $f(u)=0$. Furthermore, in the present section we add one more assumption, namely that $f(x)$ is split.

Definition. The polynomial $f(x) \in R[x]$ is said to be split if $R[u]=R\left[u^{\prime}\right]$ for any two roots u and u^{\prime} of $f(x)$.

Notice that if $f(x)=x^{2}+a x+b=(x-u)\left(x-u^{\prime}\right) \in R[x]$, then $-u-u^{\prime}=a \in R$ so that $R[u]=R\left[u^{\prime}\right]$. Thus if $n=2, f(x)$ is split. We will show in this section that when $f(x)$ is split, m is bounded by $\operatorname{deg} f(x)$. Our first lemma is well known. We state it explicitely because it is frequently used in what follows.

Lemma 2.1. (a) Let p be prime in a ring A. Let $g(x)$ be a monic polynomial in $A[x]$ with $\operatorname{deg} g(x)=d$. Then there are at most d primes of $A[x]$ which lie over p and contain $g(x)$.
(b) Let $T=R[u]$ be a simple integral extension of R via $f(x)$ with $\operatorname{deg} f(x)=n$. Let p be prime in R. Then at most n primes in T lie over p.

Proof. (a) follows from standard facts such as [3, §§ 1-5] and the fact that taken modulo $p, g(x)$ has at most d irreducible factors. (b) follows from (a) by considering preimages under the map $R[x] \rightarrow$ $R[u]=T$.

Theorem 2.2. Let $f(x)$ be split. Let q be prime in T with $p=q \cap R$. In $R[x]$, let P be prime with $P \cap R=p$ and suppose that $f(x) \in P$. Then for some root u of $f(x), q$ is the image of P under the homomorphism $R[x] \rightarrow R[u]=T$.

Proof. As is well known, there is a $g(x) \in P$ such that $P=$ $\{h(x) \in R[x] / \operatorname{sh}(x) \in(p, g(x)) R[x]$ for some $s \in R-p\}$. Since $R[x] \subset T[x]$ is integral and $q T[x] \cap R[x]=p R[x]$, by going up we can find a prime Q of $T[x]$ with $Q \cap T=q$ and $Q \cap R[x]=P$. Thus $f(x) \in$ $P \subset Q$ and as $f(x)$ splits in $T[x]$, for some root u of $f(x)$ we have
$x-u \in Q$. Now $g(x) \in P \subset Q$ and as $x \equiv u \bmod Q, g(u) \in Q \cap T=q$. Thus the preimage of q under the $\operatorname{map} R[x] \rightarrow R[u]=T$ contains $g(x)$, and so is easily seen to be P.

Corollary 2.3. Let $f(x)$ be split. Let p be prime in R.
(a) If P_{1} and P_{2} are prime in $R[x]$ with $P_{1} \cap R[x]=p=P_{2} \cap$ $R[x]$ and $f(x) \in P_{1} \cap P_{2}$ then $R[x] / P_{1} \approx R[x] / P_{2}$, this isomorphism fixing R / p.
(b) Let q_{1} and q_{2} be primes in T both lying over p. Then $T / q_{1} \approx T / q_{2}$, this isomorphism fixing R / p.

Proof. (a) Let q be a prime of T lying over p. By Theorem 2.2, for roots u_{1} and u_{2} of $f(x), q$ is the image of P_{i} under $R[x] \rightarrow$ $R\left[u_{i}\right]=T, i=1,2$. Thus $R[x] / P_{1} \approx R\left[u_{1}\right] / q=R\left[u_{2}\right] / q \approx R[x] / P_{2}$.
(b) If P is prime in $R[x]$ with $P \cap R=p$ and $f(x) \in P$, and if q is any prime in T lying over p, then the proof of (a) shows that $T / q \approx R] x] / P$. Thus $T / q_{1} \approx R[x] / P \approx T / q_{2}$.

Theorem 2.4. Let $f(x)$ be split. Then $m \leqq \operatorname{deg} f(x)$.
Proof. We first claim that there are distinct primes Q_{1}, \cdots, Q_{m} lying over p_{m} satisfying $q_{1} \subset Q_{j}$ and $\operatorname{height}\left(Q_{j} / q_{1}\right) \geqq \operatorname{height}\left(q_{m} / q_{1}\right)$, $j=1, \cdots, m$. To do this, we induct on m. For $m=2$, by going up there is a prime q_{2}^{\prime} of T with $q_{1} \subset q_{2}^{\prime}, q_{2}^{\prime} \cap R=p_{2}$ and height $\left(q_{2}^{\prime} /\right.$ $\left.q_{1}\right)=\operatorname{height}\left(p_{2} / p_{1}\right)>\operatorname{height}\left(q_{2} / q_{1}\right)$. Let $Q_{1}=q_{2}$ and $Q_{2}=q_{2}^{\prime}$.

For $m>2$ take q_{2}^{\prime} as above. The isomorphism in Corollary 2.3 between T / q_{2} and T / q_{2}^{\prime} carries $q_{2} \subset \cdots \subset q_{m}$ isomorphically to a chain $q_{2}^{\prime} \subset \cdots \subset q_{m}^{\prime}$ which also lies over $p_{2} \subset \cdots \subset p_{m}$ (since R / p_{2} is fixed). By induction there are distinct primes Q_{1}, \cdots, Q_{m-1} of T lying over p_{m} with $q_{2}^{\prime} \subset Q_{j}$ and $\operatorname{height}\left(Q_{j} / q_{2}^{\prime}\right) \geqq \operatorname{height}\left(q_{m}^{\prime} / q_{2}^{\prime}\right), j=1, \cdots, m-1$. Since $q_{2} \subset \cdots \subset q_{m}$ and $q_{2}^{\prime} \subset \cdots \subset q_{m}^{\prime}$ are "isomorphic", height $\left(q_{m}^{\prime} / q_{2}^{\prime}\right)=$ $\operatorname{height}\left(q_{m} / q_{2}\right)$. Recall also height $\left(q_{2}^{\prime} / q_{1}\right)>\operatorname{height}\left(q_{2} / q_{1}\right)$. By the tautness of $q_{1} \subset \cdots \subset q_{m}$ we have for $j=1, \cdots, m-1$, $\operatorname{height}\left(Q_{j} / q_{1}\right) \geqq$ $\operatorname{height}\left(Q_{j} / q_{2}^{\prime}\right)+\operatorname{height}\left(q_{2}^{\prime} / q_{1}\right) \geqq \operatorname{height}\left(q_{m}^{\prime} / q_{2}^{\prime}\right)+\operatorname{height}\left(q_{2}^{\prime} / q_{1}\right)>\operatorname{height}$ $\left(q_{m} / q_{2}\right)+\operatorname{height}\left(q_{2} / q_{1}\right)=\operatorname{height}\left(q_{m} / q_{1}\right)$. That is, height $\left(Q_{j} / q_{1}\right)>$ height (q_{m} / q_{1}), for $j=1, \cdots, m-1$. Letting $Q_{m}=q_{m}$ proves our claim.

Finally, as the number of primes in T contracting to any given prime in R cannot exceed $\operatorname{deg} f(x)$, the existence of Q_{1}, \cdots, Q_{m} shows that $m \leqq \operatorname{deg} f(x)$.

The final result in this section discusses the situation when the bound given by Theorem 2.4 is obtained.

Proposition 2.5. Let $f(x)$ be split and let $m=\operatorname{deg} f(x)$. Suppose that $p \subseteq p_{1} \subset p_{m} \subseteq p^{\prime}$ with p, p^{\prime} primes in R and that $q \cap R=$
$p, q^{\prime} \cap R=p^{\prime}$ with q, q^{\prime} primes in T. Then $q \subset q^{\prime}$.
Proof. The proof of Theorem 2.4 shows that there are primes $Q_{1}, \cdots, Q_{m}=q_{m}$ lying over p_{m}, each of which contains q_{1}. By going up, find a prime q_{1}^{\prime} of T with $q \subset q_{1}^{\prime}$ and $q_{1}^{\prime} \cap R=p_{1}$. Now q_{1} is contained in m primes lying over p_{m} (namely Q_{1}, \cdots, Q_{m}) and so by Corollary $2.3 q_{1}^{\prime}$ is also contained in m primes lying over p_{m}. However, since $\operatorname{deg} f(x)=m, Q_{1}, \cdots, Q_{m}$ are the only primes lying over p_{m} and so $q \subset q_{1}^{\prime} \subset Q_{1} \cap \cdots \cap Q_{m}$.

Now consider $R[x] \rightarrow R[u]=T$ and let $Q^{*}, Q_{1}^{*}, \cdots, Q_{m}^{*}$ be the preimages of $q^{\prime}, Q_{1}, \cdots, Q_{m}$ respectively. Obviously $Q^{*} \cap R=p^{\prime}$, $Q_{j}^{*} \cap R=p_{m}, j=1, \cdots, m$ and $f(x) \in Q^{*} \cap Q_{1}^{*} \cap \cdots \cap Q_{m}^{*}$ since $f(u)=0$. By [4, Lemma 3] (applied to R / p_{m}) we easily see that there is a prime P of $R[x]$ with $P \cap R=p_{m}$, and $f(x) \in P \subset Q^{*}$. However since $\operatorname{deg} f(x)=m$, at most m primes in $R[x]$ can contain $f(x)$ and also contract to P_{m}. As each of $Q_{1}^{*}, \cdots, Q_{m}^{*}$ do just that, obviously $P=Q_{j}^{*}$ for some $j=1, \cdots, m$. Thus $Q_{j}^{*}=P \subset Q^{*}$ from which we see that $Q_{j} \subset q^{\prime}$. Thus $q \subset Q_{1} \cap \cdots \cap Q_{m} \subset Q_{j} \subset q^{\prime}$ and we are done.
3. Arbitrary simple extensions. We now drop the "split" assumption and just assume that T is a simple integral extension of R via $f(x)$ with $\operatorname{deg} f(x)=n$. We will show that there is a number b_{n} such that $m \leqq b_{n}$. We do not identify the best such bound although we do give an inequality limiting the size of the best such bound. To be explicit, let us use b_{n} to denote the smallest number such that $m \leqq b_{n}$ for all such m.

We have already seen at the start of $\S 2$ that if $n=2$ then $f(x)$ is split, and so by Theorem 2.4 we have $b_{2}=2$. (This is best possible, [5, Example 2, pp. 203-205].) We will now assume inductively that b_{n-1} exists.

In our next lemma we start a chain at P_{2} rather than P_{1}, since that will be the situation when we apply the lemma.

Lemma 3.1. Let $P_{2} \subset \cdots \subset P_{m}$ be a taut chain of primes in $R[x]$ contracting to $p_{2} \subset \cdots \subset p_{m}$ in R. Let $P_{2}{ }^{\prime} \neq P_{2}$ with $P_{2}^{\prime} \cap R=p_{2}$. Let $f(x)$ be a monic polynomial of degree n with $f(x) \in P_{2} \cap P_{2}^{\prime}$. Let $s>0$ be an integer with $m>b_{n-1}(s-1)+1$. Then for some $i \in$ $\{1, \cdots, m-s\}$ there is a taut chain $P_{i+1}^{\prime} \subset \cdots \subset P_{i+s}^{\prime}$ in $R[x]$ lying over $p_{i+1} \subset \cdots \subset p_{i+s}$ with height $\left(P_{i+j}^{\prime} / P_{i+j-1}^{\prime}\right)=\operatorname{height}\left(P_{i+j} / P_{i+j-1}\right)$, $j=2, \cdots, s$ and with $P_{2}^{\prime} \cong P_{i+1}^{\prime}$ and $h e i g h t\left(P_{i+1}^{\prime} / P_{2}^{\prime}\right) \geqq \operatorname{height}\left(P_{i+1} / P_{2}\right)$.

Proof. Obviously we may work modulo p_{2}; so assume that $p_{2}=0$. Since $f(x) \in P_{2} \cap P_{2}^{\prime}, R[x] / P_{2}$ and $R[x] / P_{2}^{\prime}$ are simple integral extensions of R via $f(x)$. Let $R[x] / P_{2} \approx R[u]$ and $R[x] / P_{2}^{\prime} \approx R\left[u^{\prime}\right]$
with u and u^{\prime} distinct roots of $f(x)$ (distinct since $P_{2} \neq P_{2}^{\prime}$). Taken modulo $P_{2}, P_{2} \subset \cdots \subset P_{m}$ becomes a taut chain $0=q_{2} \subset \cdots \subset q_{m}$ in $R[u]$ lying over $0=p_{2} \subset \cdots \subset p_{m}$. As $R[u] \subset R\left[u, u^{\prime}\right]$ is integral, we lift $0=q_{2} \subset \cdots \subset q_{m}$ to a taut chain $0=q_{2}^{*} \subset \cdots \subset q_{m}^{*}$ in $R\left[u, u^{\prime}\right]$, with height $q_{m}^{*}=$ height q_{m}.

Since $f\left(u^{\prime}\right)=0, f(x)=\left(x-u^{\prime}\right) g(x)$ with $g(x)$ monic in $R\left[u^{\prime}\right][x]$. As $u \neq u^{\prime}$, we have $g(u)=0$ so that $R\left[u, u^{\prime}\right]$ is a simple integral extension of $R\left[u^{\prime}\right]$ via $g(x)$. Since $\operatorname{deg} g(x)=n-1$, the induction assumption concerning the existence of b_{n-1} applies to $R\left[u^{\prime}\right] \subset R\left[u, u^{\prime}\right]$.

Let $b=b_{n-1}$ and consider a subchain of $q_{2}^{*} \subset \cdots \subset q_{m}^{*}$, namely $q_{2}^{*} \subset q_{2+(s-1)}^{*} \subset q_{2+2(s-1)}^{*} \subset \cdots \subset q_{2+b(s-1)}^{*}$, which, being a subchain of a taut chain, is taut. (Note $q_{2+b(s-1)}^{*}$ exists since $m>b(s-1)+1$.) Because this taut (sub)-chain contains $b+1$ primes, by the induction assumption for some $l=1, \cdots, b$ we must have $\operatorname{height}\left(q_{2+l(s-1)}^{*} \cap\right.$ $\left.R\left[u^{\prime}\right] / q_{2+(l-1)(s-1)}^{*} \cap R\left[u^{\prime}\right]\right)=\operatorname{height}\left(q_{2+l(s-1)}^{*} / q_{2+(l+1)(s-1)}^{*}\right)$. Thus letting $i=$ $1+(l-1)(s-1)$ we see that the tautness of $q_{i+1}^{*} \subset \cdots \subset q_{i+s}^{*}$ implies that $\left.\left.q_{i+1}^{*} \cap R\left[u^{\prime}\right] \subset \cdots \subset q_{i+s}^{*} \cap R\right] u^{\prime}\right]$ is taut, and that height $\left(q_{i+j}^{*} \cap\right.$ $\left.R\left[u^{\prime}\right] / q_{i+j-1}^{*} \cap R\left[u^{\prime}\right]\right)=\operatorname{height}\left(q_{i+j}^{*} / q_{i+j-1}^{*}\right)$ which in turn equals height $\left(q_{i+j} / q_{i+j-1}\right) j=2, \cdots, s$ by the manner in which $q_{2}^{*} \subset \cdots \subset q_{n}^{*}$ was constructed. Also height $\left(q_{i+1}^{*} \cap R\left[u^{\prime}\right]\right) \geqq$ height q_{i+1} since height $q_{i+1}=$ height \boldsymbol{q}_{i+1}^{*}.

Finally, recalling that $R\left[u^{\prime}\right] \approx R[x] / P_{2}^{\prime}$, the chain $q_{i+1}^{*} \cap R\left[u^{\prime}\right] \subset \ldots$ $\subset q_{i+s}^{*} \cap R\left[u^{\prime}\right]$ gives rise to a chain $P_{1+1}^{\prime} \subset \cdots \subset P_{i+s}^{\prime}$ in $R[x]$ with $P_{2}^{\prime} \subseteq P_{i+1}^{\prime}$. That this chain satisfies the lemma follows easily from what we know about $q_{i+1}^{*} \cap R\left[u^{\prime}\right] \subset \cdots \subset q_{i+s}^{*} \cap R\left[u^{\prime}\right]$.

Corollary 3.2. Let the domain T be a simple integral extension of R via $f(x)$ with $\operatorname{deg} f(x)=n$. Let $q_{2} \subset \cdots \subset q_{m}$ be a taut chain in T lying over $p_{2} \subset \cdots \subset p_{m}$ in R. Let $q_{2}^{\prime} \neq q_{2}$ be prime in T with $q_{2}^{\prime} \cap R=p_{2}$. Let $s>0$ be an integer with $m>b_{n-1}(s-1)+1$. Then for some $i \in\{1, \cdots, m-s\}$, there is a taut chain $q_{i+1}^{\prime} \subset \cdots \subset$ q_{i+s}^{\prime} in T lying over $p_{i+1} \subset \cdots \subset p_{i+s}$ with height $\left(q_{i+j}^{\prime} / q_{i+j-1}^{\prime}\right)=$ height $\left(q_{i+j} / q_{i+j-1}\right), j=2, \cdots, s$, and with $q_{2}^{\prime} \cong q_{i+1}^{\prime}$ and height $\left(q_{i+1}^{\prime} / q_{2}^{\prime}\right) \geqq$ height $\left(q_{i+1} / q_{2}\right)$.

Proof. Let $P_{2} \subset \cdots \subset P_{m}$ and P_{2}^{\prime} be, respectively, the preimages of $q_{2} \subset \cdots \subset q_{m}$ and q_{2}^{\prime} under $R[x] \rightarrow R[u]=T$. Then, since $f(x) \in$ $P_{2} \cap P_{2}^{\prime}$, the hypothesis of Lemma 3.1 is satisfied. We complete the proof by letting $q_{i+1}^{\prime} \subset \cdots \subset q_{i+s}^{\prime}$ be the images of $P_{i+1}^{\prime} \subset \cdots \subset P_{i+s}^{\prime}$ given by Lemma 3.1.

Proposition 3.3. Let $b=b_{n-1}$. Let $l \geqq 0$ be an integer and let $m \geqq b^{l}+b^{l-1}+\cdots+b+2$. Then for some $r=1, \cdots, m, p_{r}$ has lying over it distinct primes Q_{1}, \cdots, Q_{l+1} in T such that $q_{1} \subset Q_{1} \cap \cdots \cap Q_{l+1}$
and height $\left(Q_{j} / q_{1}\right)>\operatorname{height}\left(q_{r} / q_{1}\right)$ for $j=1, \cdots, l+1$.
Proof. We induct on l. First, since height $\left(p_{2} / p_{1}\right)>\operatorname{height}\left(q_{2} / q_{1}\right)$, by going up there is a prime q_{2}^{\prime} of T with $q_{1} \subset q_{2}^{\prime}$ and height $\left(q_{2}^{\prime} / q_{1}\right)=$ $\operatorname{height}\left(p_{2} / p_{1}\right)$. If $l=0$ then $r=2$ and $Q_{1}=q_{2}^{\prime}$ satisfy the proposition.

For $l>0$, we apply Corollary 3.2 with $s=b^{l-1}+b^{l-2}+\cdots+b+2$. Since $m>b(s-1)+1$ we have for some $i \in\{1, \cdots, m-s\}$ a taut chain $q_{i+1}^{\prime} \subset \cdots \subset q_{i+s}^{\prime}$ in T lying over $p_{i+1} \subset \cdots \subset p_{i+s}$ with height $\left(q_{i+j}^{\prime} / q_{i+j-1}^{\prime}\right)=\operatorname{height}\left(q_{i+j} / q_{i+j-1}\right)$ which is less than height $\left(p_{i+j} / p_{i+j-1}\right)$ for $j=2, \cdots, s$.

We apply the case $l-1$ of the induction assumption to the chain $q_{i+1}^{\prime} \subset \cdots \subset q_{i+s}^{\prime}$ (recalling that $s=b^{l-1}+b^{l-2}+\cdots+b+2$), to produce an $r \in\{i+1, \cdots, i+s\}$ and distinct primes Q_{1}, \cdots, Q_{l} of T lying over p_{r}, with $q_{i+1}^{\prime} \subset Q_{1} \cap \cdots \cap Q_{l}$ and height $\left(Q_{j} / q_{i+1}^{\prime}\right)>\operatorname{height}\left(q_{r}^{\prime} / q_{i+1}^{\prime}\right)$ for $j=1, \cdots, l$. If we now let $Q_{l+1}=q_{r}^{\prime}$, obviously Q_{l+1} is distinct from Q_{1}, \cdots, Q_{l} and we now have $q_{i+1}^{\prime} \subset Q_{1} \cap \cdots \cap Q_{l+1}$ and height $\left(Q_{j} / q_{i+1}^{\prime}\right) \geqq \operatorname{height}\left(q_{r}^{\prime} / q_{i+1}^{\prime}\right)$ for $j=1, \cdots, l+1$.

We have $q_{1} \subseteq q_{2}^{\prime} \subseteq q_{i+1}^{\prime}$ by Corollary 3.2. To complete the proof, we must only show that $\operatorname{height}\left(Q_{j} / q_{1}\right)>\operatorname{height}\left(q_{r} / q_{1}\right)$ for $j=1, \cdots$, $l+1$. To do this, we collect various facts.
(i) height $\left(q_{r}^{\prime} / q_{i+1}^{\prime}\right)=\operatorname{height}\left(q_{r} / q_{i+1}\right)$. This follows from the fact that height $\left(q_{i+j}^{\prime} / q_{i+j-1}^{\prime}\right)=\operatorname{height}\left(q_{i+j} / q_{i+j-1}\right) \quad j=2, \cdots, s$ by Corollary 3.2 and the tautness of $q_{i+1} \subset \cdots \subset q_{i+s}$ and $q_{i+1}^{\prime} \subset \cdots \subset q_{i+s}^{\prime}$.
(ii) height $\left(Q_{j} / q_{i+1}^{\prime}\right) \geqq \operatorname{height}\left(q_{r} / q_{i+1}\right)$. This follows from (i) and the previously noted fact that height $\left(Q_{j} / q_{i+1}^{\prime}\right) \geqq \operatorname{height}\left(q_{r}^{\prime} / q_{i+1}^{\prime}\right)$.
(iii) height $\left(q_{i+1}^{\prime} / q_{2}^{\prime}\right) \geqq \operatorname{height}\left(q_{i+1} / q_{2}\right)$ by Corollary 3.2.
(iv) $\operatorname{height}\left(q_{2}^{\prime} / q_{1}\right)>\operatorname{height}\left(q_{2} / q_{1}\right)$ by choice of q_{2}^{\prime}.

Finally, from the tautness of $q_{1} \subset \cdots \subset q_{r}$ and (ii), (iii), and (iv), we have $\operatorname{height}\left(q_{r} / q_{1}\right)=\operatorname{height}\left(q_{r} / q_{i+1}\right)+\operatorname{height}\left(q_{i+1} / q_{2}\right)+\operatorname{height}\left(q_{2} / q_{1}\right)<$ $\operatorname{height}\left(Q_{j} / q_{i+1}^{\prime}\right)+\operatorname{height}\left(q_{i+1}^{\prime} / q_{2}^{\prime}\right)+\operatorname{height}\left(q_{2}^{\prime} / q_{1}\right) \leqq \operatorname{height}\left(Q_{j} / q_{1}\right)$ for $j=$ $1, \cdots, l+1$ to complete the proof.

At this point we can prove that b_{n} exists and show that $b_{n} \leqq b^{n-1}+b^{n-2}+\cdots+b+1$ with $b=b_{n-1}$. To see this, with the notation of Proposition 3.3, if $m>b^{n-1}+b^{n-2}+\cdots+b+1$ we would have primes $q_{r}, Q_{1}, \cdots, Q_{n}$ lying over p_{r} which are distinct (by the inequality in that proposition). However, as $\operatorname{deg} f(x)=n$, at most n primes can lie over p_{r}, a contradiction. Thus $m \leqq b^{n-1}+\cdots+b+1$.

We wish to introduce a "going down" technique which will let us improve this inequality somewhat, giving $b_{n} \leqq b^{n-2}+b^{n-3}+\cdots+$ $b+2, b=b_{n-1}$, and which, in certain circumstances, allows us to give a more substantial improvement on the bound on b_{n}.

Definition. Let p be a prime in the ring R. Let I be an
ideal in $R[x]$. Define $k(p, I)=n$ if $I R_{p}[x]$ contains a monic polynomial of degree n but no monic polynomial of lesser degree. (If $I R_{p}[x]$ contains no monic polynomial let $k(p, I)=\infty$.)

Lemma 3.4. Let p be prime in a ring R and let I be an ideal in $R[x]$. Suppose that $k(p, I)=n<\infty$.
(a) If $g(x) \in I$ and $\operatorname{deg} g(x)<n$ then $g(x) \in p R[x]$.
(b) Let $h(x) \in I$ with $\operatorname{deg} h(x)=n$ and the leading coefficient of $h(x)$ outside of p. Let P be prime in $R[x]$ with $P \cap R=p$. Then $I \subseteq P$ if and only if $h(x) \in P$.
(c) The number of primes P in $R[x]$ satisfying $P \cap R=p$ and $I \subseteq P$ does not exceed n.

Proof. Without loss we may localize at p.
(a) Since $k(p, I)=n<\infty$ and (R, p) is quasi-local, there is in I a monic polynomial $h(x)$ of degree n, and no monic polynomial of lesser degree. If the result is false, then for some $g(x)=a_{k} x^{k}+\cdots$ $+a_{i} x^{i}+\cdots+a_{0} \in I$ with $k<n$ we have $a_{i} \notin p$ for some i. Assume that $g(x)$ and i have been chosen so as to make i as large as possible. Now $a_{k} \in p$ since $g(x)$ is not monic. We have $a_{k} h(x)-x^{n-k} g(x) \in I$. Its degree is clearly less than n and its $(i+n-k)$ th coefficient is not in p. This is a contradiction since $i+n-k>i$.
(b) Since $h(x)$ (in part (a)) is monic, clearly I is generated by $h(x)$ together with those polynomials in I having degree less than n. By part (a), each of these latter polynomials is in $p R[x] \subset P$. Thus $I \subseteq P$ if and only if $h(x) \in P$.
(c) This is immediate from Lemma 2.1 and (b).

Proposition 3.5. Let $p \subset p^{\prime}$ be primes in a ring R. Let I be an ideal of $R[x]$, and suppose that $k(p, I)=k\left(p^{\prime}, I\right)<\infty$. If P^{\prime} is prime in $R] x]$ with $P^{\prime} \cap R=p^{\prime}$ and $I \subset P^{\prime}$, then there is a prime P in $R[x]$ with $P \cap R=p$ and $I \subseteq P \subset P^{\prime}$.

Proof. We may localize at p^{\prime}. If $k\left(p^{\prime}, I\right)=n$ then I contains a monic polynomial $h(x)$ of degree n. Thus $h(x) \in I \subset P^{\prime}$. By [4, Lemma 3] (applied to R / p) there is a prime P of $R[x]$ with $P \cap R=p$ and $h(x) \in P \subset P^{\prime}$. By Lemma 3.4, $I \subseteq P$.

We apply Proposition 3.5 to our special situation of $R \subset R[u]=T$ a simple integral extension of domains, u a root of the monic polynomial $f(x)$.

Corollary 3.6. Let $p \subset p^{\prime}$ be primes in R. Let $I=\operatorname{ker}(R[x] \rightarrow$ $R[u]=T)$ and suppose that $k(p, I)=k\left(p^{\prime}, I\right)$. If q^{\prime} is prime in T
with $q^{\prime} \cap R=p^{\prime}$ then there is a prime q of T with $q \cap R=p$ and $q \subset q^{\prime}$.

Proof. Since $f(x) \in I, k\left(p^{\prime}, I\right)<\infty$. Let P^{\prime} be the preimage of q^{\prime} under $R[x] \rightarrow R[u]$. Then $P^{\prime} \cap R=p^{\prime}$ and $I \subset P^{\prime}$. With P as in Proposition 3.5 take q to be the image of P in T.

Theorem 3.7. $b_{n} \leqq b^{n-2}+b^{n-3}+\cdots+b+2$ where $b=b_{n-1}$.
Proof. Let $B=b^{n-2}+b^{n-3}+\cdots+b+2$ and assume that $m>B$. We will derive a contradiction. Applying Proposition 3.3 to the chain $q_{1} \subset \cdots \subset q_{B}$ we see that for some $r \in\{1, \cdots, B\}$ there are distinct primes Q_{1}, \cdots, Q_{n-1} of T lying over p_{r} with $q_{1} \subset Q_{1} \cap \cdots \cap Q_{n-1}$ and $\operatorname{height}\left(Q_{j} / q_{1}\right)>\operatorname{height}\left(q_{r} / q_{1}\right) \quad j=1, \cdots, n-1$. Obviously q_{r} is distinct from Q_{1}, \cdots, Q_{n-1} and if we let $Q_{n}=q_{r}$ then, since deg $f(x)=n, Q_{1}, \cdots, Q_{n}$ are all of the primes of T lying over p_{r} and we have height $\left(Q_{j} / q_{1}\right) \geqq \operatorname{height}\left(q_{r} / q_{1}\right) j=1, \cdots, n$.

We claim that if p is prime in R with $p_{r} \cong p$, then $k(p, I)=n$ where $I=\operatorname{ker}(R[x] \rightarrow R[u]=T)$. Since $f(x) \in I, k(p, I) \leqq n$. Also $p_{r} \subseteq p$ implies $k\left(p_{r}, I\right) \leqq k(p, I)$ and so we must only show that $k\left(p_{r}, I\right) \geqq n$. That this is true follows from Lemma 3.4 (c) and the existence of Q_{1}, \cdots, Q_{n}.

We now consider a chain of maximal length between p_{r} and p_{m}. Since $k(p, I)=n$ for each prime p in that chain, we can use Corollary 3.6 iteratively to find a pr!me q of T with $q \cap R=p_{r}, q \subset q_{m}$ and height $\left(q_{m} / q\right)=\operatorname{height}\left(p_{m} / p_{r}\right)$. Since $q_{r} \subset \cdots \subset q_{m}$ is taut and height $\left(p_{i} / p_{i-1}\right)>\operatorname{height}\left(q_{i} / q_{i-1}\right) \quad i=r+1, \cdots, m$, obviously $\operatorname{height}\left(q_{m} / q\right)=$ $\operatorname{height}\left(p_{m} / p_{r}\right)>\operatorname{height}\left(q_{m} / q_{r}\right)$, (here we use $m>B \geqq r$). As Q_{1}, \cdots, Q_{n} are all of the primes which lie over p_{r}, we must have $q=Q_{j}$, some $j=1, \cdots, n$. Thus height $\left(q / q_{1}\right)=\operatorname{height}\left(Q_{j} / q_{1}\right) \geqq$ height $\left(q_{r} / q_{1}\right)$. Thus $\operatorname{height}\left(q_{m} / q_{1}\right) \geqq \operatorname{height}\left(q_{m} / q\right)+\operatorname{height}\left(q / q_{1}\right)>\operatorname{height}\left(q_{m} /\right.$ $\left.q_{r}\right)+\operatorname{height}\left(q_{r} / q_{1}\right)$ contradicting the tautness of $q_{1} \subset \cdots \subset q_{m}$. This completes the proof.

We repeat that we doubt that equality holds in Theorem 3.7. Let us note that $b_{2} \leqq b_{3} \leqq b_{4} \leqq \cdots$. To see this, observe that if T is a simple integral extension of R via $f(x)$, then it is also a simple integral extension of R via $x f(x)$. The examples at the end of this paper show that $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

We now consider situations in which we can give other bounds on the size of m.

Lemma 3.8. Suppose that $m>b_{n-1}$. Let $c=b_{n-1}+1$. If p is any prime of R containing p_{c}, then $k(p, I)=n$ where $I=\operatorname{ker}(R[x] \rightarrow$
$R[u]=T)$.
Proof. Since $f(x) \in I$, obviously $k\left(p_{c}, I\right) \leqq k(p, I) \leqq n$. We must show $k\left(p_{c}, I\right) \geqq n$. For this we may localize at p_{c}. If $k\left(p_{c}, I\right)<n$ then I contains a monic polynomial $g(x)$ with $\operatorname{deg} g(x)=d<n$. Clearly T is a simple integral extension of R via $g(x)$. However the existence of the chain $q_{1} \subset \cdots \subset q_{c}$ with $c>b_{n-1} \geqq b_{d}$ contradicts the definition of b_{d}.

Lemma 3.9. Suppose that $m>b_{n-1}$ and let $c=b_{n-1}+1$. Let p be any prime of R containing p_{c} and let q be any prime in T lying over p. Then $q_{1} \subset q$.

Proof. Let P_{1} and P be the preimages of q_{1} and q, respectively, under the $\operatorname{map} R[x] \rightarrow R[u]=T$. We claim that $k\left(p, P_{1}\right)=n$. The result follows, since obviously $f(x) \in P_{1} \cap P$ and so by Lemma 3.4 (b) (with $h(x)=f(x)$ and $I=P_{1}$) $P_{1} \subset P$. Thus $q_{1} \subset q$.

To show that $k\left(p, P_{1}\right)=n$, we may work modulo p_{1}. That is we go to $R / p_{1} \subset T / q_{1}$ and so assume that $p_{1}=0=q_{1}$. Now $P_{1}=$ $\operatorname{ker}(R[x] \rightarrow T)$ and Lemma 3.8 gives $k\left(p, P_{1}\right)=n$.

Theorem 3.10. Suppose that $m>b_{n-1}$ and let $c=b_{n-1}+1$. Then $m \leqq \operatorname{height}\left(q_{c} / q_{1}\right)+b_{n-1}$.

Proof. Consider a chain of maximal length between p_{c} and p_{m}. By Lemma 3.8, for each prime p in that chain, $k(p, I)=n$ with $I=\operatorname{ker}(R[x] \rightarrow T)$. By iteration of Corollary 3.6, we can find a prime q of T with $q \cap R=p_{c}, q \cong q_{m}$ and $\operatorname{height}\left(q_{m} / q\right)=\operatorname{height}\left(p_{m} / p_{c}\right)$. By Lemma 3.9, $q_{1} \subset q$. Since $q_{1} \subset \cdots \subset q_{m}$ is taut we have \sum_{c+1}^{m} $\operatorname{height}\left(q_{i} / q_{i-1}\right)+\operatorname{height}\left(q_{c} / q_{1}\right)=\operatorname{height}\left(q_{m} / q_{1}\right) \geqq \operatorname{height}\left(q_{m} / q\right)+\operatorname{height}$ $\left(q / q_{1}\right)=$ height $\left(p_{m} / p_{c}\right)+$ height $\left(q / q_{1}\right) \geqq \sum_{c+1}^{m}$ height $\left(p_{i} / p_{i-1}\right)+$ height $\left(q / q_{1}\right)$. Thus height $\left(q_{c} / q_{1}\right) \geqq \sum_{c+1}^{m}\left[\right.$ height $\left(p_{i} / p_{i-1}\right)$ - height $\left.\left(q_{i} / q_{i-1}\right)\right]+$ height $\left(q / q_{1}\right)$. By our underlying assumption concerning how $q_{1} \subset \cdots$ $\subset q_{m}$ contracts to $p_{1} \subset \cdots \subset p_{m}$, each term in this last summation is at least one. Thus height $\left(q_{c} / q_{1}\right) \geqq(m-c)+\operatorname{height}\left(q / q_{1}\right) \geqq m-$ $c+1=m-b_{n-1}$. Thus $m \leqq \operatorname{height}\left(q_{c} / q_{1}\right)+b_{n-1}$.

Corollary 3.11. Suppose that $m>b_{n-1}$ and that height $\left(q_{i} / q_{i-1}\right) \leqq$ r for $j=2, \cdots, b_{n-1}+1$. Then $m \leqq(r+1) b_{n-1}$.

Proof. Immediate from Theorem 3.10 and the tautness of $q_{1} \subset \cdots \subset q_{c}$.

Suppose that we fix $r>0$ and restrict our attention to chains
$q_{1} \subset \cdots \subset q_{m}$ with height $\left(q_{i} / q_{i_{-1}}\right) \leqq r, i=2, \cdots, m$. Let b_{n}^{\prime} denote the best possible bound on m for such chains when $\operatorname{deg} f(x)=n$. Then Lemma 3.8 through Corollary 3.11 can be repeated, replacing b_{n-1} with b_{n-1}^{\prime}, thus showing that $b_{n}^{\prime} \leqq(r+1) b_{n-1}^{\prime}$. Since $b_{2}^{\prime}=2$, by induction we get $b_{n}^{\prime} \leqq 2(r+1)^{n-2}$.

ThEOREM 3.12. If $\operatorname{height}\left(q_{i} / q_{i-1}\right) \leqq r$ for $i=2, \cdots, m$, then $m \leqq 2(r+1)^{n-2}$.
4. Finitely generated modules. We give our main result, assuming only that T is a finitely generated R-module.

Theorem 4.1. Let $R \subset T$ be domains with T a finitely generated R-module, generated by n elements. Let $q_{1} \subset \cdots \subset q_{m}$ be a taut chain of primes in T lying over $p_{1} \subset \cdots \subset p_{m}$ with height $\left(p_{m} / p_{1}\right)$ finite. Suppose that height $\left(p_{i} / p_{i-1}\right)>\operatorname{height}\left(q_{i} / q_{i-1}\right) \quad i=2, \cdots, m$. Then m is subject to the following:
(i) $m \leqq b_{n}$,
(ii) if $m>b_{n-1}$, then $m \leqq \operatorname{height}\left(q_{c} / q_{1}\right)+b_{n-1}$ with $c=b_{n-1}+1$,
(iii) $m \leqq 2(r+1)^{n-2}$ with $r=\max \left\{h e i g h t\left(q_{i} / q_{i-1}\right) \mid i=2, \cdots, m\right\}$.

Proof. Since T is a finitely generated R-module only finitely many primes of T lie over p_{m}, and we may choose $u \in q_{m}$ but in no other prime lying over p_{m}. Obviously q_{m} is the only prime of T lying over $q_{m} \cap R[u]$ and so height $\left(q_{m} \cap R[u] / q_{1} \cap R[u]\right)=\operatorname{height}\left(q_{m} / q_{1}\right)$ (by going up since height $\left.\left(q_{m} \cap R[u] / q_{1} \cap R[u]\right) \leqq \operatorname{height}\left(p_{m} / p_{1}\right)<\infty\right)$. Clearly we have $\left(q_{1} \cap R[u]\right) \subset \cdots \subset\left(q_{m} \cap R[u]\right)$, a taut chain in $R[u]$ with \quad height $\left(q_{i} \cap R[u] / q_{i-1} \cap R[u]\right)=\operatorname{height}\left(q_{i} / q_{i-1}\right)<\operatorname{height}\left(p_{i} / p_{i-1}\right)$ $i=2, \cdots, m$. A standard determinant argument shows that u satisfies a monic polynomial of degree n over R, and our result follows from the existence of b_{n} and Theorems 3.10 and 3.12 .

Corollary 4.2. Let R be a domain with integral closure R^{\prime}. Suppose that R^{\prime} is a finitely generated R-module with n generators. Let the domain T be an integral extension of R. Let $0=q_{1} \subset \cdots \subset$ q_{m} be a taut chain of primes in T lying over $0=p_{1} \subset \cdots \subset p_{m}$ in R with height p_{m} finite. Suppose that height $\left(p_{i} / p_{i-1}\right)>\operatorname{height}\left(q_{i} / q_{i-1}\right)$ $i=2, \cdots, m$. Then (i) $m \leqq b_{n}$; (ii) if $m>b_{n-1}$, then $m \leqq h e i g h t$ $\left(q_{c} / q_{1}\right)+b_{n-1}$; and (iii) $m \leqq 2(r+1)^{n-1}$ with $r=\max \left\{h e i g h t\left(q_{i} / q_{i-1}\right) \mid\right.$ $i=2, \cdots, m\}$.

Proof. If $T^{\prime \prime}$ is the integral closure of T, we may lift $0=$ $q_{1} \subset \cdots \subset q_{m}$ to a taut chain $0=q_{1}^{\prime} \subset \cdots \subset q_{m}^{\prime}$ in T^{\prime} with height $q_{m}^{\prime}=$ height q_{m}. By going down in $R^{\prime} \subset T^{\prime}$, height $q^{\prime} \cap R^{\prime}=$ height q^{\prime} and
we see that $0=\left(q_{1}^{\prime} \cap R^{\prime}\right) \subset \cdots \subset\left(q_{m}^{\prime} \cap R^{\prime}\right)$ is taut in R^{\prime} and height $\left(q_{i}^{\prime} \cap R^{\prime} / q_{i-1}^{\prime} \cap R^{\prime}\right)=\operatorname{height}\left(q_{i}^{\prime} / q_{i-1}^{\prime}\right)=\operatorname{height}\left(q_{i} / q_{i-1}\right)<\operatorname{height}\left(p_{i} / p_{i-1}\right) \quad i=$ $2, \cdots, m$. Applying Theorem 4.1 to $0=\left(q_{1}^{\prime} \cap R^{\prime}\right) \subset \cdots \subset\left(q_{m}^{\prime} \cap R^{\prime}\right)$, we are done.
5. Examples. In this section, we construct a family of examples which demonstrate that $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$. We also show that if $R \subset T$ is an infinite integral extension, no bound need exist at all. This construction is a generalization of Nagata's Example 2 [5, pp. 203-205] and is very similar to [2]. However, except for the quotation of one key theorem, the presentation of the basic example will be self-contained.

Example 5.1. Retaining the previous notation, we show any m can be realized in some finite integral extension $R \subset T$ (which depends on m). Moreover, our example is Noetherian.

Fix an integer $m \geqq 2$. Let K be a countable field of characteristic zero and let $y_{1}, \cdots, y_{m-1}, z_{0}^{(1)}, \cdots, z_{0}^{(m-1)}$ be indeterminates. We iteratively define a sequence of Noetherian domains $K=T_{1} \subset$ $\widetilde{T}_{2} \subset T_{2} \subset \widetilde{T}_{3} \subset T_{3} \subset \cdots \subset T_{m}=T$ as follows: Set $\widetilde{T}_{i+1}=T_{i}\left[y_{i}\right]$ for each $i=1, \cdots, m-1$. Suppose $Z_{i} \in K\left[\left[y_{i}\right]\right]$ is a formal power series, say $Z_{i}=a_{1}^{(i)} y_{i}+a_{2}^{(i)} y_{i}^{2}+\cdots$. If we set $z_{n}^{(i)}=\left(z_{0}^{(i)}-\sum_{j=1}^{n} a_{j}^{(i)} y_{i}^{j}\right) / y_{i}^{n}$ for each $n \geqq 0$, then

$$
\begin{equation*}
\left.\left.z_{n}^{(i)}=\left(z_{n+1}^{(i)}+a_{n+1}^{(i)}\right) y_{i} \in \widetilde{T}_{i+1}\right] z_{n+1}^{(1)}\right] \tag{*}
\end{equation*}
$$

Thus we may define a direct union of simple transcendental extensions of $\widetilde{T}_{i+1}, T_{i+1}=\lim _{n \rightarrow \infty} \widetilde{T}_{i+1}\left[z_{n}^{(i)}\right]$, for each $i=1, \cdots, m-1$. Moreover, by [2, Corollary 1.6], we may choose the formal power series Z_{i} in such a way that T_{i+1} will be Noetherian.

The nature of the construction makes it very easy to determine the primes; primes in the intermediate rings extend to primes in T. Hence we easily see, for each $i=1, \cdots, m, q_{i}=\left(y_{1}, \cdots, y_{i-1}\right) T$ is prime. Also, by (${ }^{*}$), $z_{n}^{(i)} \in y_{i} T$ for each i, n. By the Krull Altitude Theorem, height $q_{i} \leqq i-1$. (0$)=q_{1} \subset q_{2} \subset \cdots \subset q_{m}$ is a taut chain and height $\left(q_{i+1} / q_{i}\right)=1 \quad i=1, \cdots, m-1$. Before leaving this chain, we make one additional observation, also apparent from the construction. The quotient T / q_{i} is canonically isomorphic to the subring $S_{i}=K\left[y_{i}, \cdots, z_{n}^{(i)}, \cdots, y_{m-1}, \cdots, z_{n}^{(m-1)}, \cdots\right]$ for each $i=1, \cdots, m$.

Next we iteratively define a second chain (0) $=Q_{1} \subset \widetilde{Q}_{2} \subset Q_{2} \subset \cdots$ $\subset Q_{m}$. First note that, using (*) again, $z_{n}^{(i)}=\left(z_{n+1}^{(i)}+a_{n+1}^{(i)}\right)\left(y_{i}-1\right)+$ $z_{n+1}^{(i)}+a_{n+1}^{(i)}$. Thus $z_{n+1}^{(i)} \equiv z_{n}^{(i)}-a_{n+1}^{(i)}\left(\bmod \left(y_{i}-1\right)\right)$. So if we set, for each $i=1, \cdots, n-1, \widetilde{Q}_{i+1}=Q_{i}+\left(y_{i}-1\right) T$ and $Q_{i+1}=\widetilde{Q}_{i+1}+Z_{0}^{(i)} T$, we have (using equality to denote canonical isomorphism) $T / \widetilde{Q}_{i+1}=$ $S_{i+1}\left[z_{0}^{(i)}\right]$ and $T / Q_{i+1}=S_{i+1}$. So these ideals are prime as required
and another application of the Krull Altitude Theorem guarantees that this chain is taut.

Our next step is to construct R. Again we construct a chain of rings $T=R_{1} \supset R_{2} \supset \cdots \supset R_{m}=R$. For each $i=1, \cdots, m-1$, set $R_{i+1}=S_{i+1}+\left(q_{i+1} \cap Q_{i+1} \cap R_{i}\right)$. Since $S_{i+1} \subset S_{i} \subset R_{i}, R_{i+1} \subset R_{i}$ as desired. We claim that R_{i} is an integral extension of R_{i+1}, generated by two elements as an R_{i+1}-module. To verify the claim, consider the canonical R_{i+1}-module homomorphism $\pi_{i}: R_{i} \rightarrow\left(R_{i} / q_{i+1} \cap R_{i}\right) \oplus$ $\left(R_{i} / Q_{i+1} \cap R_{i}\right)=S_{i+1} \oplus S_{i+1}$. Note $\pi_{i}(1)=(1,1) \quad$ and $\quad \pi_{i}\left(y_{i}\right)=(0,1)$ together generate $S_{i+1} \oplus S_{i+1}=\operatorname{image}\left(\pi_{i}\right)$ and so $R_{i}=(1) R_{i+1}+$ $\left(y_{i}\right) R_{i+1}+\operatorname{kernel}\left(\pi_{i}\right)$. However, $\operatorname{kernel}\left(\pi_{i}\right)=q_{i+1} \cap Q_{i+1} \cap R_{i} \subset R_{i+1}$ and so $R_{i}=R_{i+1}+y_{i} R_{i+1}$, proving our claim. Therefore T is generated as an R-module by 2^{m-1} elements. Consequently, by Eakin's Theorem [1, p. 281], R is a Noetherian domain.

It now only remains to show $R \subset T$ exhibits the desired chain behavior. As $\operatorname{dim} \widetilde{T}_{i+1}=\left(\operatorname{dim} T_{i}\right)+1$ and $\operatorname{dim} T_{i+1}=\left(\operatorname{dim} \widetilde{T}_{i+1}\right)+1$ for each $i=1, \cdots, m-1$, $\operatorname{dim} T=2(m-1)$. So, by going up, $\operatorname{dim} R=2(m-1)$. Thus (0) $=Q_{1} \cap R \subset \widetilde{Q}_{2} \cap R \subset Q_{2} \cap R \subset \cdots \subset Q_{m} \cap R$ is taut; then $Q_{1} \cap R \subset Q_{2} \cap R \subset \cdots \subset Q_{m} \cap R$ is likewise taut and $\operatorname{height}\left(Q_{i+1} \cap R\right) /\left(Q_{i} \cap R\right)=2$ for each $i=1, \cdots, m-1$. However, by construction, $Q_{i} \cap R=q_{i} \cap R$ and so $\operatorname{height}\left(q_{i+1} \cap R\right) /\left(q_{i} \cap R\right)=2$. As $(0)=q_{1} \subset \cdots \subset q_{m}$ is a taut chain in T and $\operatorname{height}\left(q_{i+1} / q_{i}\right)=1$, we have the desired chain.

In particular, this example shows $b_{2^{m-1}} \geqq m$ and so $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Example 5.2. There is an infinite integral extension $R \subset T$ and an infinite taut chain in $T,(0)=q_{1} \subset q_{2} \subset \cdots$, such that $(0)=q_{1} \cap R \subset$ $q_{2} \cap R \subset \cdots$ is taut and height $\left(q_{i+1} / q_{i}\right)=1<2=\operatorname{height}\left(q_{i+1} \cap R / q_{i} \cap R\right)$ for each i. Necessarily, R is not Noetherian.

Example 5.2 will be a direct union of domains constructed in the manner of (5.1). We begin as in (5.1) with a sequence of domains $K=T_{1} \subset \widetilde{T}_{2} \subset T_{2} \subset \cdots \subset T_{m} \subset \cdots$, this time choosing an infinite sequence. For each fixed m, we perform the construction in (5.1), superscripting our symbols with (m) when confusion is possible. Thus $T_{m}=T^{(m)}$ and we have $R^{(m)} \subset T^{(m)}$.

Noting $T^{(m)} \subset T^{(n+1)}, q_{i}^{(n)} \subset q_{i}^{(m+1)}$ and $Q_{i}^{(m)} \subset Q_{i}^{(m+1)}$ for each $i=$ $1, \cdots, m$, and $S_{i}^{(m)} \subset S_{i}^{(m+1)}$ for each $i=1, \cdots, m$, we have direct unions $T=\cup T^{(m)}, q_{i}=\cup q_{i}^{(m)}, Q_{i}=\cup Q_{i}^{(m)}$, and $S_{i}=\cup S_{i}^{(m)}$ with $T / q_{i}=S_{i}=T / Q_{i}$. Next, using the fact that $S_{m}^{(m)}=K=S_{m+1}^{(m+1)}$ and some obvious containments, we have $R^{(m)}=R_{m}^{(m)}=S_{m}^{(m)}+\left(q_{m}^{(m)} \cap\right.$ $\left.Q_{m}^{(m)} \cap R_{m-1}^{(m)}\right)=S_{m}^{(m)}+\left(q_{m}^{(m)} \cap Q_{m}^{(m)} \cap R_{m}^{(m)}\right) \subset S_{m+1}^{(m+1)}+\left(q_{m+1}^{(m+1)} \cap Q_{m+1}^{(m+1)} \cap R_{m}^{(m+1)}\right)=$
$R^{(m+1)}$. Thus, we also have a direct union $R=\cup R^{(m)}$. We claim $R \subset T$ is the desired extension.

If $y \in T, y \in T^{(m)}$ for some m and so is integral over $R^{(m)}$ and consequently R. Thus we have an integral extension. Since R and T are direct unions, the statement about the q_{i} 's is valid because it holds in $R^{(m)} \subset T^{(m)}$ for each m.

Example 5.3. There is a Noetherian domain R such that, for each m, we may find an integral extension T of R and a taut chain of primes (0) $=q_{1} \subset q_{2} \subset \cdots \subset q_{m}$ in T such that $q_{1} \cap R \subset \cdots \subset$ $q_{m} \cap R$ is taut and $\operatorname{height}\left(q_{i+1} / q_{i}\right)<\operatorname{height}\left(q_{i+1} \cap R / q_{i} \cap R\right)$ for each $i=1, \cdots, m-1$.

This example will not be formally constructed. It is obtained by combining two construction ideas. One constructs a family of local Example (5.1)'s and combines them in the manner of Nagata's Example 1 [5, p. 203] (the Noetherian ring with infinite Krull dimension). This is a useful and straightforward way of obtaining this sort of infinite bad behavior.

References

1. P. Eakin, The converse to a well known theorem on Noetherian rings, Math. Annalen, 177 (1968), 278-282.
2. R. Heitmann, Examples of non-catenary rings, Trans. 247 (1979), 125-136.
3. I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago, 1974.
4. S. McAdam, Going down, Duke Math. J. 39 (1972), 633-636.
5. M. Nagata, Local Rings, Interscience, New York, 1962.

Received July 12, 1978 and in revised form March 15, 1978.
The University of Texas
Austin, TX 78712

