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THE COMPUTATION OF THE GENERALIZED
SPECTRUM OF CERTAIN TOEPLITZ

OPERATORS

JOHN ERNEST

In an earlier memoir, "Charting the operator terrain,"
a new generalized spectrum for a bounded operator T on
a separable Hubert space, was defined as follows: Let
C*(T) denote the C*-algebra generated by T and the identity
operator. We say another operator S is weakly contained
in T if there exists a ^-representation φ of C*(T) which
maps the identity into an identity operator and φ(T)=S.
The "spectrum" of T, denoted T, is defined to be the space
of unitary equivalence classes of irreducible operators
weakly contained in T. In this paper this spectrum is
explicitly computed for certain specific Toeplitz operators.

The purpose of the memoir [3] was to establish this "spectrum"
as a natural generalization of the ordinary (scalar) spectrum of an
operator. From the point of view of the theoretical structure the
argument is quite convincing. Thus the spectrum is always non-
empty and admits a (in general non-Hausdorff) topology relative to
which it is compact. If T is normal, f may be identified with the
ordinary spectrum. Further for a large class of well behaved
(smooth) operators one obtains a theory analogous to the ordinary
spectral multiplicity theory for normal operators. Thus to each
(smooth) operator T one may associate a ^-finite measure class μ
on f and a multiplicity function / defined on the measures absolutely
continuous with respect to μ. These three invariants, f, μ, /, then
determine the operator up to unitary equivalence. This theory
reduces to the ordinary spectral multiplicity theory when the operator
is normal.

The difficulty with the theory is more practical than theoretical.
Since the triplet (f, μ, f) is a complete set of unitary invariants,
the complexity of a nonnormal operator is mirrored in the com-
plexity of the spectrum f. Indeed f is a complete algebraic
invariant for T in the sense that if S is another operator, then
there is a C*-algebra isomorphism φ of C*(T) onto C*(S) such that
φ{T) = S, if and only if f = S. While we feel at home with the
ordinary spectrum as a subset of the complex plane, we are some-
what intimidated by this space of equivalence classes of irreducible
operators. The purpose of this paper is to make this generalized
spectrum a bit less imposing by describing it concretely for certain
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nonnormal Toeplitz operators. We hope these examples will encourage
others to attempt to compute this "spectrum" for their own favorite
operators.

On the basis of the definition one might suspect that the com-
putation of the "spectrum" of an operator T is equivalent to the
computation of the spectrum of the C*-algebra C*(T). While these
are intimately related we shall see in these examples that the com-
putation of the spectrum of the operator involves different consi-
derations. (In the rest of the paper we shall be presumptuous
enough to use the term "spectrum of an operator" to refer to the
generalized spectrum defined above.)

We shall examine Toeplitz operators of the form T — aI+βS+
γS*> where I is the identity operator, S is the unilateral shift and
a, β and 7 are complex numbers. Then T is normal if and only if
| β | = |γ | . lf\β\Φ\y\f then T is irreducible and generates the same
C*-algebra as S, i.e., C*(T) = C*(S). Thus for the operators T
considered in this paper the spectrum of the C*-algebra C*(T) will
be fixed, even though the spectra of the operators T will vary
considerably.

We first state all the facts about these operators that we
establish in this paper in one place. Thus [the reader who is not
interested in reading the somewhat pedestrian proofs of these
assertions (which forms the second part of this paper) can stop at
the end of the following theorem.

THEOREM. Consider the Toeplitz operators of the form T=al+
βS + 7S* where a, β,yeC and S denotes the unilateral shift and
I denotes the identity operator.

(1) T is normal if and only if 171 = I β I.
(2) If \Ύ\ Φ 1/51 then T is irreducible and generates C*(S).
(3) We next examine the unitary equivalence problem for the

irredubible operators (i.e., where | γ | Φ \β\).
(a) Ifβ = 0 then α I + γ S * = al + \y\S*.
(b) If βΦO then al+ βS + yS* =aI+\β\S + (\β\y/β)S*.
(c) Thus we may assume that these special Toeplitz operators

all have a special form, up to unitary equivalence, namely we
assume β ^ 0 and ifβ — 0 then 7ίΞ>0. Under this condition we
find that these irreducible operators represent distinct unitary equi-
valence classes, i.e., aj. + β±S + 7i<S* = aj + β2S + 72S* if and only
if ax = a2, & = β2 and 7i = 72.

(4) The operator spectrum f of each irreducible operator T
in this class (\β\Φ\Ύ\) is of the form f = { Γ } U 2 \ where {T}
denotes the unitary equivalence class of T itself and ί\ is a subset
of the complex plane consisting of the one-dimensional operators
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weakly contained in T. Note ϊ\ is also called the normal spectrum,
Tλ is always an ellipse and every nondegenerate ellipse in the plane
arises as the normal spectrum of one of these operators. Note that
two distinct {not unitarily equivalent) operators have distinct spectra
but may have the same normal spectrum. For example S and S*
have the same normal spectrum (the unit circle). Similarly it
follows from our next stated result that S + 2S*, S—2S* and 2S+
S* all have the same normal spectrum, namely the ellipse

(I)"
( 5 ) Consider the irreducible operator T — βS + jS * where

\y\Φβ, β>0. Then the normal spectrum of f is an ellipse
centered at the origin. If 7 = a + bi, and if we rotate our x, y
axis of the complex plane counterclockwise by an angle v where
cot 2v — a/b (if b = 0 do not rotate at all) then the equation of the
ellipse relative to the rotated axis is

~^T\) = 1
. 7 .

(Note: If 7 = reί<?, r > 0 α^ώ 0 ^ 0 ^ 2τr, then v = 0/2.) Of
course the normal spectrum of an operator of the form T — al +
βS + 7S* is an ellipse centered at a and is obtained by translating
by a the ellipse given above (as the normal spectrum of βS + ΎS*).

(6) There is a natural topology on f which is nonΉausdorff
and easily described. The relative topology on the normal spectrum
of T is just the ordinary (Hausdorff) topology as a subset of the
complex plane. However, the closure of the singleton {T} in f is
all of f.

(7) It is interesting to note how the operator spectrum collapses
to the ordinary spectrum as β approaches \y\. For example if β>0

and 7 = 1 (and a — 0) then as β —> 1 the ellipse

V Y _ i
- β l

collapses to the line segment [—2, +2], which is just the ordinary
spectrum of the Hermitian operator S + S*. (β = 7 = 1, a = 0.)
Similarly the ordinary spectrum of the normal operators (β — \y\)
will also be a line segment in the complex plane.

(8) As an application of the general theory [3] it is interest-
ing to note how all operators weakly equivalent to one of these
special (nonnormal irreducible) Toeplitz operators can be specified
by the general theory. Thus, except for multiplicity, they are
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determinant by a σ-finite measure class on T whose support is all
of T. This means that {T} must have positive measure, i.e, must
appear as a direct summand. The measure restricted to the normal
spectrum tx then gives rise to a normal operator. We have just
proved the theorem: Every operator weakly equivalent to T is of
the form

where ®T denotes the direct sum of n copies of T (1 ^ n ^
and N is any normal operator whose spectrum is contained in the
ellipse Tλ. (This is a generalization of a result of Coburn [1], [2]
which asserts every operator weakly equivalent to the unilateral
shift S is of the form

where U is a unitary operator. Of course unitary operators can
be characterized as normal operators whose spectra are contained
in the unit circle—the normal spectrum of S.)

Proof of assertion 1. A direct computation shows that T*T —
TT* if and only if |/3| 2I+ |τ|2&S* = |/3|2SS* + ML But clearly
such an equation can hold if and only if | τ | = |/3|. (For example,
apply the equation to the unit vector in I2 with one as its first
coordinate.)

Proof of assertion 2. We may assume, without loss of generality,
that a = 0. If β = 0 the result is obvious as S* generates C*(S).
By multiplying T by /3"1 we may assume β = 1. Then yT — T* =
( | 7 | 8 - l ) S * e C * ( Γ ) . Since | 7 | 2 ^ | / 3 Γ = 1 we have S*eC*(T) and
thus C*(T) — C*(S). Note that any closed subspace which reduces
T also reduces C*(T) and hence S. Since S is irreducible, T must
be also.

Proof of assertion 3.
(a) If β = 0 then T S * = | τ | S* by Lemma 5.7 of [3]. (Cf. [1],

[2] and Theorem 1, page 15 of [4].)
(b) If β Φ 0 then there exists a unitary map Z7 such that

U(βS)U* = \βI S by Lemma 5.7 of [3]. Thus

f/(τS*)?7* = Ύ(USU*r = (Ύ\β\lβ)S* .

Note: In the proofs to follow we shall use en to denote the
unit vector of l2 which has 1 as its wth coordinate and zero else-
where. Part (c) of assertion 3 is proven by the following lemma
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and proposition.

L E M M A . If S ~ al + βS + 7 S * then a = 0, 7 = 0 and \β\ = 1.

Proof. Since S is an isometry the operator al +/3S + 7S*
(henceforth denoted Γ) is also. Applying Γ to the unit vectors e1

and e2 implies 7 = 0. Further since S*S is the identity operator it
follows that T*T is well or

{act + ββ)I + aβS + βaS* = / .

Applying this to the unit vector ex implies aβ = 0. But /3 = 0 leads
to the contradiction S = αl. Thus α = 0 and ββ = 1.

PROPOSITION. Suppose aj + &S + 7 ^ * = α 2 l + /32S + 72S
suppose further that β1 ^ 0, β2 ^ 0 α^ώ 7i ̂  0 i/ fr = 0 α^ώ 72 ̂  0
ί/ A = 0, and |7 j ^ &, |7 2 | Φ β2. Then ax = a2, β1 = ̂ S2, 7i = 72.

Proof. Consider first the case where ΊX — 0. Then ^ S = (a2 —
<*i)I + /52S + 72S*. If /Si = 0 then the operator on the right is the
zero operator. Applying it to the unit vector e1 we easily conclude
that αx = a2, β2 = 0 and 72 = 0. Thus assuming β1 Φ 0 we have

S = βr\az - ax)I + βr'β2S + βr^S* .

By the lemma we have αx = a2, βt — β2 and 72 = 0. Thus we may
assume without loss of generality that 7X Φ 0.

Similarly we may assume βx Φ 0. Indeed if β1 = 0 we may
reduce the situation to the case just considered by taking adjoints,
i.e.,

aj + 7iS = oί2l + ^ 2 S* + 72S .

We now consider the general case where aj. + βxS + 7i>S * =

υa2l + β2S + 72S* where βx > 0 and 7i ̂  0. Then

(1) AS + 7χS* ^ ^(α, - αx)/ + β2S + 72S*.

Taking adjoints gives

(2 ) AS* + 7XS* = π(a2 - ax)I + /52S* + 72S.

(Throughout this argument the subscript U is to emphasize that
each of these equivalences are effected by the same unitary operator.)
We next multiply equivalence (1) by &7Γ1 to obtain

3 )

Subtracting (2) from (3) gives
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(/9ΪΎΓ1 ~ 7i)S =υ [β{tΛ<*ι ~ «i) ~ («2 - Λi)

T Γ ^ - /92)S* + (

Note that β1Φ ITJ implies that /8Ϊ7Γ1 — 7i ^ 0. Hence

~U (/35TΓ1 — 70 (/3ΪΎΓ1 — 7χ)

, {βiβίtl

(βl1

It follows from our lemma that

( 5 ) βaΛa* - ai) - (<*2 - αx) = 0

( 6 ) βctϊ^ - β2 = 0

(7) l A ^ Γ 1 - ^ ! = |/357Γ1-71| .

From (5) note that if αx Φ a2 then /S^Γ1 = α2 — ̂ i/α2 — ̂ i has
modulus 1 or /3i = | τx |, a contradiction to our hypotheses. Thus
ax = α2.

Since / 3 ^ 0 we have from (6) that γ2 = βϊ1β2Ύ1. Placing this
value of 72 in equation (7) gives

( 8 ) I &&7Γ1 - βΓ'βtJx I = I βtϊΓ1 - % I

or

( 9 ) (/3Γ1 A

If I/SI7Γ1 — Til = 0 then β\ = fγ{f1 contrary to the assumption
that β2 Φ |Yi|. Hence βrxβ2 = 1 or β1 = β2 and τ 2 = β^βίΐi = 7X.

Proof of assertion 4. As we have already seen, Γ and S generate
the same C*-algebra. The spectrum of S is known to be {S}Ur
where τ denotes the unit circle in the complex plane. (Cf. Example
2.54, page 86 of [3].) Thus the irreducible representations of C*(T)
consist (up to unitary equivalence) of the identity representation
and the characters of the form πλ, for λ e τ , where πx is determined
by the requirement that πλ(S) = λ. Hence

f - {T} U fx

where

T± = {πλ(T): λ 6 τ} = {a + βX + rΐ: λ e τ) .

That this is the ellipse described in assertion 5 is an exercise in
elementary coordinate geometry. Note that it follows from asser-
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tion 3 that S + 2S*, S - 2S* and 2S + S* are nonequivalent, yet
they have the same normal spectrum, namely the ellipse

2ή + y2 = 1 .

Proof of assertion 6. We first must define the topology of f
by the following procedure (cf. Definitions 2.52 and 2.53 of [3]).
Let £f be any subset of T. We say an operator R is weakly con-
tained in £f if R is weakly contained in an operator which is the
direct sum of concrete irreducible operators, one from each of the
elements (i.e., unitary equivalence classes) of £f. Further an
element r e f is said to be weakly contained in £f, if any concrete
operator R in the class r is weakly contained in Sf. The closure
of S? t denoted £^, is defined to be the set of elements of f which
are weakly contained in S^. A nontrivial verification shows that
this closure operation satisfies the Kuratowski closure axioms and
hence defines a topology on f.

Since the closure of {T} is the collection of elements of f weakly
contained in T it follows from the definition of f that the closure
of {T} is all of t.

In general this topology on fn (the subset of f consisting of
the irreducible operators which act on a Hubert space έ%f% of dimen-
sion n) is just the quotient topology obtained from the *-strong
operator topology on the set of all irreducible operators of norm
less than or equal \\T\\9 acting on 3ίf%. In particular for n = 1 this
topology is just the ordinary topology of the complex plane.

We remark that these considerations do apply to other classes
of Toeplitz operators. For example, for each positive integer n,
the operator

is a (reducible) Toeplitz operator with exactly the same (generalized)
spectrum as the Toeplitz operator al + βS + ΎS*, whose spectrum
has been computed above.

In conclusion we hope these elementary computations for a very
special class of operators have established that, while the spectrum
f introduced in [3] may be complicated, it is not completely intrac-
table.
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