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FREDHOLM THEORY OF PARTIAL DIFFERENTIAL
EQUATIONS ON COMPLETE RIEMANNIAN

MANIFOLDS

ROBERT C. MCOWEN

This paper studies necessary and sufficient conditions
for differential operators to be Fredholm on the Sobolev
spaces of a complete (not necessarily compact) Riemannian
manifold Ω. The conditions are formulated algebraically
in terms of the nonvanishing of the operator's principal
symbol on Ω (ellipticity) and its "total symbol" at infinity
of Ω. The operators considered arise by taking sums of
products of vector fields, all of whose covariant derivatives
vanish at infinity; and the study involves C*-algebra tech-
niques. The required technical restrictions on the curvature
and topology of Ω near infinity are much weaker than those
in earlier joint work with H. 0. Cordes.

0* Introduction* Let Ω be an -^-dimensional paracompact C°°-
manifold with complete Riemannian metric ds2 = giidxidxi and sur-
face measure dμ = V~gdx where g = det (£„•). Let Δ = g^V/^ the
Beltrami-Laplace operator on Ω, where (gίj) — (g^Y1 and V denotes
covariant differentiation with respect to the Riemannian connection.
Then A = (1 — A)~m is a positive-definite operator in -S^ίΦ), the
bounded operators over the Hubert space $ — L\Ω, dμ). Define the
iSΓth-Sobolev space QN c £ for N = 1, 2, by requiring ΛN: £ -> $N

to be an isometric isomorphism. It was shown in [3] that C"{Ω) is
dense in each !QN.

Now suppose we are given a differential operator L on Ω, of
order N, such that we obtain a bounded map L: !QN —> φ. We may
ask the question when is L Fredholm (i.e., when are ker L and coker
L finite-dimensional subspaces of $N and § respectively)? If Ω is
compact, Seeley [13] showed that L is Fredholm if and only if L is
elliptic (i.e., the principal symbol of L never vanishes on the cosphere
bundle S*Ω). For the case Ω = Rn, on the other hand, ellipticity
is not sufficient to imply L is Fredholm; Cordes and Herman [4]
derived necessary and sufficient Fredholm criteria in terms of the
"total symbol" of L.

In [4] the techniques involved considering operators LΛN as
generators of a C*-algebra 8tc«Sf(φ) which is commutative modulo
the compact ideal, 3Z~. The symbol of LΛN is then defined as the
continuous function GLΛN on the maximal ideal space M of 3Ϊ/J^~
provided by the GeΓfand theory. Thus LΛN is Fredholm if and only
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if OLΛN is never zero on M, and algebraic criteria are obtained by
giving a precise description of M and OLΛN.

In this paper we shall attempt to generalize the results of [4]
and [13] to noncompact Riemannian manifolds Ω. We shall use
techniques similar to those in [4], generating a C*-algebra Sί which
is commutative modulo J%"9 and then attempting to describe the
maximal ideal space M and functions OLΛN. Of course a precise
description of M can only be made for specified Ω; but our main
result, Theorem 4.1, yields a sufficient condition for L:$N—>φ to
be Fredholm, namely that the "formal algebra symbol" σLAN never
vanish on the space dP*Ω (see §4 for definitions). Thus operators
such as (λ — A)N are Fredholm on the Sobolev spaces of Ω for λ > 0,
whereas for X — 0 we need to use weighted Sobolev spaces (see [2]
and [11]). On the other hand, ellipticity is certainly a necessary
condition for L to be Fredholm (c.f. §2).

This paper summarizes the principal results of the author's
Ph.D. thesis, and generalizes earlier joint work with his advisor,
H. 0. Cordes, whose contributions to this research are also gratefully
acknowledged.

1* The C*-algebra for singular elliptic theory* We begin by
describing the (global) differential operators that we will be con-
sidering. Suppose la is a C°°-contr a variant tensor field of degree
a ^ 0 on Ω. Then in local coordinates la has components ZJ1""**, and
we may define a differential operator laF

a by

(1.1) W'u = ir^Fh Vian

for ueC™(Ω). (Note here and throughout this paper we employ the
usual summation convention for tensor indices.) The differential
operators we consider are just sums L = Σ5U ̂ "

For any tensor field T, we shall denote its length (a function
over Ω) by \T\. In order to analyze the behavior of our operators
"at infinity" let us make the following definition: if / is a (complex-
valued) function on 42, we shall write lim,,.^ / = M provided for any
ε > 0 there is a compact set KaΩ such that \f(x) — M\ < e for all
x 6 Ω\K. We shall consider the following conditions on the curvature
tensor R.

Condition H. \ FkR | is bounded over Ω for all k ̂  0.

Condition Ho. In addition to Condition JH, lim..^ |F*β| = 0 for
all k^l.

Throughout this paper we shall be assuming Condition H with-
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out further mentioning it.

We may now prove the following

THEOREM 1.1. // L = Y£=olaV
a has bounded coefficients (i.e., each

\la\ is bounded over Ω), then LANe«Sf(φ). // in addition L has coef-
ficients vanishing at infinity (i.e., lim^^JZαl = 0 for each a), then

Proof. It suffices to consider top-order terms only: L = 1NVN.
Let ψeC™(Ω). Condition H implies the following estimate for the
ZΛnorms:

(1.2) \\FNΨ\\^C( Σ IMW + ΣΣ
N

where G is a constant. (Note: if T is a tensor with length | T\f then

(|Γ||2 = \ \T\2dμ. C. f. Aubin [1] for this notation, and Proposition

3 in [1] for the estimate (1.2).) So

Σ ||(l-^fll2+ Σ
k^{Nl2) gfc^(iV

where the C* are constants and for the last inequality we have used
the estimates (for

Since Λ~NC™(Ω) is dense in Q (c.f. Cordes [3]), estimate (1.3) proves
LΛNe£f(Q). Now suppose lim^^ | lN \ = 0 and for ε > 0 choose
KaΩ, compact, such that |ϊ^| < ε for xeΩ\K. Let φeC™(Ω) with
supp φaK and define Lε = φL. Then ^ L e ^ = Λφ-LΛN e ̂ T(φ), since

e ^f(φ) and Λφe3Γ(Q) by Theorem 3.1 in [5]. Since ΛLεA
N ->

in norm as ε—>0, we also have ΛLL4Λr6.^(φ).
In order to do Fredholm theory, we must restrict our attention

to the following classes of operators
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L = Σ laFa'> each \la\ is bounded over ώ and satisfies
α-0

lim|F*Zβ| = 0 for all k ̂  l) .

Let To c T7^ be those operators for which lim^^ | la | = 0 for each α.
We shall denote the function algebra T° by A, and the collection of
vector fields L = Z/1 e Γ1 by Z>. Let LN be the subcollection of TN

generated by taking sums of products of functions in A and vector
fields in />. Finally, let Ao = Γo°, Do = DO ΓJ, and Zf - L* n Γo*.
Note that the TN and 1/ form graded algebras with respect to
ordinary operator product, and that D is a Lie algebra under com-
mutator product with DQ as an ideal. Also note that all classes
defined are ^.-modules.

For L = Σί=o lcVa € TN, we define the formal adjoint by U =
Σ L o C - l ) ^ ^ where the operator Vaϊa is defined analogously to
(1.1):

ioτ ueC~(Ω). Using the Leibniz rule for covariant derivatives, note
that V = (—Ϊ)NL + lower order termseTN. Also note that Le
ZΛ(resp. Tξ) implies V e Z/^resp. Tξ). The formal adjoint has the
property that for u, v e C™(Ω) we have (Lu, v) = (u, Uv) (where
<, > denotes the L2 inner product). Thus, using self-adjointness of
Λ, we have (LΛNu, v) = (u, ΛNL'v) for veC^(Ω) and ueΛ~NC^(Ω).
Since both C"(Ω) and A~NC~{Ω) are dense in Q we obtain the follow-
ing from Theorem 1.1.

COROLLARY 1.2. IfLeTN, then LΛN,ΛNLe£f(%) and (LΛN)* =
yl^L' {where * denotes the Hilbert space adjoint).

We next begin investigating commutators. Let LN + Tξ denote
the algebraic sum of those two classes of operators.

LEMMA 1.3. If Le LN^ + Γf* and MeLN*+ T»* then [L, M] e
TN1+N2~1

Proof. If Le Tξ^ ox Me Tξ\ then [L, M] e T^+N^ may easily
be seen by collecting top-order terms. Hence we may assume
LeLNl and MeLN2. The proof of the first statement then follows
using [A, A] 6 Do and [L, DM] = [L, D]M + D[L, M] for D, A, A 6 D.
To prove the second statement we may assume LeLNί, and has
top terms only: L = A # Avx where A* e ^ Then [L, zf] =
[A A^, J] = A ^ - i l ^ , i ] + [A 2>^-i, A\DNι so the second
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statement follows provided we can show [D, Δ\ e T\ for every DeD.
But letting D = bΨif a computation in local coordinates shows

[D, Δ] = [bΨt,

fk - b'g'Ψffάmoά Tf)

(1.6)

= 0(mod ΓJ) .

This lemma and Theorem 1.1 enable us to investigate commuta-
tors of certain bounded operators.

LEMMA 1.4. If LeLN + Tξ, then [LΛN, A] = K,Λ = ΛK2 where
K} e

Proof. If we let R(X) = (λ - AT1 and Γ = {zeC: \z - 1| = 1}
(with positive orientation), then

(1-7) [LA", A] = - L ( VT[LAN, R(X)]dX
2πί ir2πί

and

[LA", R(X)] = R{X)[LAN~\ A*]R(X)A

(1.8) = R{X)A\L, Δ]AN+1R(X)A

= AR(X)KR(X)A

where K = A[L, A\AN+16 J T by Theorem 1.1 and Lemma 1.3. Let
ZΊ(λ) = AR(X)KR(X) and K2(X) = R(X)KR(X)A, so K^X) defines a norm
continuous map from Γ\{0} to L%: Using (4.1) of [5] with s = 1

shows that K^X) = O(\X\~3/i). So tf, = (toi)"1 ( VTKAX)dXe J Γ

for i = 1, 2 and the lemma is proved.

The above lemma enables us to prove the following useful result.

PROPOSITION 1.5. If LeLN + Tξ and P and Q are nonnegative
integers such that P + Q — N, then

(i) ApLΛQe£?(ξ>) and (ii) ΛPLΛQ - LΛN e J2T(£). In addition,
if LeT* then (iii) ΛP+1LΛQ e

Proof We perform an induction on P. The case P = 0 is just
Theorem 1.1: for N^O and LeLN + K we have (i) LΛNe£f($),
(ii) LΛN - Lyl̂  e 3ίΓ, and (in case L e Tξ) (iii) ^IL/ί̂  e 3T. Now
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assume by induction that the proposition is true for P. For N ^ P,
let L e LN + T? and Q = N - P. Then

(1.9) [ΛPLΛQ, A] = (2ττi)-1 ( V~X[APLAQ, R(X)]dX
Jr

and

-1, A2]R(X)

(1.10)

= AR(X)KR(X)A

where Γ and R(X) are as in the preceding proof and K — ΛP+1[L, J]ΛQ+\
But by Lemma 1.3, [L, A] e T$+1, so Γ̂ = /ί(^p[I/, A]ΛQ+1) e X b y the
induction hypothesis (for P and JSΓ+1). So if we let Kλ(X) =
AR(X)KR(X) and K2 = R{X)KR{X)A, then jKy(λ) = O(|λ|~3/4) and

[/ίpL/ί$, t̂] = J M = ^^2 where ^ - (27ΓΪ)-1 ( irχλ)dλ e ^ T for j =

1, 2. Since ^ = yl§ is dense in φ, this implies

(l.ii) ^tpL^ίρ - .ip+lL/ίρ-1 G ^ r .

Using the induction hypothesis, we get (i) for P + 1. In fact the
induction hypothesis also yields

(1.12) APLAQ - LANe^T

which together with (1.11) yields (ii) for P + 1. Finally, if L e Γf,
multiplying (1.11) on the left by A and invoking the case P once
more yields (iii) for P + 1.

COROLLARY 1.6. If LeLN + Tξ, then LAN - ANL e 3T.

Let 3ί° denote the algebra of bounded operators on $ which is
finitely generated by LAN and ANL for LeLN + Tξ. Note that Sί°
contains A and multiplications by functions in A. Let Sί be the
norm closure of the collection 9ί° + 3ίί. We may now prove the
following.

THEOREM 1.7. % is a C*-subalgebra of £f(§) with compact com-
mutators.

Proof. §ί is closed under adjoints by Corollary 1.2. Concerning
commutators, let Lx e LN^ + Γf1 and L2 e LN* + Tξ* and suppose
Nx ^ N2. Then L2 e LN> + T^ and
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using Lemma 1.3 and Corollary 1.6. By Corollary 1.6 this takes care
of all commutators.

We shall call Sϊ the C*-algebra for singular elliptic theory on
Ω. The reason for this is as follows. By Theorem 1.7, Sϊ/J^~ is a
commutative C*-algebra; hence by the GeΓfand theory it is isometri-
cally *-isomorphic to C(M), the algebra of continuous functions on
the space M of maximal ideals in SΪ/J^Ί For A e Sί, denote the
image of its coset A + 3ίΓ in C(M) by σA. Since Sί/J^" is a C*-
algebra, invertibility of A + ^f in £f(fQ)\3ίΓ is equivalent to its
invertibility in 3l/J^ and hence to the nonvanishing of σA on M.
Thus a further analysis of σA and M is desired to provide an
algebraic criterion for A to be Fredholm. We turn to this question
in the remaining sections.

2* Maximal ideals over finite points* Let 3ίTO c 8ί denote the
algebra of multiplication operators obtained by closing A under the
uniform norm. Since Sίm is a closed *-subalgebra of all bounded con-
tinuous functions on Ω, Slw is isometrically Msomorphic to C(Ω)
where Ω is some compactification of Ω. Although Ω has no simple
geometrical structure, there is a continuous surjection p:M—>Ω
defined as the associated dual map (c.f. [12]) for the continuous
injection δίTO —> Sϋj^Γ. Thus S — p~\Ω) is the set of maximal ideals
over finite points of Ω. We can completely describe this part of M
and σA. If la is a contravariant tensor field of degree a, we shall
denote by laζ

a the function defined on cotangent vectors (x, ξ) by

THEOREM 2.1. S is homeomorphic to S*Ω, the bundle of unit
cospheres, under the map m —> (x9 ξ) such that

(2.1) σLΛN{m) = lΛx)ζN

where L — Σ^=o ( — i)alaPa LN + ΪT Thus uniform ellipticity is a
necessary condition for L: $Z)N —> !Q to be Fredholm. {Note that as
special cases of (2.1) we have σ (m) = 0, and σa(m) = a(x) for all
aeA.)

Proof. For meS with p(m) — x e Ω, let x\ , xn be local
coordinates in a chart U which diagonalizes the metric at x. Let
iVbe a compact neighborhood of x such that NczU, and let φ e C™(U)
satisfying 0 <̂  φ ̂  1 on U and φ — 1 on N. Note that for each φ,
S, = -iφid/dx^ΛeW and S* = Sχmoά.5f). Hence ζu = σSv(m) is real
for each v and (x, ζ) where ζ = Σ*=i f$xv defines an element of the
cotangent space at x. Furthermore
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Σ SίffSf = Σ Λ(d/dx")φg'"'φ(d/dx<')Λ
v μ

(2.2) = -Λφ2ΔΛ(moά3r)

So

lί I2 = Σ ξl = Σ ^(m)flr^(a?)σ, (m)

(2.3) = ^ ( Σ , , ^ ^ ^ . ) ^ )

- φ\x) = 1 .'

Property (i) is immediate from the definition of the surjection
p: M—> Ω while (ii) follows from σA(m) = σφΛ(m) = 0 since (̂α?) — 1
and φΛe^T. The formula (2.1) holds for JSΓ=1 and L = D =
—ibv(dldxv)eD since

and this may be extended to higher-order tensors: for example
L - -VΨyμeL2 + Tl implies

SO

(2.5)

The map m -* (x, ί) is clearly 1-1. To show it is surjective onto
S*i2, we use the following lemma (whose proof is immediate) to
achieve local rotations of M.

LEMMA 2.2. Let φ e SίTO be real-valued satisfying 0 <^ φ <L 1 on Ω
and φ — 1 on a closed set UaΩ, and consider the C*-algebra δ^cSK
generated by ^Γ, aeA, φA, and φNLΛN: LeLN+ Tξ. Let Mφ be the
maximal ideal space of (Άφ/tβ?~f σφ: %φ-^C{Mφ) the symbol homomorphism,
pφ: Mφ-> Ω the associated dual map to the inclusion Sίm c Sί^/^7
Let Nφ = Pφ\U)cMφ whereas N = p~\U)cM. Defining p(a + JίΓ) =
a + J Γ and p(LΛN + 3ίΓ) = φNLAN + 5ίΓ yields a surjective algebra
*-homomorphism p: St/Ĵ ~ —> Sί^/^" whose associated dual map
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provides an injection j : Mφ-^ M such that

Mφ

 3 > M

\ /

Ω

commutes and

(2.7) σA(j(n)) = σ%(n)

for all neMφ, AeSί, and Bep(A + J%Γ). Furthermore, the restric-
tion of j to Nφ provides a homeomorphism onto N, so we may
consider NφdM and NaMφ.

Applying the lemma in our case, since φ has compact support in
a coordinate chart, the algebra % is generated by aeA, Su: v =
1, --,n, and JTT Choose any ζ'eS^Ω and let R = (rvμ) be an
orthogonal matrix such that £' = Rζ. Defining τ(a + 3ίί) — a + 3ίΓ
and τ(S» + JT) = Tv + 3Γ where T, = -iφ ΣJ = 1 r

uμ(d/dxμ)Λ, we
obtain a surjective *-isomorphism τ: %φ\3ίΓ —> %φ\3ίί whose associated
dual map must be a (surjective) homeomorphism h: Mφ —>• Jf# satisfy-
ing σφ

A(h(n)) = σφ

B(n) for all Ae%, neMφ, and JSeτ(A + <_5Γ). In
particular, & preserves fibers over U. Thus m' = j{h{m)) e M has
the desired property that mf —> (a?, f) under the correspondence of
the theorem since ξ' = Σ ί = i r " ^ = σsSh(m)) = ^( i (^( m ))) So we
need only check continuity. But the topology of M is defined so
that each σA is continuous, and since the functions (2.1) are continu-
ous on S*Ω (with respect to the usual cosphere bundle topology)
and these functions separate points of S*Ω, we must have the map
m —> (a?, ξ) continuous. In a similar manner we have the inverse
mapping continuous.

Theorem 2.1 is analogous to the result for compact Ω proved
by Seeley [13]. The proof is similar to that in [13], except regarding
the surjectivity of the correspondence: we have used associated dual
maps, ideas generalized to manifolds from Herman [8], instead of
the Gohberg type estimates invoked by Seeley. In fact, it should
be pointed out that the validity of Theorem 2.1 depends only on the
generators of the algebra at finite points of Ω (an idea expressed
more precisely in Lemma 2.2). Hence Theorem 2.1 would remain
true if we were to allow generators of Sί which do not behave
asymptotically like products of vector fields in D. However, to
complete the analysis at hand, we must analyze the asymptotic
behavior of D which we take up in the next section.
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3* The asymptotic behavior of /)• We are interested in finding
a set of generators of D at "infinite points of Ω." Let dΩ = Ω\Ω,
but recall that this set only has meaning as a collection of maximal
ideals for the algebra 8lm. However, if Du D2eD then their point-
wise inner product under the metric giά defines a function g(JDu D2)
which, by the Leibniz rule for covariant derivatives, is in A. Thus
g(Dlf D2){x) for xedΩ is defined.

DEFINITION. We shall call Du " , ΰ e e f l an orthonormal basis
for D at x e dΩ if

(i) 9iDi, A W β
(0 if

(ii) for every De D thre exists constants cl9 , cκ such that
the function \D — ΣCiD^eA vanishes at x.

Using a Gram-Schmidt type of procedure, it is not hard to
verify that there exists an orthonormal basis for D at each xedΩ,
and that each basis contains the same number of vector fields,
ίc = d(x), the "dimension" of D at x. Note that K ̂  n.

We would like to be able to extend the notion of orthonormal
bases to open sets in dΩ. In order to do so we need the following
condition.

Condition C. The function d:dΩ->Z+ is continuous. I.e., the
dimension of D is constant on connected components of dΩ.

We may now prove the following.

THEOREM 3.1. Under Condition C, for every x0 e dΩ we can find

an open set U0(zΩ and real vector fields Du -—,DκeD (tc — d(x0))

such that

( i ) # o 6 Uo

(1 if i = j)
( i i ) g(Di9 D3)(x) = . for every xeU0

[0 if ^ Φ j)

(iii) for every DeD we may find functions al9 , aκeA such
that D = aJDx + a2D2 + + aκΏκ + Do everywhere on UOf where
DoeD satisfies g(D09 A)0*0 = ° for all xedΩ Π Uo.

Proof. Pick an orthonormal basis at x0: Dl9 - 9DκeD. With-
out loss of generality we may assume Dlf , Dκ are all real vector
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fields (since otherwise we may orthogonalize the real and imaginary
parts at xQ): Since gφu Dό) e A for all i, j , there exists an open
set UodΩ containing x0 such that dΩ n Uo is connected and

« \ = {
i f %Φj

for all x e Uo. Let X e C°°CR) with all derivatives bounded, | lit) | ^ 1
for all t, and

(1 if ί > 1/3
(3.2) Z(ί) = 7

V W (0 if ί < 1/4 .

Let & = X(0(A, A)) It is easy to see that Φχ(gφl9 A))~1/2 e 4̂ so
A = &(0(A, A))" 1 / 2A € i> and satisfies ^(A, A) = 1 on Uo. Inductive-
ly, define D3 = φ,{g(BSf Bd))'1/9 Bά where ^- = %(gr(5i, B3)) and J5, =
A- — g(Dl9 Dΰ)D1 — - - — fif(A -i> A ) A -i A computation shows

( > 3/4 - 1/3* - 1/3/c - . . . - 1/3/c > 1/3

for x e Uo, so Do e D. Hence Dlf , A is orthogonal at every x e UQ,
i.e., we have (ii). Now let aά = g(D9 Dό) e A, and let Do — D —

Σί=i « iA τ h e n

(3.4) flr(A, A ) = ί/(^ ~ -ΣtoiA, A ) = α i "" aJ = °

implies Do is never a linear combination of A , , A on Ϊ7O. Hence
by Condition C and the connectedness of 3fi Π UQf we must have
g(D0, D0)(x) = 0 for all xedΩ f] Uo.

4* The formal algebra symbol and maximal ideals at infinity*
For L = Σ2U ία'7'" e Γ^, let us define the formal symbol

(4.1) 9LAN(X, ξ) = ( Σ la(x)^\l + \ξ\TN/2 = #ΛNL(X, ξ)
\0 /α=0

which is a continuous function on the cotangent bundle T*Ω. (Recall
from §2 that the notation laξ" means the function li

a

1'"ίa(x)ζh ••• £<β.)
Note that the boundedness of the coefficient tensors of L implies
σL N is bounded on T*Ω. The formal symbols for operators LΛN

and ΛNL in Sί° generate a C*-subalgebra ^ ^ of the algebra of
bounded continuous functions on T*Ω. Hence J?" is isometrically
^-isomorphic to C(P*Ω), where P*Ω denotes some compactification
of T*Ω. The injection 8 l m - > ^ " yields a continuous surjection π:
P*Ω->Ω. Unfortunately the map σ: Sί°-> C(P*Ω) is not an algebra
homomorphism: for example σAσΏχΌ^ = (δV&f,- + 6* '̂, ^ y )( l + | ί | 2 ) " 3 / 2
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but σ^ 1 σ^ 2 = (δVί i ί , ) ( l+ | f | 2 r 3 / 2 where A = bΨi9 D2 = cΨjeD.
However, if we restric our functions to the subset dP*Ω = P*Ω\T*Ω,
we obtain an algebra homomorphism σ: Sί° -> C(dP*Ω) and we call
OA — GA\BP*Q the formal algebra symbol of AeSl0.

It is evident that the cosphere bundle S*Ω is homeomorphic to
π"\Ω) by the map (x, ξ) -> lim^^ (a?, r£) 6 dP*Ω. Theorem 2.1 may-
be interpreted as providing a continuous injection θ: S ->dP*Ω such
that

(4.2) σMm)) = < (̂m)

for meS and operators A6Sί°. The main result of this paper extends
this results as follows.

THEOREM 4.1. Under Condition C, there exists continuous in-
jection θ: M—> dP*Ω such that

M ° >dP*Ω

^ \ /
Ω

is commutative, and (4.2) holds for all me M and Ae3ϊ°. Thus a
sufficient condition that L: ξ>N —»$ be Fredholm is that OLΛN Φ 0 on
dP*Ω.

Before extending θ to Mw = M\S, we first must analyze C(M)
a little more closely. Let Mv denote the closure in M of S and
Ms — M\MP. We may now prove the following.

LEMMA 4.2. Mv = {meM: σA(m) = 0}.

Proof By Theorem 2.1 it is clear that Mpcz{me M: σΛ(m) = 0}.
Let J" = {Ae 8ί: σ4 = 0 on ϋfp}. Then^/JT* is a C*-algebra (with-
out unit) which is isomorphic to the algebra of continuous functions
on Ms which vanish at infinity. Since A is the only generator of
8ί° in ̂  ^ must be generated by operators of the form AΛ and
A A where A e ST. So if σΛ{m) = 0 for meMs, then σ5(m) = 0 for
all I? e ^ ^ which is impossible.

LEMMA 4.3. If LeTξ, then σLΛN = 0 on M^.

Proof. If meiH^ Π ΛΓP, let m^ be a net in S converging to m.
Then using Theorem 2.1 we conclude that σLΛN(mβ) -»0 = σLΛN(m).



FREDHOLM THEORY OF PARTIAL DIFFERENTIAL EQUATIONS 181

If m e Ms, then σΛ(m) = 0 by Lemma 4.2. But oLΛN(m)σΛ{m) = σLΛN+i
(m) = 0 since LAN+1 e ^ T ; so σLAN{m) = 0.

Now let m0 e M^ with xQ = p(m0) e 3ί2. By the methods used in
the proof of Theorem 3.1, it is possible to construct (in addition to
Uo) a closed neighborhood Ua Uo of xOf and φ e Sίm satisfying 3̂ = 1
on U, 0 <; ^ <; 1 on Ω, and supp φ c Z70. Let 9^, pφ9 Mφ, NΦ, and JV
all be as described in Lemma 2.2. Furthermore, let U^ — dΩπU and
iVoo = p - W J . By Lemma 2.2 we will also consider N^czMφ. Let
A , , Dκ 6 2)(/c = d(α?o)) be real vector fields as in Theorem 3.1, with
expressions in local coordinates Du = bl(d/dxj) for v — 1, •--,£. Let
Ŝ  = —iφD^Λ 6 Sϊ̂  for v = 1, , K. We define a contra variant tensor
Vk by

(4.4) ^ = Σ VM + hjk .

If (x, ζ) is a complex covector with x e Z70 and | ξ |2 = 1, then

Σ UξMk ̂  l

since the Dv form an orthonormal set on £70. Hence hύkξάξk ^ 0, i.e.,
hjk is positive semidefinite. We shall assume henceforth that hjk is
not identically zero, i.e., that K <n. (See Remark 4.6 below for the
case K = n.) From (4.4) we obtain

K

Since

ΛFjφ2gjΨk/l = Λφ2ΔΛ (mod ^ 0

(4.6) = φ2ΛΔΛ (mod J T )

= φ2Λ2 - ^2

and

*M = -Λ{Vάiφbί){iφbk

υVk)Λ

(4.7; — —o»o»

= - S v

2 ( m o d ^ " )

we get after multiplying (4.5) on the left and right by A and rear-
ranging:

(4.8) φ2 = φ2Λ2 - ΛHΛ + Σ

where ί ί denotes the operator Vάφ
2hίkVk. The positive semi-definite-
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ness of the tensor hjk implies

(4.9) (AHAu, u) = ~ ( φ2h>'\PkAu)(VjM)dμ ^ 0
JΩ

for ueC™(Ω), so the operator AHA is nonpositive. Hence φ2A2—AHA
is nonnegative and we may define So — (φ2A2 — AHA)~1/2. From (4.8)
we conclude AHA, Soe$Xφ and

(4.10) φ* s Σ S;(mod JSΓ) .

If we let S% = {ζ = .(Co, , Q 6 Λ-+1: Σί=oCϊ = 1 and ζ0 ̂  0}, then
we are now able to prove the following.

PROPOSITION 4.4. There exists a continuous injection

(4.11) αv N«, >Uoox [0, 1] x S;

(θi(n) = (sc, r, ζ) satisfies (i) <xα(w) = α(#)> (ii) 0Λ(W) = r,
(iii) σsj,n) = ζ, (y = 0, 1, , Λ:), α^d (iv) ζ0 ^ r.

Proo/. Since N^ is a closed subset of Mφf ^ = {A e Sί̂ : σi = 0
on JVoJ is a closed ideal of Sί̂ , and Sl̂ /̂ /J ^ C(JVOe). Furthermore,
using JVββ c Λf̂  and Lemma 4.3, Wφl^fψ is generated by α + ^ ^ ( α 6 A),
^ + ^ , and S, + ^ (v = 1, , it). Thus if we let ^ T O be the
C*-algebra generated by Sίm a n d ^ ^ , then &J^ is a commutative
C*-algebra isometrically *-isomorphic to C(UJ). Also if we let 9ί$
be the C*-algebra generated by φΛf Sv (v = 0, 1, , Λ:), a n d ί ^ ; then
Wψl^φ is a commutative C*-algebra (with unit using (4.8) and the fact
that φ == l ( m o d ^ ) ) . In fact, since Sί^/^ is finitely generated, it has
maximal ideal space Nί homeomorphic to the joint spectrum of its
generators (c.f. [12]). If we let σh % -> C(Nί) denote the symbol
homomorphism, then (4.9) implies σ\HA <; 0, and so by (4.8),
0 ^ σ*μΛ2 ̂  1. By (4.10) we also have Σί=0 (^lf = 1. Thus there is
an injection

(4.12) Nί >[0,l] x S%

where n -> (r, ζ) satisfies σ\Λ(ri) — r and σ%u(n) = ζ». Since S I J ^ is
generated by &J^?* a n ( l ®*4^» w e c a n u s e Herman's Lemma (c.f.
[8], Theorem 1) to conclude the existence of a continuous injection
iVoo —> U^ x iVL and composition with (4.12) yields a continuous in-
jection o)φ: ^ -> Z7TO x [0, 1] x S+ satisfying σ£(w) = α(x), σ^(^) = r,
and (τ(%)? = Cv When we view N^aM (i.e., compose ωφ with the
homeomorphism p~\U) ~ Pφ\U)), we obtain the map α>̂  of (4.11)
satisfying (i)-(iii). Condition (iv) is simply a consequence of A2 <;
A2 - AHA.
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In a similar manner we can let P*U — π~\U) and P*!!^ —
P*Uf)P*Ωoo = K~\U^. Applying the above argument to the func-
tion algebra ^ φ generated by the formal symbolsof the generators
of % yields

PROPOSITION 4.5. There exists a continuous injection

(4.13) ft)2: P * t L > U^ x [0, 1] x S\.

such that for o)2(p) = (x, r, ζ) we have (i) σa(p) = a(x), (ii) άΛ(p) — r,
(iii) σs^(p) — ζu (v — 0, 1, , κ)f and (iv) ζ0 >̂ r. In fact, every
(x, r, ζ) in U^ x [0, 1] x S+ satisfying (iv) is in the range of ω2.

Proof, To prove the last statement, let xβ e Ω denote a net con-
verging to x. Let ξβ 6 π~\xβ) satisfy

(4.14) & f ( f , ) y r = ζ v (v = l,.' , κ ) .

But this implies by (4.4) that

or

(4.15)

The last term in (4.15) is nonnegative, so by adding something to
ξβ from the kernel of the system (4.14), which is nontrivial since we
are assuming tt < n, we can also require

(4.16) | £ , |* = J L - 1
r2

provided ζ0 ^ r. (Note: if r — 0, take ζβ ~ lim,.,^ rξ'β G π~\xβ) where
ξβ solves bi(ξβ)j = ζ,.) Observe that for each /5, ^ ( ^ , £j9) = r and
^(^i5, f̂ ) = ζv (v = 1, , K); hence also [σSo(xβ, ξβ)f = 1 - Σί=i Cί = Co
for every /3. Thus (x ,̂ £/5) must converge to a point p e P*ΩOO

satisfying ω2(p) = (a;, r, ζ).

These propositions easily imply our main result.

Proof of Theorem 4.1. Note that ΰ ) ^ ^ provides a continuous
injection θ: N^ -> P * ^ . It is clear that the value θ(n)edP*Ω does
not depend on the choice of neighborhood U, so we obtain a con-
tinuous injection 5: M^ —> dP*Ω. Letting m e Mw Π ΛΓ̂  and mβeS
denote a net converging to m, it is easy to check that άA(θ(m)) =
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lim^ σA(θ(mβ)) for every A e Sί°, so we obtain a continuous injection
β:M-^dP*Ω satisfying (4.2).

REMARK 4.6. It was assumed above that /c < n. Actually, the
case K = n is easier, for then we obtain from

(4.40 gjk = Σ ««

that

φ2 = φ*Λ2 + Σ Sftmod J
(4.10')

= Σ Sϊ(mod
f=0

after defining So — φΛ. In place of Proposition 4.4, the same proof
establishes a continuous injection

(4.110 αviV,. >EL x Si

satisfying ωλ(n) = (x, ζ) with σa(n) = a(x) and σSu(n) = ζ̂  (v = 0, , n).
Similarly we get a continuous injection

(4.130 ω2: P * UM > U^ x Si

satisfying ω2(n) = (x, ζ) with σa{n) — a(x) and σSu(ri) = ζv (v = 0, , n).
In fact, imitating the proof of Proposition 4.5 establishes that (4.130
is surjective, and the proof of Theorem 4.1 follows as above.
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