AXIOMS FOR CLOSED LEFT IDEALS IN A C^{*}-ALGEBRA

Jen-chung Chuan

Abstract

A set of axioms is formulated to describe the conditions under which a Banach algebra may be embedded as a closed left ideal in a C^{*}-algebra.

In this paper we attempt to characterize the class of all closed left ideals in a C^{*}-algebra as a class of Banach algebras equipped with a certain (nonassociative) multiplication structure. To describe such a multiplication, we formulate a set of axioms which extracts the essential properties of the binary operation

$$
(x, y) \longrightarrow y^{*} x
$$

taking place in a closed left ideal of a C^{*}-algebra. Following the notion of centralizers of C^{*}-algebras introduced by B. E. Johnson [3] and R. C. Busby [1] we are able to show that the axioms are indeed suitable for our purpose: in order that a Banach algebra L fulfills the conditions of the axiom, it is necessary and sufficient that L can be identified with a closed left ideal of some C^{*}-algebra. This paper is taken from parts of author's Ph. D. thesis under the supervision of C. Akemann.

Axiom 1. Let (L, || ||) be a complex Banach algebra which contains a closed subalgebra B that has a C^{*}-algebra structure, i.e., besides the algebraic and the norm structures inherited from L, B has an involution * so that B is a Banach *-algebra satisfying $\left\|x^{*} x\right\|=\|x\|^{2}$ for $x \in B$. Suppose that

$$
[\cdot, \cdot]: L \times L \longrightarrow B
$$

is a function such that for elements x, y, z in L and for each complex scalar λ the following rules hold:
(i) $[x, y]=[y, x]^{*}$
(ii) $[x+y, z]=[x, z]+[y, z]$
(iii) $[\lambda x, y]=\lambda[x, y]$
(iv) $[x, x]$ is a positive element of the C^{*}-algebra B
(v) $\|[x, x]\|=\|x\|^{2}$
(vi) $\|[x, y]\| \leqq\|x\|\|y\|$
(vii) $[x y, z]=[y,[z, x]]$
(viii) $[x, y]=y^{*} x$ for x, y in B.

We now exhibit a situation in which the conditions stated in the
above axiom hold naturally.

Proposition 2. Suppose that L is a closed left ideal of a C^{*} algebra A. Set $B=L \cap L^{*}$. Let $[\cdot, \cdot]: L \times L \rightarrow B$ be defined by $[x, y]=y^{*} x$. Then $L, B,[\cdot, \cdot]$ satisfy the conditions of Axiom 1.

Proof. Clearly B is a C^{*}-algebra and condition (viii) is satisfied. Conditions (i) $\sim(v)$ reflect the basic properties of A. For x, y in $A,\left\|y^{*} x\right\| \leqq\|y\|\|x\|$, thus (vi). Condition (vii) is the consequence of the associative law of multiplication: for x, y, z in L, we have

$$
z^{*}(x y)=\left(z^{*} x\right) y=\left(x^{*} z\right)^{*} y
$$

We remark that the binary operation $[\cdot, \cdot]$ is not required to be associative. As in the situation of Proposition 2, for arbitrary elements x, y, z in $A,[[x, y], z]=z^{*}\left(y^{*} x\right)$ is usually not the same as $\left(y^{*} z\right)^{*} x=[x,[y, z]]$.

Conditions (i) $\sim(v)$ resemble rules of the scalar product defined on vector spaces. Indeed we are able to derive consequences similar to those of the inner product.

Proposition 3. Under Axiom 1 the following hold:
(1) $[x, y+z]=[x, y]+[x, z]$ for x, y, z in L.
(2) $[x, \lambda y]=\bar{\lambda}[x, y]$ for complex scalars λ and elements x, y in L.
(3) $\|x\|=\sup \{\|[x, y]\|: y \in L,\|y\| \leqq 1\}$ for $x \in L$.
(4) The condition " $x \in L$ and $[x, y]=0$ for all $y \in L$ " implies $x=0$.
(5) For a, b, x, y in L, we have

$$
[a x, b y]=[[a, b] x, y]
$$

(6) For $x \in L$, we have

$$
\|x\|=\sup \{\|[x y, z]\|: y, z \in L,\|y\| \leqq 1,\|z\| \leqq 1\}
$$

Proof. For x, y, z in L and for each complex scalar λ, we have

$$
\begin{aligned}
{[x, y+z] } & =[y+z, x]^{*}=[y, x]^{*}+[z, x]^{*} \\
& =[x, y]+[x, z], \\
{[x, \lambda y] } & =[\lambda y, x]^{*}=\bar{\lambda}[y, x]^{*} \\
& =\bar{\lambda}[x, y] .
\end{aligned}
$$

Thus (1) and (2).
Now for x, y in L with $\|y\| \leqq 1$, we have

$$
\|[x, y]\| \leqq\|x\|\|y\| \leqq\|x\|
$$

Thus if $x=0$ then clearly $\|[x, y]\|=0$. If $x \neq 0$, then

$$
\left\|\left[x, \frac{x}{\|x\|}\right]\right\|=\frac{\|x\|^{2}}{\|x\|}=\|x\|
$$

Therefore (3).
Condition (4) follows from (3). To see condition (5), we repeat rule (vii) to obtain:

$$
\begin{aligned}
{[a x, b y] } & =[x[b y, a]]=[x,[y,[a, b]]] \\
& =[[a, b] x, y]
\end{aligned}
$$

To see (6), notice that if $x \neq 0$, then

$$
\begin{aligned}
\left\|\left[x \frac{[x, x]}{\|x\|^{2}}, \frac{x}{\|x\|}\right]\right\| & \left.=\frac{[x, x]}{\|x\|^{2}}, \frac{[x, x]}{\|x\|}\right] \| \\
& =\|x\|^{4} /\|x\|^{3}=\|x\| .
\end{aligned}
$$

The following definition is a slight modification of a concept first introduced by B. E. Johnson and was later investigated by R. C. Busby in the case of C^{*}-algebras (see [3], [1]).
L is assumed to satisfy Axiom 1 from now on.
Definition 4. A bracket centralizer on L is a pair ($T^{\prime \prime}, T^{\prime \prime}$) of functions from L to L such that $\left[T^{\prime \prime} x, y\right]=\left[x, T^{\prime \prime} y\right]$ for x, y in L. We denote the set of all bracket centralizers of L by $M(L)$.

Proposition 5. Let $\left(T^{\prime \prime}, T^{\prime \prime}\right) \in M(L)$. Then
(1) $\left(T^{\prime \prime}, T^{\prime \prime}\right) \in M(L)$.
(2) $T^{\prime \prime}$ and $T^{\prime \prime}$ are continuous linear maps from L to L.
(3) $T^{\prime \prime}(x y)=T^{\prime}(x) y, T^{\prime \prime}(x y)=T^{\prime \prime}(x) y$ for all x, y in L.

Proof. (1) For all x, y in L, we have

$$
\left[T^{\prime \prime} x, y\right]=\left[y, T^{\prime \prime} x\right]^{*}
$$

and

$$
\left[T^{\prime} y, x\right]^{*}=\left[x, T^{\prime} y\right]
$$

Hence $\left(T^{\prime}, T^{\prime \prime}\right) \in M(L)$ iff $\left(T^{\prime \prime}, T^{\prime \prime}\right) \in M(L)$.
(2) Fix $z \in L$ and for each x, y in L and complex scalars α, β, we have

$$
\begin{aligned}
{\left[T^{\prime \prime}(\alpha x+\beta y), z\right] } & =\left[\alpha x+\beta y, T^{\prime \prime} z\right]=\alpha\left[x, T^{\prime \prime} z\right]+\beta\left[y, T^{\prime \prime} z\right] \\
& =\alpha\left[T^{\prime} x, z\right]+\beta\left[T^{\prime} y, z\right] \\
& =\left[\alpha T^{\prime} x+\beta T^{\prime} y, z\right]
\end{aligned}
$$

Hence $\alpha T^{\prime} x+\beta T^{\prime} y=T^{\prime}(\alpha x+\beta y)$, by Proposition 3 (4). Consequently T^{\prime} is a linear map. Since $T^{\prime \prime}$ plays the same role as $T^{\prime \prime}$ by (1), we conclude that $T^{\prime \prime}$ is also a linear map.

Suppose that $\left\{x_{n}\right\}$ is a sequence in L and y is an element of L such that

$$
\lim _{n}\left\|x_{n}-x\right\|=0=\lim _{n}\left\|T^{\prime} x_{n}-y\right\|
$$

Then for each fixed z in L, we have

$$
\begin{aligned}
\left\|\left[T^{\prime} x-y, z\right]\right\|= & \left\|\left[T^{\prime} x, z\right]-[y, z]\right\| \\
\leqq & \left\|\left[T^{\prime} x, z\right]-\left[T^{\prime} x_{n}, z\right]\right\|+\left\|\left[T^{\prime} x_{n}, z\right]-[y, z]\right\| \\
= & \left\|\left[x, T^{\prime \prime} z\right]-\left[x_{n}, T^{\prime \prime} z\right]\right\|+\left\|\left[T^{\prime} x_{n}-y, z\right]\right\| \\
\leqq & \left\|x-x_{n}\right\|\left\|T^{\prime \prime} z\right\|+\left\|T^{\prime} x_{n}-y\right\|\|z\| \\
& \longrightarrow 0 \text { as } n \longrightarrow \infty .
\end{aligned}
$$

As a result of Proposition 3(4), we have $T^{\prime} x=y$. By the closed graph theorem, $T^{\prime \prime}$ is continuous. By symmetry, $T^{\prime \prime}$ is continuous.
(3) Let $x, y, z \in L$. Then

$$
\begin{aligned}
{\left[T^{\prime \prime}(x y), z\right] } & =\left[x y, T^{\prime \prime} z\right]=\left[y,\left[T^{\prime \prime} z, x\right]\right]=\left[y,\left[z, T^{\prime} x\right]\right] \\
& =\left[T^{\prime \prime}(x) y, z\right]
\end{aligned}
$$

by condition (vii) of Axiom 1. Therefore, $T^{\prime \prime}(x y)=T^{\prime}(x) y$.
The above proposition has the following interesting byproduct:
Corollary 6 (see [4; p. 296]). Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$. A function $T: H \rightarrow H$ is a bounded linear operator on H iff there exists some function $T^{*}: H \rightarrow H$ so that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ holds for all x, y in H.

Proof. The "only if" part follows from the fact that corresponding to each bounded linear operator T there exists an adjoint operator T^{*} such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all x, y in H.

We now prove the "if" part. Fix an orthonormal basis $\left\{\xi_{\alpha}\right\}_{\alpha \in I}$ for H. Imagine H as being embedded in some fixed column of matrices of the size $\Gamma \times \Gamma$, i.e., we fix an index γ_{0} in Γ and identify $\sum_{\alpha \in \Gamma} c_{\alpha} \xi_{\alpha} \in H$ with the complex matrix ($b_{\beta r}$), where $b_{\beta r}=0$ for $\gamma \neq \gamma_{0}$ and $b_{\beta r_{0}}=c_{\beta}$ for $\beta \in \Gamma$. Notice that the norm is preserved under this identification. H is stable under the matrix multiplication so induced and thus becomes a Banach algebra which contains a onedimensional C^{*}-subalgebra B, where

$$
\begin{aligned}
B= & \left\{\left(b_{\beta \gamma}\right): b_{\beta \gamma}=0 \text { if } \beta \neq \gamma_{0} \text { or } \gamma \neq \gamma_{0}\right\} \\
= & \text { the scalar multiples of the matrix } e=\left(e_{\beta \gamma}\right), \\
& \text { where } e_{\beta \gamma}=0 \text { if } \beta \neq \gamma_{0} \text { or } \gamma \neq \gamma_{0}, e_{\gamma_{0} 0^{\prime} 0}=1 .
\end{aligned}
$$

Then the binary operation

$$
[\cdot, \cdot]: H \times H \longrightarrow B
$$

defined by

$$
[x, y]=y^{*} x=\langle x, y\rangle e
$$

(y^{*} is the conjugate transpose of y) satisfies all the conditions listed in Axiom 1. (Notice that condition (vii) is a result of the associative law of matrix multiplication.) Thus if $T: H \rightarrow H$ is a function with the property that there is some function $T^{*}: H \rightarrow H$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all x, y in H, then

$$
\begin{aligned}
{[T x, y] } & =\langle T x, y\rangle e=\left\langle x, T^{*} y\right\rangle e \\
& =\left[x, T^{*} y\right]
\end{aligned}
$$

It follows from Proposition 5 (2) that $T: H \rightarrow H$ is a bounded linear operator.

The next corollary is a slight generalization of the previous one.
Corollary 7. Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$. Suppose that $T, T^{*}: H \rightarrow H$ is a pair of functions such that

$$
\left\{\langle T x, y\rangle-\left\langle x, T^{*} y\right\rangle: x, y \in H\right\}
$$

is a bounded subset of complex numbers. Then T and T^{*} are bounded linear operators on H. Furthermore, T^{*} is indeed the adjoint of T.

Proof. Assume that M is a positive real number such that

$$
\left|\langle T x, y\rangle-\left\langle x, T^{*} y\right\rangle\right| \leqq M
$$

for all x, y in H. Replacing x by $\lambda x(\lambda \in \boldsymbol{C})$ we have

$$
\left|\langle T(\lambda x), y\rangle-\left\langle\lambda x, T^{*} y\right\rangle\right| \leqq M
$$

Thus

$$
\left|\frac{1}{\lambda}\langle T(\lambda x), y\rangle-\left\langle x, T^{*} y\right\rangle\right| \leqq \frac{M}{\lambda}
$$

for $\lambda>0$ and x, y in H. Let $\varepsilon>0$ be given. Fix $\beta>0$. Choose $\lambda>0$ so that

$$
\beta M / \lambda<\varepsilon / 2 \quad \text { and } \quad M / \lambda<\varepsilon / 2
$$

Hence

$$
\left|\frac{1}{\lambda}\langle T(\lambda x), \beta y\rangle-\left\langle x, T^{*}(\beta y)\right\rangle\right| \leqq \frac{M}{\lambda}
$$

In view of the equality

$$
\frac{1}{\lambda}\langle T(\lambda x), \beta y\rangle=\frac{\beta}{\lambda}\langle T(\lambda x), y\rangle
$$

and the inequality

$$
\left|\frac{\beta}{\lambda}\langle T(\lambda x), y\rangle-\left\langle x, \beta T^{*} y\right\rangle\right| \leqq \frac{\beta M}{\lambda},
$$

we have

$$
\left|\left\langle x, T^{*}(\beta y)-\beta T^{*} y\right\rangle\right| \leqq \frac{M}{\lambda}+\frac{\beta M}{\lambda}<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

This shows $T^{*}(\beta y)=\beta T^{*} y$ for all y in H and for all $\beta>0$. Now for all x, y in H, we have

$$
\left|\langle T x, \beta y\rangle-\left\langle x, T^{*}(\beta y)\right\rangle\right| \leqq M
$$

and so

$$
\left|\langle T x, y\rangle-\left\langle x, T^{*} y\right\rangle\right| \leqq M / \beta
$$

for all x, y in H and all $\beta>0$. Hence

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle
$$

for all x, y in H. The desired conclusion follows frow Corollary 6.
Proposition 8. Let $\left(T^{\prime \prime}, T^{\prime \prime}\right)$ be in $M(L)$. If we regard $T^{\prime \prime}$ and $T^{\prime \prime}$ as bounded linear operators on the Banach space L, then

$$
\left\|T^{\prime \prime}\right\|=\left\|T^{\prime \prime}\right\|
$$

Proof. Let $x \in L,\|x\|<1$. Considering Proposition 3 (3), we have

$$
\begin{aligned}
\left\|T^{\prime} x\right\| & =\sup _{\substack{y \in L \\
\|y\| \leq 1}}\left\|\left[T^{\prime} x, y\right]\right\|=\sup _{\substack{y \in L \\
\|y\| \leq 1}}\left\|\left[x, T^{\prime \prime} y\right]\right\| \\
& \leqq \sup _{\substack{y \in L \\
\|y\| \leq 1}}\left\|T^{\prime \prime} y\right\|=\left\|T^{\prime \prime}\right\|
\end{aligned}
$$

Hence $\left\|T^{\prime}\right\| \leqq\left\|T^{\prime \prime}\right\|$. By symmetry, we also have $\left\|T^{\prime \prime}\right\| \leqq\left\|T^{\prime}\right\|$. Thus $\left\|T^{\prime}\right\|=\left\|T^{\prime \prime}\right\|$.

Proposition 9. If $\left(T^{\prime \prime}, T^{\prime \prime}\right),\left(S^{\prime}, S^{\prime \prime}\right) \in M(L)$, then $\left(T^{\prime} S^{\prime}, S^{\prime \prime} T^{\prime \prime}\right) \in$ $M(L)$.

Proof. For $x, y \in L$,

$$
\left[T^{\prime \prime} S^{\prime} x, y\right]=\left[S^{\prime} x, T^{\prime \prime} y\right]=\left[x, S^{\prime \prime} T^{\prime \prime} y\right]
$$

Theorem 10. $M(L)$ equipped with the norm and algebraic operations defined as follows becomes a C^{*}-algebra with identity. For ($\left.T^{\prime}, T^{\prime \prime}\right)$, $\left(S^{\prime}, S^{\prime \prime}\right) \in M(L)$ and complex scalar α, set
(1) $\left(T^{\prime \prime}, T^{\prime \prime}\right)+\left(S^{\prime}, S^{\prime \prime}\right)=\left(T^{\prime}+S^{\prime}, T^{\prime \prime}+S^{\prime \prime}\right)$
(2) $\alpha\left(T^{\prime \prime}, T^{\prime \prime}\right)=\left(\alpha T^{\prime \prime}, \bar{\alpha} T^{\prime \prime}\right)$
(3) $\left(T^{\prime \prime}, T^{\prime \prime}\right)\left(S^{\prime}, S^{\prime \prime}\right)=\left(T^{\prime} S^{\prime}, S^{\prime \prime} T^{\prime \prime}\right)$
(4) $\left(T^{\prime \prime}, T^{\prime \prime}\right)^{*}=\left(T^{\prime \prime}, T^{\prime \prime}\right)$
(5) $\left\|\left(T^{\prime \prime}, T^{\prime \prime}\right)\right\|=$ the operator norm of $T^{\prime \prime}$ on $L(=$ the operator norm of $T^{\prime \prime}$ on L, by Proposition 8).

Proof. It is clear that $M(L)$ is an involutive normed algebra with respect to the above operations. We now show $M(L)$ is complete under the norm given by (5). Let $\left\{\left(T_{n}^{\prime}, T_{n}^{\prime \prime}\right)\right\}_{n \geq 1}$ be a Cauchy sequence in $M(L)$. Then $\left\{T_{n}^{\prime}\right\}_{n \geq 1}$ and $\left\{T_{n}^{\prime \prime}\right\}_{n \geq 1}$ are Cauchy sequences in the Banach space $B(L)$ of all bounded linear transformations on L. Thus there are elements $T_{\infty}^{\prime \prime}$ and $T_{\infty}^{\prime \prime}$ in $B(L)$ such that $T_{\infty}^{\prime \prime}$ and $T_{\infty}^{\prime \prime}$ are the uniform limits of $\left\{T_{n}^{\prime}\right\}_{n \geqq 1}$ and $\left\{T_{n}^{\prime \prime}\right\}_{n \geqq 1}$ respectively. If $x, y \in L$, then

$$
\begin{aligned}
{\left[T_{\infty}^{\prime} y, x\right] } & =\lim _{n}\left[T_{n}^{\prime} y, x\right]=\lim _{n}\left[y, T_{n}^{\prime \prime} x\right] \\
& =\left[y, T_{\infty}^{\prime \prime} x\right]
\end{aligned}
$$

Hence $\left(T_{\infty}^{\prime}, T_{\infty}^{\prime \prime}\right) \in M(L)$ and ($\left.T_{n}^{\prime \prime}, T_{n}^{\prime \prime}\right)$ is convergent to ($T_{\infty}^{\prime \prime}, T_{\infty}^{\prime \prime}$).
It remains to check the C^{*}-norm condition:

$$
\begin{aligned}
\left\|\left(T^{\prime \prime}, T^{\prime \prime}\right)^{*}\left(T^{\prime}, T^{\prime \prime}\right)\right\| & =\left\|\left(T^{\prime \prime} T^{\prime}, T^{\prime \prime} T^{\prime \prime}\right)\right\|=\left\|T^{\prime \prime} T^{\prime \prime}\right\| \\
& =\sup \left\{\left\|\left[T^{\prime \prime} T^{\prime} x, y\right]\right\|:\|x\| \leqq 1,\|y\| \leqq 1, x, y \in L\right\} \\
& =\sup \left\{\left\|\left[T^{\prime} x, T^{\prime} y\right]\right\|:\|x\| \leqq 1,\|y\| \leqq 1, x, y \in L\right\} \\
& \geqq \sup \left\{\left\|\left[T^{\prime} x, T^{\prime} x\right]\right\|:\|x\| \leqq 1, x \in L\right\} \\
& =\left\|T^{\prime \prime}\right\|^{2}=\left\|T^{\prime}\right\|\left\|T^{\prime \prime}\right\| \geqq\left\|T^{\prime \prime} T^{\prime}\right\| \\
& =\left\|\left(T^{\prime \prime} T^{\prime}, T^{\prime \prime} T^{\prime \prime}\right)\right\|=\left\|\left(T^{\prime \prime}, T^{\prime \prime \prime}\right)^{*}\left(T^{\prime \prime}, T^{\prime \prime}\right)\right\|
\end{aligned}
$$

Therefore

$$
\left\|\left(T^{\prime}, T^{\prime \prime}\right)^{*}\left(T^{\prime \prime}, T^{\prime \prime}\right)\right\|=\left\|\left(T^{\prime \prime}, T^{\prime \prime}\right)\right\|^{2}
$$

We are now ready to define an embedding of L satisfying Axiom 1 onto a closed left ideal of the C^{*}-algebra $M(L)$. For each a in L, let $\pi^{\prime}(a)$ (respectively $\left.\pi^{\prime \prime}(a)\right)$ be the function from L to L defined by $\pi^{\prime}(a) x=a x$ (respectively $\pi^{\prime \prime}(a) x=[x, a]$) for x in L. Condition (vii) of Axiom 1 guarantees that the pair ($\pi^{\prime}(a), \pi^{\prime \prime}(a)$) belongs to $M(L)$ for each a in L.

Theorem 11. There is a closed left ideal J of the C^{*}-algebra
$M(L)$ and an isometric linear map π from L onto J with the following properties:
(1) $\pi(B)=J \cap J^{*}$.
(2) $\left.\pi\right|_{B}$ is a^{*}-isomorphism of C^{*}-algebras.
(3) $\pi(x y)=\pi(x) \pi(y)$ for x, y in L.
(4) $\pi([x, y])=\pi(y)^{*} \pi(x)$ for x, y in L.

Proof. As noticed above, the pair $\pi(a)=\left(\pi^{\prime}(a), \pi^{\prime \prime}(a)\right) \in M(L)$ for $a \in L$. We shall show that

$$
J=\{\pi(a): a \in L\}
$$

is a closed left ideal of $M(L)$ and $\pi: L \rightarrow J$ indeed fulfills conditions (1) $\sim(4)$.

First we observe that, when regarded as a map from L into $M(L), \pi$ is linear. Thus J is a linear subspace of M. As a result of Proposition 3(6), we have

$$
\|\pi(a)\|=\sup _{\substack{|x x\\| y|1| \leq 1, x \in L}}\|[a x, y]\|=\|a\| .
$$

Therefore $\pi(L)=J$ is a complete linear subspace of $M(L)$ and so is uniformly closed. Suppose that $\left(T^{\prime}, T^{\prime \prime}\right) \in M(L)$. Then for a in $L, b=$ $T^{\prime \prime} a$ is an element of L. Thus for x in L we have

$$
\begin{aligned}
{\left[T^{\prime} \circ \pi^{\prime}(a)\right](x) } & =T^{\prime}(a x)=T^{\prime}(a) x=b x=\pi^{\prime}(b)(x) ; \\
{\left[\pi^{\prime \prime}(a) \circ T^{\prime \prime}\right](x) } & =\pi^{\prime \prime}(a)\left(T^{\prime \prime} x\right)=\left[T^{\prime \prime} x, a\right]=\left[x, T^{\prime} a\right] \\
& =[x, b]=\pi^{\prime \prime}(b)(x) .
\end{aligned}
$$

Consequently, $\left(T^{\prime}, T^{\prime \prime}\right) \pi(a)=\pi(b)$. This shows that $\pi(L)=J$ is a surjective linear isometry.

For x, y, v, w in L, by Proposition 3 (5), we have

$$
[[x, y] v, w]=[x v, y w]=[[x v, y], w]
$$

Therefore $\pi([x, y])=\pi(y)^{*} \pi(x)$, so (4) is proved. In particular, $\pi([x, x])$ is a positive element of J. Since every positive element of B is of the form $[x, x]$ for some x in L (by condition (vii)) and since every element of B is a linear combination of positive ones, we conclude that $\pi(B) \subset J \cap J^{*}$. On the other hand, every positive element of $J \cap J^{*}$ is of the form $\pi(x)^{*} \pi(x)=\pi\left(x^{*} x\right)$ for some x in L, we see that $\pi(B)=J \cap J^{*}$. Thus (1) holds.

Condition (3) is clear. Condition (2) follows from conditions (1) and (3) and the fact that π is isometric. This completes the proof.

There is an alternative method of embedding a Banach algebra satisfying Axioms 1 into a C^{*}-subalgebra of $B(H)$, the C^{*}-algebra
of all bounded linear operators on some Hilbert space H [2; p. 41]. Based on the characterization of Jordan and von Neumann, it is shown in [2; p. 45] that parts of Axiom 1 may be formulated differently.

We conclude with the following summary of the main result:
Theorem 12. A Banach algebra can be isometrically embedded as a closed left ideal of a C^{*}-algebra if and only if conditions of Axiom 1 hold.

References

1. R. C. Busby, Double centralizers and extensions of C^{*}-algebras, Trans. Amer. Math. Soc., 132 (1968), 79-99.
2. J. C. Chuan, One-sided ideals in a C^{*}-algebra, dissertation, University of California, Santa Barbara, 1977.
3. B. E. Johnson, An introduction to the theory of centralisers, Proc. London Math. Soc., (3), 14 (1964), 299-320.
4. F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar, New York, 1955.

Received December 11, 1978 and in revised form April 25, 1979.
Tsing Hua University
Hsinchu, Taiwan 300, Republic of China

