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ALMOST-PERIODIC FUNCTIONS WITH
UNBOUNDED INTEGRAL

RUSSELL A. JOHNSON

Let B be an almost-tperiodic (a.p.) function with mean
value zero. Let G(t)=\ B(s)ds. The well-known theorem
of Bohr states that G(t)ois uniformly bounded iff G(¢) is a.p.
This theorem may be reformulated in the following way.
Let 2 be the hull of B, and let(?, R) be the flow on 2
defined by translation. Since B is a.p., 2 is a compact
abelian topological group. There is a continuous b: 2—R
and an o, € 2 such that b(w,-t)=B(). l.e., b “extends B to
2”., Then Bohr’s theorem is equivalent to the following:
G(t) is bounded iff there is a continuous r: 2—R such that

t
'r(a)-t)——'r(w)zg b(w-s)dswe 2, t € R).
In this paoper, we consider the case when G(t) is un-

bounded. Two results are obtained. The first is a gener-
alization of Bohr’s theorem: let  be (normalized) Haar

measure on 2, and let gm(t):g blw-s)ds(we 2,te R); then

— 0

lim, .. 1/2n7{t € [—n, n]lg.(t) € I} >0 for some compact IC R and
some we 2 iff there exists a p-measurable r: 2—R such

t

that 7(w-t)—7r(w)=\ blw-s)ds(wec 2,tc R). Here y is Lebesgue
measure on K. Thuso, r exists if some g,(t) is not too badly
unbounded. This theorem is stated for the class of
“minimal”’ functions (see below), which includes the a.p.
ones.

Now, an example in ([10]) shows that there exist a.p. functions
b iwith g,(t) unbounded which admit a discontinuous, p-measurable
7 as above. It is natural to ask whether » always exists. Our
second result (§4) states that this is false; residually many funections
be C(2) with mean value zero admit no pg-measurable ». This is, at
first glance, a bit disappointing. However, combining our two theo-
rems, we can at least draw this conclusion: even a “measure-theore-
tic” Bohr’s theorem applies to only a small (though non-vacuous) set
of a.p. functions.

The proof of the first result may be of interest. We make use
of techniques and !results from ergodic theory, lifting theory ([9]),
and the theory of linear skew-product flows ([14], [15]). Of special
importance is a close examination of a disintegration ([3], [9]) of a
certain ergodic measure. Said examination involves a deep theorem
of Furstenberg concerning such disintegrations ([7], Theorem 4.1).
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His theorem is stated for imteger flows. Since our interest is in
real flows, we extend his theorem to this case (in fact, to the case of
an arbitrary phase group; we also make other generalizations. See
2.2, 2.8, 2.4). The extension is performed by mimicking Furstenberg’s
proof.

1. Preliminaries. In 1.1-1.7, X is a locally compact Hausdorff
space unless there is a statement to the contrary.

DeFINITIONS 1.1. Let M(X) be the set of nonnegative (Radon)
measures on X ([1], Chpt. III, §1, n° 3, Def. 2). We will always
give M(X) the topology of pointwise convergence (i.e., p, —
iff o, (f) — p(f) for each continuous f: X — C with compact support).
Let M(X) = {pe M(X)||[¢]] = (X) =1}. If pe M(X), we use

| f@dp@ , | rar,

or #(f) to denote an integral with respect to g Let Supp p be
the support of g

DEFINITIONS, REMARKS 1.2. Let g€ M(X), and let # map X to
a topological space Y. Say = is p-Lusin-measurable if, for each
compact KC X and ¢ >0, there is a compact K, C K such that
MK ~K,)<e and 7| K, is continuous. If Y is separable metric,
then 7 is p-Lusin-measurable iff 77'(B) is g-measurable for every
clesed ball BC Y. See (1], Chpt. IV, §5, Prop. 1 of n°1 and Thm.
4 of n°b).

DEFINITIONS, REMARKS 1.3. Let Y be locally compact Hausdorft,
let e M(X), and let m: X — Y be p-Lusin-measurable. Say =« is p-
proper if, for every compact CC Y, #7*(C) is essentially p-integrable
(i.e., supg (@ *(C)N K) < «, where K X is compact). If 7 is p-
proper, one can define an image measure v = w(y) ([2], §6, n°l,
Def. 1). If X is compact and 7 is p-Lusin-measurable, then =z is
necessarily p-proper. If X and Y are compact, then v = 7m(x) has
the following property: fe LYY, v) iff fore L' (X, p), and

Sfdv - S fomdy .
Y A
See ([2], §6, n°2, Thm. 1).
DeFINITION 1.4. Let X and Y be compact Hausdorff, pte M(X),

w: X — Y a p-proper map, and v = w(¢r). A mapn: Y — M(X): y—n,
is a disintegration of pt with respect to v (or with respect to w) if:
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(@) Supp), Cr (Y)Y E Y);

() lINMIf=1(yeY);

(e) N is v-adequate ([2], §3, n°l, Def. 1); see also 1.5(a);
(d) if f: X— R is continuous, then y — \,(f) is v-integrable,

and | f@dp@) = | M(NDAW).

REMARKS 1.5, (a) If ) is v-Lusin-measurable, it is v-adequate
([2], '§38, n°1, Prop. 2).

(b) One can define the notion of disintegration if X and Y are
locally compact; slight modifications are needed in 1.4(d). See [3],
§3, n°1, Thm. 1).

THEOREM 1.6. Let X and Y be compact metric, m: X — Y a p-
proper map, v = w(LL).

(a) There exists a disintegration N\ of p with respect to v.

(b)y If M:Y— M(X) is another map satisfying (a), (¢), and (d)
of 1.4, then N =\ v — a.e.

(e) If feLXX, ), then y —N,(f) is defined v — a.e., is v-inte-

grable, and p(f) = | 7,(Hdw).

Parts (a) and (b) of 1.6 follow from a more general theorem, in
which X and Y are locally compact second countable ([3], §3, n°1,
Thm. 1). Part 1.6(c) follows from 1.6(a) and ([2], §8, n°3, Thm.
1).

DEFINITION 1.7. Let pe M(X), and let M*(X, ¢) = {f: X — R|f
is bounded and pg-measurable}. A mapp: M*(X, ) > M=(X, p) is a
lifting of M=(X, p) if (i) it is linear, (i) o(f) = f locally ¢ — a.e.;
(iii) if f, = f, locally p—a.e., then o(f)) = po(f,) everywhere; (iv) f=
0=p0(f) 2 0; (v) o(fi-fo) = o(f)-o(f»). If, in addition, (vi) o(f) =f
for every continuous fe M™(X, ), then p is a strong lifting of
M=(X, ). See ([9], Chpt. III, Def. 1).

THEOREM 1.8 ([8]). Let X be a locally compact topological group
with left Haar measure . There exists a strong lifting o of
M>=(X, ) which commutes with left translations (thus, let (T,f) %)=
fl-z)(f e M™(X, #); 2, T € X); one has o(T.f) = T.(o(f).

DEFINITIONS 1.9. A (right) transformation group (or flow) is a
triple (X, T, @), where X is a topological space, T' is a topological
group, and @: X X T — X: (x, t) > x-t is a continuous map such that:
(i) 2-idy = z(xr € X;idy = identity in T); (ii) (x-t)-s = 2-(t-s)(x € X;
t,seT). We will always suppress @, writing just (X, T) when
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referring to a flow. If te7 and AC X, define A-t = {x-t|x e A4}.
IfteT and f: X — Y, define (¢- f)@)=f(z-t)(xe X). If X is compact
Hausdorff and peM(X), define (p-6)(f) = pt-HteT, feC(X)).
Equivalently, one could define (z-t)(A) = p(A-t™*) for each p-meas-
urable Ac X.

DeEFINITIONS, REMARKS 1.10. Let (X, T') be a flow with X com-
pact Hausdorff. Let pe M(X). A set Ac X is T-invariant if pu(A-
tdA) = 0 for each teT. It is strictly T-invariant if A-t=A(teT).
The element gt of M, (X) is T-invariant if p-t = pteT). It is T-
ergodic if, in addition, p(4) = 0 or p(A) =1 for every T-invariant
set A. If (X, T) has only one invariant measure p, then ¢ is
ergodic ({13]).

DeFINITIONS 1.11. Let B: R — R* be a uniformly bounded, uni-
formly continuous map. Let C(R, R*) be the space of continuous
maps from R to R", with the compact-open topology. For each
te R, define f.(t)=Ft+7)(f €C(R, R*),tc R), and let 2=cls{B.| 7€
R} C C(R, R*). Then 2 is compact metric ([12]), and the translation
(f, ) — f. induces a flow (2, R). The space 2 is the hull of B.
Let w, represent the element B of 2. Define b: 2 — R™: b(w) = w(0).
Then b(w,-t) = B,(0) = B(t). Thus b “extends B to 2”’. If B(t) is
almost periodic, then ([5]) 2 is a compact abelian topological group,
with dense subgroup R; the flow (2, R) is defined by the group
operation (w-t is the product of we 2 and te R 2). The unique
invariant measure for (2, R) is normalized Haar measure. If (2, R)
is minimal (i.e., the only nonempty closed invariant subset of Q2 is
Q itself), we say that B is minimal. If B is a.p., then B is
minimal.

2. TFurstenberg’s theorem. In this section, we generalize Fur-
stenberg’s theorem. We have tried to compromise between, on the
one hand, ignoring the fact that Furstenberg’s proof is readily
available, and, on the other, giving no details at all and simply
giving references to that proof.

NoTATION 2.1. For the most part, we adopt the notation of
([7]). However, a disintegration of a measure p will be written
® — tt,, rather than w — g(w). Compare also with 1.4, where we
let A denote a disintegration. If B is a set, we let |B| be its
cardinality. Let 2 denote a compact metric space. If (,T) is a
flow, we sometimes write wt for w-t(we2,teT). In §2, T is an
arbitrary topological group.
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THEOREM 2.2. Let (2, T) be a flow with tt, a T-ergodic measure
on 2. Let K be the unit circle, let 3 = 2 X K, and let m: ¥ — 2:
(w, ) > ® be the projection. Let (I, T) be a flow satisfying n((w,
0-t) = [, {)]-t = w-t((w, ) €3). (Equivalently, suppose (w, {)-t=
(wt, hy(w, §)) for continuous functions h,: ¥ — K). Let p be a
measure ergodic with respect to (3, T') such that w(y) = tt, and let
® — tt,: 2 — M(2) be a disintegration of p with respect to p(1.6).
If p is mot the only ergodic measure on (X, T') such that w(¢)=g,,
then there is an integer m such that |Supp pt,| = n t4, — a.e.

Proof. We divide the proof into steps.
(1) Let teT, and define fZ, € M,(2) by Z.(f) =t f)(f € C(2)).
Clearly w — g, satisfies 1.4(a), (b), (¢). Since

[, 2@ = | pue Hap) = (by 1.3
[ s ndn@) = w7 ) = 1), 0 — 4

satisfies 1.4(d). By 1.6(b), fZ,=p, v—a.e.; i.e., =(&,)-t ¢4-a.e. for each
fixed t.

(2) For each integer =, let B, = {we2||Suppp,| = n}. We
claim B, is g,-measurable. For, let I' be a compact set such that
® — pt, is continuous on I'. It suffices to show that BN I is closed.
Let w, » w, w,€ B, N I". Suppose ,, is supported on points

(wl, Cl(wl))’ ) (wl; Ck(wl))(k § ’n) )

letting 6, denote the Dirac measure at o, we write
ﬂwl = ; ai(wl)a(wlﬂi(wl)) ’

where 0 = a, (@) = --- = a,(®,) if k¥ <n. Choosing a subsequence,
we assume (@) — &;, {;(@,) = {,(1=i<n). If feC(2), then g, (f)=
lim,_., #wz(f) = Z?:l C_lif(w; Zz)

(a) Suppose 4 = Supp p, is infinite. Since K is compact, g,
assigns positive measure to open subsets of 4. Let V be an open
set in 4 whose closure does not contain Z, ---,Z,. Let 0 < feC()
be equal to 1 on V, and equal to zero at (w, L)1 <: < n). We
obtain a contradiction; hence | Supp .| < <.

(b) Suppose |Supp #,| < e, with g, = 3. . Let @,
be as above. Then

(*) each {,e{f;|@;+0,1<j=<mn}, if a,#0;

(**) each ,e{l;la;#0,1<j <7}, if @ + 0. For suppose (*)
is false. Choose 0 < feC(Z) such that f) =1 and f(@;) =0 if
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a; + 0; one obtains a contradiction. Similarly for (**). Now, by
(*), we must have |Supp ¢,| < n; hence g, € B,.

We have shown B, is pg,-measurable. As a corollary to the
proof, C, = {we 2| |Supp £t,| > n} is py-measurable, since C, NI is
open in I,

From (1) and (2), we obtain two conclusions.

(3) If D={wefR||Supp .| < e}, then D= U, B, is p-
measurable. Also, D is T-invariant; hence (D) = 0 or 1.

(4) Note D= Ui, D,, where D, = B,NC,_, is p-measurable
and T-invariant. Suppose v(D) = 1. Then, for some =, D, = {we
2||Suppg,| = n} has p-measure 1.

From now through (15), assume for contradiction that |Supp #,|=
ooty — a.e. Let ¢/ be another ergodic measure on 3, with disinte-
gration w — ), such that z(¢) = g,.

(5) As on p. 598 of ([7]), one can show that g, is nonatomic
(i.e., no point has nonzero measure) ¢, —a.e. As on p. 594 of ([7]),
one can show that p, is also nonatomic 4, — a.e.

Let A = 1/2(¢ + ¢). Then w — )\, = 1/2(¢, + #.) is a disintegra-
tion of » with respect to g, and )\, is f#,—a.e. nonatomic. Fix { e
K, let {{, {} © K denote the interval from ¢, to { (counterclockwise),
and let K’ be the unit circle in the complex plane. Let 7: 2x K'—
£2 denote the projection (w, {) — w.

Define
(6) i3 — 2 X K (0, ) — (0, ety |
and for each ¢,
(7) 9. 2 K w P (IN HORSITE

For each te T, define : 2 Xx K' > 2 X K": (w, {) — (w-¢, g,(@)).
Denote the image of (w,{) under ¥ by (®,¢)-Z. As on p. 594 of
([7]), one has

(8) ((w, 0)-t) = [v(w, O]-T for (w, {) e x™*(B), where BC 2 has
to-measure 1 (B depends on t).

(9) We show that + is »-Lusin-measurable for any measure 7
on Y such that n(n) = g (in particular, for g, ¢/, N). If {,#={eK
and m > 1, construct continuous functions §, . K — R such that (i)
lim,... 3,2 = ®,0Q) (here @ denotes characteristic function); (ii)
for fixed m, §n,c, — Gn, uniformly if ¢, —¢; (iii) 0 < §...({') =1 for
all m,{, ¢ Let g, 0)=§,.Q. Define 7,: X—R: (@, {)—>No(@m.c).
Let 'c 2 be a compact set on which @ — 2\, is continuous. Let
(@, &) — (@, Q) in z7%(I"). Then [N, (Gmc,) = Moll@nd) | = [N, Gmc,) —
7"wn(gm,t)l =+ Ik’wn(gm,() - 7\’m(gm,t)l é ” gm,tn — Gnc H + ‘x’wn(gm,t) -

! Here and in (11) below, we assume 7 admits a disintegration w — 7, with 7, non-
atomic for all w (hence 7(2Xx{Z}) = 0).
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No(@me)| —0 as n— co. Hence 7, is 7-Lusin-measurable. Now,
lim,,_., T.(®, {) = M({C, £}). Hence 4 is 7»-Lusin-measurable.

(10) In a similar fashion, each g, is y,-Lusin-measurable. Hence
each map 7 is 7’-Lusin-measurable for any measure 7' on 2 X K’
which satisfies 7'(") = .

(11) By 1.8 and (9), 4 is p-proper if =(y) = ¢#,. By 1.8 and
(10), T is %'-proper if #'(y’) = t4,. Hence () = g, and (¢) =
are Radon measures, and have unique disintegrations with respect
to £4,(1.6). As on p. 595 of ([7]), v(\) = ¢, X m, where m is nor-
malized Lebesgue measure on K’. Moreover, by (8), (10), and ([2],
§6, n°8, Prop. 4(a)), one has p,-t = (u-t) = () = .. Similarly
Yoo =, (ty X m)-T =ty x m(teT).

(12) Note g, X m = 1/2(¢t, + p£5). We show that the assumption
Uy # ) implies the existence of an fe LY(Q2 X K', ¢, X m) such that
(i) for each ¢, f((®, £)-T) = f(®w, §) ty X m — a.e.; (ii) f is not equal
to a constant g, X m — a.e. (The existence of f does not follow
from standard ergodic theory, since the flow (w, ¢, t) — (w, {)-f has
not been proved measurable. However, we need only imitate a
standard proof.) Note that g, < ¢, X m. Hence, if EC 2 x K’ is
M-measurable, then p, (E) = S fd(¢, x m) for a unique f e L'(yg, X
m). Now, t,(E)= (1.8 and (11)g,(E-T™) = S fd(/xo x m) = (1.3
and (11)) S F(w, §)- D)d(e x m)(@, ¢). Hence f((w C) t = flw, {) pox
m — a.e. for each 7, and (i) is proved. If f = const. #¢, X m — a.e.,
then const. = 1(1etE’ £2 x K'). But then g, = 4, X m, contradict-
ing g, # p%. So (ii) holds, also.

(13) Using Fubini’s theorem, expand f in a partial Fourier
series: f~ > L a(@)™ Fix teT. By (i) in (12) and uniqueness
of Fourier coefficients, a,(@-t)97(w) = a (@), — a.e. (—oo < m < o).
Since p, is ergodic, f is not a function of @ alone (otherwise (ii) of
(12) is violated). Hence there exists k == 0 with a,(w) # 0. Arguing
as in Lemma 2.1 of ([7]), we see that, for each te T, gi(w)=R(®w-t)/
R(w)t, — a.e., where |R(w)|=1 p,—a.e. (in fact, R(w) = a,(®)/
[a(®)]).

(14) As on p. 595 of ([7]), let JC K' be any 1nterval and let
AJ)={(w, el x K'| Rw)™C*eJ}. Then (p. 595, X m(A'(J))=
m(J). By (11) and (13), and arguing as on p. 595, one has
m(A'(J)-T44'(J))=0 for each teT. By (8) and (11), MA(J) - t4AJ))=
0 if AWJ) =~ LI)EteT). Also, MAJ)) =m(J). So X\ has
invariant sets of all measures. Argue as on p. 595 again to obtain
a contradiction to the assumption g, # ¢. We conclude g, = pf.

(15) Note |, ixx is continuous for g, — a.a.w. Hence g, , =
W(#,) and gy, = (n)) are defined p, — a.e., and can be shown to
be disintegrations of g, g% with respect to g, By 1.6(b), ¢t,., =
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!t — a.e. Asonp. 59 of ([7]), it follows that g, = i, #, —a.e., and
hence that p = g,

We have contradicted our assumption that |Supp p,|=cop,— a.e.
By (3), [Supp | < o= t4 — a.e., and by (4), [Supp #£,| = n #, — a.e.
for some n.

THEOREM 2.3. 1.2 remains true if 2 is compact Hausdorff.

Proof. The proof is not a repetition of that just given, since
1.6 does not now apply. Even if it did, a map ® — g, which satis-
fies 1.4(a), (b), (¢), (d) need not be p, — Lusin measurable since
M,(Y) is not metrizable. (We used g, — Lusin-measurable of w — g,
heavily.) However, note that K acts freely ([3]) on 2 X K by
group multiplication. By ([11], Theorem 1.9), every measure 7 on
Y (T-invariant or not), has a =(n)-Lusin-measurable disintegration
® — 7, with respect to 7(); moreover, @ — 7, is unique in the sense
that, if @ — 7, is another 7(y)-Lusin-measurable disintegration, then
N, =N, T(H) — a.e.

Now go through the proof of 2.2, using pg,-Lusin-measurable
disintegrations w — p,, ® — tt,. Nothing changes in steps (1)-(10),
except that sequences are replaced by nets in various places. In
(11), “unique disintegrations” is replaced by “unique g,-Lusin-measur-
able disintegrations”. All is the same in steps (12)-(14). In (15),
however, we hit a snag. It is not clear that the maps w— g, ,
and ® — g} , are y,-Lusin-measurable; hence we cannot apply unique-
ness to conclude that p, ., = k., # —a.e. We escape as follows.
Define f, ., = ¥ (tt), tte,o = ¥(tt,). Recall K’ is the unit circle. Let
7. 2 X K’ — K’ be the projection. Define elements «a,, al € M,(K’)
by a,(h) = py . (homy), a(h) = t ,(hom,). Let fe LY(2, p). Note

ngx’f(a))hOﬂ'z(a), Ddp(@, ©) = (1.3) S):(f'h°772)°"/fd,u = (1.6c)
Lf(w)[«‘w(honzoqu)dﬁo(a)) = (1.3) Sﬂf(w)au*,w(hoﬁz)dﬂo(w)

= | f@amiu@ .
Similarly,
[r@memno ame 0= r@amipnw .
Recall g, = tz,, and define
S: LK@, 1) = MK": S(£)-h = | f@)ptuolhomdpn(@) -

The Dunford-Pettis theorem ([4], [9]) applies; there exists a unique
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(up to sets of p,-measure zero) map o: 2 — M(K'): @ — o, such that
S(f) b = Sg F(@0o, (@) for all f h. Hence a(@)=0c,= a'(®)

t,—a.e.; since Supp .., and Supp #% . are subsets of {w} XK', .=
!% .. The rest of the proof of 2.2 is the same as before.

THEOREM 2.4. 2.3 remains true if K acts freely on 3 (with, of
course, 2 = Y/K).

We say K acts freely on 2 if (K, X) is a transformation group
such that, if {-0 = 0 for some {€ K and o€J, then { = idy in K.

Proof. Using the technique of ([11], §1), we construct a Borel
isomorphism @ of 2 X K onto ¥ which (i) maps {w} X K homeomor-
phically onto 773 (w)c X for all we 2 (n: ¥ — 2 is the quotient map);
(ii) is p-proper for every ne M(2 X K). If teT, define t,:%¥ — 2
t, = @oto@™; one obtains a flow (2 x K, T,), where T, consists of
Borel measurable maps which are »-proper for every ne M(2 X K).
We may apply all the steps of 2.2 (with the modifications of 2.3) to
the flow (¥ X K, T,). (In step (10), some extra work must be done
because T, does not consist of continuous maps, but the changes
are straightforward.)

NotaTioN 3.1. Let B(t) be a minimal function (1.11), with
G(t) = S’B(s)ds. Let 2 be the hull of B, and define beC(2) and
@,€2 so that b(w,-t) = Bit)teR). If B is almost periodic (a.p.),
let g, be normalized Haar measure on £ (see 1.11). By uniqueness

of Haar measure and 1.10, p, is R-ergodic; it is the only ergodic
measure on 2.

3.2. Consider the set of two-dimensional ordinary differential

equations E(w): & = (2( ®-8) 8) X@eR, we). (We read E(w) as

“the equation corresponding to ®”.) The solutions to these ODEs
generate a flow on 2 X R? as follows: (@, %)t = (@-¢, x(t)), where
x(t) is the solution to E(®) with initial condition 2(0) = Z. The flow
(2% R? R) is an example of a linear skew-product flow ([14], [15]).
It is called “linear” because each map N, ,.: {0} X R*—{w-t} x R*:
(w, x) — (w, x)-t is linear. Let P' = projective one-space = the set
of lines through the origin in R® By linearity, each map N, , takes
a line in {®} X R* to a line in {®w-t} X R? hence (2 X R* R) induces
a flow (2 x P, R). Welet 3 =02 X P, n: 53— 2:(w,{) > . Note
P! is homeomorphic to a circle.

3.3. We can describe (2, R) more usefully. Let S*'C R* be the
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unit circle, with polar coordinate . We may visualize P! as that

part of S! such that —7/2 <6 < x/2, with § = —7/2 and 6 = /2

identified. We will coordinatize P' with # where —7/2 < 6 < x/2

(note the strict inequality). The flow (¥, R) may now be given as

follows: (i) if (w, #) e with —7z/2 < 6 < n/2, then (w, 6)-t = (@-%,
t

tan™ (o + Sb(a)-s)ds); (i) if 6 = /2, then (, 7/2)-t=(®, 7/2)(t € R).
Q

One sees this by solving equations E(w).

DEFINITIONS 3.4. Note that X, = {(w, 7/2) | w € 2} is a compact
invariant subset of Y. The projection m:3 — 2 induces a homeo-
morphism 7, = 7|y, of 3, onto 2 which commutes with the flows.
If p, is an ergodic measure on 3, then » = 7#;%(#,) is a measure on
Y, If we view 7 as a measure on Y in the obvious way, then 7
is supported on X, and ergodic with respect to (Z, R).

LeMMA 3.5. Let 2,3, %, 7w, be as above (except that, in this
lemma, 2 need mot be metric). Suppose that every measure on 3
which 1s ergodic with respect to (2, R) has the form my*(t,) for
some ergodic tt, on 2. Let feC(X) satisfy fl|;, = 0. Let v,,(9) =

t
l/tg g(c-3)ds(ce X, te R, geC(Y)). Then, given € >0, 3T such that

12 T=v,.(f)] <&

Proof. Observe that 7(f) = 0 for every ergodic  on 2. Sup-
pose for contradiction that f does not satisfy the conclusion of 3.5.
Let ¢, and w, be points such that |¢,| > » and |v, .., (f)] =¢. Choose
a subnet (¢, 0.) of ({,, w,) such that v, , converges to some ve
M,(2). Then v(f)=0. We may assume {,— + o, 0, — ®. But
these two conditions imply that v is invariant. Now, it is well-known
that the set of invariant measures is the closed convex hull of the
set of ergodic measures (in the topology of pointwise convergence).
Hence y(f) = 0. This contradiction proves 3.5.

DEFINITION 3.6. If ICR,beC(2), and we®2, let A(n, I, w, b) =
12nv{te[—mn, n]]| 9.(t) € I}, where g,(t) = St b(w-s)ds and v is Lebes-
gue measure on R(v[0, 1] = 1). When conofusion cannot arise, we
will write A(n, I, ®).

ProposITION 3.7. Assume there is a compact set IC R such
that Iim, .. A(n, I, @) > 0 for some w,c Q. Then there is an ergodic
Yo on 2 and at least two ergodic measures 7, tt on 2 such that
71'(7]) = th.

Proof. There is at least one ergodic measure on 2([13]). If
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the conclusion of 8.7 is false, then, given an ergodic f, on 2, the
measure 7 = 7, (¢,) (see 3.4) is the only ergodic measure on ¥
satisfying 7(p) = p,. Let I, = tan™I c (—=x/2, n/2) C P*, and let 3, =
Y x I,. Let f be a continuous, nonnegative function which is 0 on
3,and 1 on 3,. Let E,={te[—n,n]]|g,(t) el}. Then f((w, 0)-t)=
1if teE, Hence im,.. l/ZnU F(@, 0)-sds + S f@, 0)-sds] > 0.
0 -

This contradicts 3.5; 3.7 is proved.

Let p, be an ergodic measure on £ which satisfies the condition
of 3.7. If B(t) is a.p., then g, is normalized Haar measure (3.1).

THEOREM 3.8. (a) Suppose there exist w,€2 and a compact
Ic R such that lim,.., A(n, I, @) > 0. Then there is a {t;-measurable
Sunction v on 2 such that r(w-t)—r(w)= St b(w-s)ds pt,—a.e. for each
teR. ’

(b) If B(t) is a.p., them r may be chosen so that r(w-t)—r(w)=
S:b(a)-s)ds for all we @, teR.

Proof. (a) Using 3.6, we can find an ergodic , on £ and ergodic
measures 9 = 7, (%) and g #7n on X such that =) = n(r) = w,.
Let N 2 —» M(2): @ — )\, be a disintegration of ¢ with respect to
1,(1.6). Using uniqueness in 1.6 (1.6(b)), it is easy to see that
(Mgt = Ny)+t Yy — a.e. for each tc R.

By 2.2, there exists an integer »n such that |SuppM\,| =% on a
set BCQ of p-measure 1. For we B, we write M, =21, a,(0)0(,,0,()

(6 = Dirac measure), where 6,(®) < 0,(®) < -+ < ,(w) .

Let B, = {we B|0,(®w) = n/2} (recall & has range 7/2 < 0 < 7/2).

By (*) and invariance of X, B, is R-invariant in the sense of
2.10.

We claim B, is p,-measurable. Let I"C B be a compact set such
that )|, is continuous. It suffices to show that B, NI is closed.
Let w,e B,NI, w,— wecB. Choosing a subsequence, we may assume
that a,(w,) — &,, 0,(w,) — 0,. It is easy to see that {6,(®), - - -, 4, (@)} C
(0,1, #0(1L <1 =<mn)}. Hence the two sets are equal, and no &, can
be zero. Since 6 = 7/2, we must have 6,(®) =7/2. So B, is p,-
measurable.

Sinee y, is ergodic, p#,(B,) = 0 or 1. It cannot be 1. For, sup-
pose it is. The ergodic measures 7 and g are mutually singular
(considerably more is true; see, e.g., [13], pp. 496-508). Let D, and
D, be Borel sets in ¥ such that 1 = 9(D,)=p(D,), D, N D,=¢. Clearly
(D, N 2,) =1. This implies that, for ¢, — a.a. w, one has D, N 3 N
7Y w)=¢. Clearly n(D,N%,)=1. This implies that, for x, — a.a. o,
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one has D,NJY, N7nw) =¢. Since f(B) =1, we have \,(D,) <1
for y¢, — a.a.w. But 1 = (D, = (1.6(c))

REORSE

The contradiction shows that p,(B,) = 0.

Let B, =2 ~ B;; then (B, =1. Let D,={(w,0)eX|weB,
0 = max,.;., 0,(w)}. Then D, is R-invariant ((*) and the fact that
the flow on X preserves the f-order). We claim D, is g-measurable.
Let I'C B, be a compact set such that A |, is continuous, and let
I'=xn'I"). We show that D,N I, is closed. Let (w, 6)eD,NTI,,
with (@, 6,) - (@, 8). Then weB,, and \,, —X\,. Choosing a sub-
sequence, we assume a,(®,) — @, 0,(w,) —0,. Now each 6, is equal
to 0,(w,). Hence 6 = 4,. As before, {§,(®), ---, 0,(0)}={0, ---, 0,}=
{6, ---,60). We claim that ¢ = 6,(w). Since the 6,(®,) were arranged
in increasing order, it suffices to show that 4, + —=/2. But, if this
were not the case, then 4,(w) would be 7#/2. Since it is not (w € B,),
we have 6 = 6,(w), and hence (w, 6) € D,.

Either #(D,) = 0 or #(D,) = 1. But p(D,) = qum(Ds)dpo(w), and

No(Dy) > 0 on B,. Hence g(D;) = 1. This implies \, is supported on
the point (@, 0) if we B,; i.e., Ny, = 00,0

We now define ». If weB, let (w, 0) be the corresponding
point in D, and let»(w) =tand. If we¢ B, define » arbitrarily.

Since D, is R-invariant, one has 7(w-t) = tan tan™ (0+ tb(a)-s)ds =
t 0

r(w) + S b(w-s)ds p, — a.e. for each te R. Also, it follows immedi-
0

ately from the proof of g-measurability of D, that is y-measurable.
This completes the proof of (a).

(b) Let A, be the disintegration of g with respect to g, of (a).
We first arrange that \,..= (\,):t for all we Q2 and teR. To do
this, let p be a strong lifting of M*“(2, ) commuting with transla-
tions (1.8). As in ([9], Chpt. VI, Prop. 1), we may define a new
disintegration A of g with respect to 4, by the formula \,(f) =
0(@) (@), where g: 2 — R:g(®) = \;(f)(feC(2)). It is easily seen
that \).. = (\))-t for all o, t.

Now go through the proof of (a) with \' in place of . One
finds that B, is strictly R-invariant (in the sense of 1.10). If we B,
define 7(w)=tan @; define » on 2~ B, in any manner so that »(w-t)—

r(w) = Stb((o-s)ds holds. Then this equation holds for all w,¢. As
0

in (a), r is p,-measurable. The proof of (b) is complete.
By restating the hypotheses of 3.8, we obtain a theorem whose
converse is also true.
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THEOREM 3.9. The following are equivalent.

(@) There is an ergodic measure t, on 2, a set 2,C Q2 with
1(2) =1 and compact sets I, C R such that lim,_, A(n, I, ®) exists
and is positive (w € 2)).

(b) There is an ergodic measure f‘f’ on 2 and a prmeasurable
function r such that *(®-t) — r(®) = S b(@-5)ds tto—a.e. for each te
R. If B(t) is a.p., then r may be cho?s-en so that equality holds for
all w,t.

Proof. (a)=(b): follows from 3.8.

(b) = (a): Let J be any compact set such that B = +»"*(J) has
positive p-measure. Let @, be the chartacteristic function of B. By
the Birkhoff ergodic theorem ([13}]), l/tS Pp(@-8)ds — (B) as t — oo
and as ¢ —» — o, for p, — a.a.w. Fix suoch an ®. Note that w-seB
if r(w-s)edJ. Let I,={s — »(w)|seJ}). Then lim,., A(n, I, @) =
t(B) > 0.

REMARKS 38.10. (a) Since (b)=(a) in 3.9, we can conclude that
the hypothesis of 3.8 implies 3.9(a). Thus the relative density
hypothesis “extends from a point to almost all of the hull”.

(b) Since J can be chosen to be an interval of arbitrarily small
length, so can the sets I,.

(¢) Theorems 3.8 and 3.9 say nothing about pg-integrability
of r.

(d) Using the techniques of §3, one can prove results analog-
ous to 3.8, 3.9 for minimal integer flows (2, T') (2 a compact metric
space, T:2 — 2 a homeomorphism). Let b: 2 — R be cc:ntinuous.
The analogues of 3.8, 3.9 are obtained by simply replacingg blw - s)ds
by g.(m) = 3*,b(w-T* throughout (if m is negative, leot g.(m) =
Simb(w-T7%), and by replacing A(n, I, ®, b) by 1/2n card {me[—mn,
n] | 9.(m) € I}.

() Let (2,R) be a.p. minimal. Let Cy(2) ={beC(2)|bd has
mean value zero}. There is a b,€C,(2), and a p,-measurable, dis-
continuous funection 7,: 2 — R such that

ro(@t) — ro(@) = S:bo(a)-s)ds(a)-Q, teR).

One can prove this by constructing 7, using a method similar to
that of ([7], p. 585). See also ([10]). We will not give details here.

Now, in 4.3 below, it is shown that V = {veCo(.Q) H‘v(w-s)ds is
0

bounded (coe.Q)} is dense in C,(2). Then b, + V is also dense in

Cy(2). Hence the set of functions be C,(2) with a a “y¢,-measurable,
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discontinuous antiderivative” 7, is dense in C,(2).

4. In this section, we show that “most” a.p. functions satisfy
neither conditions of 8.9. To make this precise, we alter our point
of view somewhat, and consider some almost periodic minimal set
(5D, R). If 2 is metrizable, then 2 is the hull of some a.p.
function B(t). However, we will not assume 2 is metrizable. The
result is then the following. Suppose (2, R) is not a periodic flow
(i.e., 2 is not the hull of a periodic function), and let C,(R) = {be
C(2)]|b has mean value zero}; then there is a residual subset C, of

Cy(2) such that beC,=lim, ., 1/2n v {t e[—mn, n] l Stb(a)-s)ds € I} =0
0
for all we 2 and all compact I C R.

NATATION 4.1. Let (2, R) be an a.p. minimal set. As in 3.6,
let A(n, I, w,b) = 1/2n ﬂ/{te[~n, 'n]ls b(a)-s)dsel} for beC(2) and
0
compact I R. Recall that the mean value of be C(2) equals

S b(w)d e, (®)(¢t, = normalized Haar measure on 2) .
2 .

Let Cy(2) = {beC(2)|b has mean value zero}. Give C(2) the sup-
norm topology.

LEMMA 4.2. Suppose (2, R) is not a periodic flow. Let 0<e<1
and compact I C R be given. Then there is a ce€ Cy(2) with ||c||=1
such that A(n, I, o, ¢) < ¢ for all w if n s sufficiently large.

Proof. First pick w,e€2 and beCy(2). We may assume that
B(t) = b(w,-t) is not periodic in ¢t. Expand B(t) in a Bohr-Fourier
series: B(t) = D, aet*'. We may assume N, = 0 for all k. Either
(i) Ma/M is rational for all m and [, in which case lim [\,| = 0, or
(i1) Nu/N is irrational for some m, I. Let £, be the hull of B(%),
and write B.(t) = B(t + 7)(t, 7€ R). The correspondence ®,-z — B.:
{w,-t|t € R} — 2, is uniformly continuous, hence extends to a surjec-
tion 7,.: 2 — 2, which commutes with the flows.

Next, let K be the unit circle, and let K, = [[;, K. Define a
flow (K., R) as follows: (e"#)p.,-t = (e!*"%*)r_,. The correspondence
B. — (e*")y,: {B. |t € R} — K, is uniformly continuous, hence extends
to a continuous map 7, 2, — K. Let 2, =Image (7,); then 2, is
compact invariant, and 7,: 2, — K, commutes with the flows.

Now consider case (i). Define ¢,: K, — R: (¢"%);_, — cos §,,. Note

that, if p = (¢“9),, then Stcm(p-s)ds = (1/A)[Sin (B, + Ant) — sin g ,].
The following is not hard to prove (we will not do so): if 6 > 0,
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and if fi(z, 0) = (1/25)v{ye[—J, sl |sin(x + ¥) — sinz| < 5}(0<JjeR,
x € R), then given ¢ >0, 36 > 0 and J such that j = J=f;(x,d) < ¢
uniformly in . Let I and ¢ be as in the statement of 4.2. ,Choose
M >0 so that Ic[—M, M]. Choose 6 >0 and J so that j = J =
fi(x, 0) < e for all xe R. There is a A, such that |\,|-M < 4. Let
n = j/\al. Note that (1/2nyv{te[—mn, n]lstcm(ps)dse[—M, M)} =
1/29)v{cel[—7, 7]l |sin (,, + T) — sin b, | < o} O< cif j=J, forallpe
K, Let C=e¢,°1,07,, and choose N = J/|r,|. Then ne N= A(n,
I, w, ¢) <e'for all we Q.

Finally, consider case (ii). Suppose ./, is irrational. The
map (e)i, — (e**n?, e*hit) of {(e*#%)i., |t e R} into the 2-torus Kx K=
K* is uniformly continuous, hence extends to a continuous map 7,
of 2, onto K® which commutes with the flows (the flow on K? is
of course the irrational twist defined by A, and \,). For integers
7 and s, define C.,: K? — R: (¢¥, ¢'*) — cos (70 + s@). We can choose
7 and s so that |zhn, + sh\| is as small as we please. Therefore,
we can apply an argument like that used in case (i) to show that,
if C = C,,07;07,07,, then (for appropriate ¢ and s) C satisfies 4.2.

LEMMA 4.3. Let V = {b e C,(2) | Stb(w -8)ds is uniformly bounded
0
(e, teR)}. Then V is dense in Cy(Q).

Proof. Let beCyQ), w, e R, Bt) = b(w,-t), Blt) = S5, aei*.

Then B(t) may be uniformly approximated by trigonometric
polynomials without constant term whose frequencies are among the
n8([6]). Such a polynomial defines a function b on 2 such that
t

b(w-s)ds is uniformly bounded as a function of we 2 and teR.
0
The lemma follows.

THEOREM 4.4. Let (2, R) be a monperiodic, almost periodic
minimal set. Then there is a residual subset C, of Cy(2) such that
lim,_ ., A(n, I, w,b) = 0 for all @ €2 and all compact I < R(beC,).

Proof. Let QU k, N) = {be Cy(2)|for some we 2 (depending on
b), one has A(n, I, w,b) = 1/k for » = N}. By 3.8 and 3.3, U,cx
Ui U3 QU k, N) = {beCy(2)] for some we R and some compact
IcR, lim,... A(n, I, w, b) > 0}.

Without loss of generality, we can restrict attention to sets I
of the form [—a, a], where a is an integer. It is easily seen that,
if I=[—a,a], then clsQ(, k, N)CcQ(, k, N), where I, =[—a—1,
a + 1]. Hence, if 4.4 is false, then some Q(I, k, N) contains a ball
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W of radius 6 > 0. By 4.3, we may suppose that, if a is the center
t
of W, then \ a(w-s)ds is in some compact interval I, for all ¢, .

Let IULC[—a, ], then let I, = [—2a,/0, 20/6]. Apply 4.2 with
I, replacing I and 1/k replacing ¢. We obtain a function ¢ such
that a + dce W and A(n, I, w, a + dc) < 1/k for all @ if » is suffici-
ently large. We have arrived at a contradiction, and proved 4.4.

REMARKS 4.5. (a) By 4.4 and 3.9, residually many be Cy(R)
13
admit no y,-measurable » with 7(w-t) — r(w) = Sb(a)-s)ds.
[}

(b) A theorem analogous to 4.4 holds for imteger a.p. minimal
flows (2, T). The statement of this theorem is obtained (as in

3.10d)) by simply replacing S’b(w-s)ds with g,(m) = S, b(w- T*)
0

Gt b(w-T7% if n<0), and replacing A(n, I, w, b) by 1/2n card {m €

[—n, nllg.(m) e I}. We must assume (2, T') is not periodic; i.e., that

T/ =idy on £ for no j.
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