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AN ANALOGUE OF MOREAU'S PROXIMATION
THEOREM, WITH APPLICATION TO THE

NONLINEAR COMPLEMENTARITY
PROBLEM

L. McLlNDEN

This paper concerns the problem of minimizing a convex
function subject to nonnegativity constraints, an associated
nonlinear complementarity problem, and a new approach to
solving these problems. The approach involves solving a
sequence of nicer problems which approximate the given
ones better and better, and our focus is on certain natural
"trajectories" of solutions of the approximating problems.
Existence, characterization, and continuous dependence of
the solutions is obtained by establishing a complete analogue
of Moreau's Proximation Theorem. From this analogue also
follow two new facts about the geometric nature of the
graphs of subdifferentials in Rn

9 as well as new informa-
tion about monotone conjugacy for coordinatewise nonde-
creasing convex functions on the nonnegative orthant. The
largest part of the paper is then devoted to developing a
number of rather strong properties of the solution trajec-
tories, particularly as regards the nature of their conver-
gence. Perhaps the most striking property is that these
trajectories will locate a maximal strictly complementary
solution which, furthermore, can be arranged to have a
certain prescribed strong Pareto optimality property. The
arithmetic-geometric mean inequality enters decisively at
several key points, and the proofs generally rely strongly
upon the techniques of finite-dimensional convex analysis.

1* Introduction* Consider the optimization problem

(Po) min {/(*)},
xeQ

where / is a closed proper convex function on Rn and Q = {x e
Rn\xk^ 0V&}. The simplest and most generally useful convex dual
problem to (Po) is

(Po ) min {/*(*/)},
2/eρ

where /* is the Fenchel conjugate of /, i.e.,

f*(y) = sup {(x, y) - f(x)}
X

(here (x, y) denotes the usual dot product Σ #*#*). Associated with
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(Po) and (Po*) is the nonlinear complementarity problem

(Co) find (a?, y)e(Q x Q)f] graph df such that (x, y) = 0 ,

which describes the extremality conditions that go with both (Po)
and (Po*). Here df:Rn—>Rn is the subdifferential of /, characterized
by

y e 3/0*0 — f(x) + f*(v) = <*, y> .

It is known (see [6, Theorem 31.4]) that, under the very minimal
assumption that

0 φ Q n ri (dom /) and 0 Φ Q (Ί ri (dom/*)

(here dom<p = {£|<p(2) < + °°} and "ri" denotes relative interior),
this trio of problems is well posed and statisfies several useful
relationships, including: (i) all three problems have solutions; (ii)
(x9 y) solves (Co) if and only if x solves (Po) and y solves (Po*), and
(iii) inf (Po) + inf (Po*) - 0.

The present paper is concerned with developing relationships
between the trio (Po), (Po*), (Co) and a certain closely related approxi-
mating trio of problems (P2), (P**), (CJ, where 2; is a parameter
ranging over Q. These parametrized problems involve an auxiliary
function z<>g: Rn —>[—oof + ©o) having a number of useful properties.
While the analysis of the paper handles all z in Q, for notational
simplicity in this introduction we define zog only for z in P = {x e
iϋw |% > 0 Vfe}; namely, we set

, w v (Σs*logx k if xeP
(—00 if # g P .

(The particular function e°g, where e = (1, * ,1), can be thought
of as simply "g".) For each fixed z e P, this function is (Proposition
1) closed proper concave in x with conjugate and subdifferential
(both taken in the concave sense) given by

Σ («* -
and

y ed(zog)(χ) <=> xeQ,yeQ and a?fcί/t = zkvk

The initial reason for interest in such a function («°flf)(cc) is that
it acts as an interior penality term to approximate the constraint
xeQ in (Po). Indeed, as z->0 the function — (z<>g)(χ) approaches
the function ψQ(x)f where ψQ denotes the convex indicator function
of Q (i.e., ψQ(x) is 0 if xeQ and is +00 otherwise). Likewise, the
formula for (z<>g)*(y) shows that, as z -> 0, —(zog)*(y) approaches
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the function ψQ(y) describing the constraint y e Q in (Po*). Also,
since

y G d(-γQ)(x) < = > xeQ,yeQ a n d xkyk = 0 V/b ,

the formula for 3(z <>g) suggests that the pairs (x, y) in graph 9/n
graph d(zog) might approach, in some sense, the solutions of (Co) as
z —> 0. We are thus led to consider the three problems

(P.) mm{f(x)-(zog)(χ)}f

(P,*) min {f*(y) - (z°g)(y)} ,

and

(Cz) find (x, y) e(Q x Q) Π graph 3/ such that x ^ — £fcV& .

Our analysis starts out in § 2 with an existence, duality, and
characterization result (Theorem 1) which follows easily from
FencheΓs Duality Theorem [2] (see also [6, § 31]) together with the
cited properties of z°g. Assuming throughout the condition

0 ^ P Π d o m / and 0 ^ P ( Ί d o m / * ,

we find for each zeP that: ( i ) problems (Pz), {P*)9 (Ce) each have
at least one solution; (ii) (x, y) solves (CJ if and only if x solves
(JPZ) and y solves (P2*); and (iii) inf (P2) + inf (P*) = Σ (zk -zk logzk).
Since zog is strictly concave, the solutions to (Pz) and (P2*) are
necessarily unique and hence for convenience will be denoted by xz

and yz. It is shown later (Corollary 5A), after substantially more
work, that the mapping

z > (x% y z )

is continuous on P and in fact differentiate there almost every-
where. Taken together, the preceding facts constitute an analogue
of Moreau's Proximation Theorem [5] (see also [6, Theorem 31.5
and ff.]). Two new general facts follow concerning the geometric
nature of graph df. The above existence result together with the
arithmetic-geometric mean inequality imply that (P x P) Π graph df
is a maximal monotone set with respect to P x P (Theorem 3), and
the continuous dependence result implies that (P x P) ΓΊ graph df is
homeomorphic to P via the map (x, y) —> z, where zk = xkyk Vk
(Theorem 4). These are nonobvious analogues of results known to
hold for the entire set graph df with respect to Rn x Rn and Rn

(see [6, Corollaries 31.5.1 and 31.5.2]).

Another general fact established in § 2 is that the functions /
and / * may each be replaced in (P2) and (P*) by their "coordinate-
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wise nondecreasing hulls" without affecting either the optimal values
or the optimal solutions (Theorem 2). These two nondecreasing
hull functions are shown to be the monotone conjugates of each
other (Proposition 3), and the corresponding "subdifferentiaΓ mapp-
ing from Q to Q is characterized in terms of the original df
(Corollary 2A). Thus, our analogue of Moreau's theorem may be
viewed alternatively as pertaining to monotone conjugate pairs of
coordinate wise nondecreasing convex functions on Q.

The major part of the paper, §§ 3 and 4, is devoted to uncover-
ing the relationships between the parametrized trio (Pz), (Pz*), (Cz)
and the original problem trio (Po), (Po*), (Co). It is here that the
nice properties of the special penalty terms we have chosen come
particularly into play. For instance, one strong property which is
not obvious at first glance, but upon which most of the later results
depend, is that the function

(x, z) > Σ zk log xk + Σ (s* ~ Zk log zk)

is concave jointly in (x, z)eP x P. Indeed, this function admits
an extension to all of Rn x Rn which is closed proper concave, and
the associated conjugate function and subdifferential mapping can
be found explicitly (Proposition 4). Using this and techniques of
convex analysis, we show (Theorem 5) that the parametrized optimal
values,

z > inf (Pz) ,

form a continuous concave function of zeQ, actually continuously
differentiate on ze P, and having certain subdifferential and con-
jugate formulas. We also show (Theorem 7) that the parametrized
optimal solutions,

z > Xz and z > Yz ,

where Xz and Yz denote the solution sets of (Pz) and (P2*), form
upper-semicontinuous mappings on Q. In particular, the distance
between of and the solution set of (Po) tends to zero as z tends to
0 along any path (or sequence) in P.

This last point raises the prospect that stronger convergence
facts for xz might be possible if the passage of z to 0 is controlled
in some fashion. The rest of §§3 and 4 is devoted to exploring
this in detail, and a number of results are obtained for the case in
which z tends to 0 along (any sequence from) a fixed ray. A
sampling of these results will now be outlined. Together with all
the other information, they justify a solution procedure which is
described in § 5.



AN ANALOGUE OF MOREAU'S PROXIMATION THEOREM 105

A little notation is needed. For any z e Q, let σ(z) = {k\zk> 0}
be called the support of z, and let / and J denote the (well-defined)
maximal supports from among those of all the solutions to (Po)
and (Po*) respectively. For any fixed aeP satisfying X ak — 1, let
the solutions of and τ/0 corresponding to z's of the form z = ζα (for
ζ > 0) be denoted simply by xζ and τ/c. In what follows it is
understood that a is as just described and fixed.

The most striking result, and the one which most reflects the
special properties of our penalty term, is the following (Theorem 8).
If (x°, y°) is any accumulation point of (xζ, yζ) as ζ j 0, then

σ(x°) = I and σ{y°) = J ,

and one has the inequality

for any x solving (Po) and any 7/ solving (Po*). From the inequality
follow a posteriori estimates on the solution sets of (Po) and (Po*)
(Corollary 8A). Using both parts of the above result together with
the arithmetic-geometric mean inequality, we obtain the following
surprising convergence result (Theorem 9). If (Co) has a strictly
complementary solution (i.e., if I\J J = {1, , n})9 then (xζ, yζ)
converges to such a solution as ζ [ 0; moreover,

lim (xζ, yζ) = (2, ̂ ) ,
C I O

where 2 and y are the unique solutions of (Po) and (Po*) which
maximize the concave functions #—•Πi^** a n d 2/-*Πjl/Afc> respec-
tively. This same conclusion holds even in the absence of a strictly
complementary solution to (Co), provided that / is polyhedral (Theo-
rem 10). An example in R2 shows that this behavior may fail in
general. It still seems very likely, however, that convergence of
{xζ, yζ) to some particular solution of (Co) must occur as ζ j 0 (i.e.,
that there is at most one accumulation point as ζ j 0). It would
be nice to resolve this.

Other facts are also derived in §§ 3 and 4 concerning (xζ

9 y
ζ) as

ζ i 0. These include, for instance, a stopping criterion and a result
guaranteeing that some improvement must continually occur, either
in the ^-variable or in the ^/-variable, until optimality is achieved.
These facts are discussed further in § 5, where the solution method
is formalized. Using it, one can locate the very special solutions
x and y defined above even in the general case.

In § 6 the ^analogy between the results in § 2 and Moreau's
Proximation Theorem is described quite explicitly. It is shown
that in the trivial case n — 1 the present analogue (consisting of
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Theorem 1 and Corollary 5A) is actually equivalent to Moreau's
theorem. This follows from a one-to-one correspondence between
the closed proper convex functions on R and certain closed proper
convex functions on the nonnegative halfline (Theorem 14). Simple
examples are given in the case of n — 2, however, which show that
in general neither of the two "theorems" follows from the other.
Also in § 6 the Proximal Point Algorithm is reviewed in the context
of Moreau's theorem and then transformed into the present context.
Likewise, the present solution procedure is transformed into the
context of Moreau's theorem. The differences between the two
procedures are thereby clarified. This suggests some questions for
further research.

In an appendix it is shown how the present framework can be
made to handle problems similar to (Po) and (Co) but involving non-
negativity constraints in only some of the variables.

The ideas of this paper admit extensions to complementarity
problems (CQ) and (Cz) in which 3/ is replaced by a general maximal
monotone (multivalued) operator T: Rn —• Rn satisfying the condition

0 Φ (P x P) n graph T .

This will be taken up elsewhere [4].
Throughout, we freely use terminology, notation, and facts

from finite-dimensional convex analysis as presented in Rockafellar
[6]. In particular, the symbols *, 3, and 0+ applied to a function
signify respectively the conjugate function, subdifferential mapping,
and recession function. Of course, each of these is to be interpreted
in either the convex or the concave sense, according to whether
the given function itself is convex or concave. We do depart
slightly from [6], however, by denoting the indicator function of
a set C by ψc (rather than δ( |C)); thus, φc(x) is 0 if xeC and is
+ oo otherwise. Throughout, we use the convention that 0 log 0 = 0.
Also, unless otherwise indicated, the summation symbol Σ signifies
Σϊ=i and the product symbol Π signifies Πϊ=i

2* An analogue of Moreau's Proximation Theorem* We
begin by extending to all zeQ the definition of the penalty function
z°g appearing in problems (Pz) and (Pβ*) Let h: R-+ [— °°, + °°)
be the function

(log ξ if ξ > 0
(2.1) h(ξ) =

(—oo if ξ <£ 0 ,

and define functions ζh:R—>[— oo, +oo) for ζ ^ 0 by se t t ing

ί ζ W ί ) ) if C > 0 , 5 622
(2.2) (W(5) . .

I—Ψϊo,+«)(£) i t C = 0, ξe
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It is elementary to check that, for each fixed ζ >̂ 0, the function
ζh is closed proper concave and satisfies

(2.3)

(2.4) (£, 37) e graph 3(ζfc) ~ f ^ 0, 7 £ 0, ty = ζ ,

(2.5) (CΛ)*W - P ) W + ζ - ζ log ζ .

Now let g: Rn ~>[—oof + oo) be the function

(2.6) 0(s) - Σ Λ(»*) ,

and define the functions 20(7: i2% —> [— 00y +00) for z e Q by setting

(2.7)

PROPOSITION 1. For each z eQ the function zog is closed proper
concave and satisfies

(2.8) ((

(2.9) (x, y) 6 graph d(z<>g) <=> xeQ,yeQ, xkyk ^ zkvk ,

(2.10) (zog)*(y) - (zog)(y) + Σ fe ~ «* log «*) .

Proof. The additive separability structure of zog implies that

((zog)0+)(x) = Σ ((zM0+)(xk) ,

(α?, y) 6 graph 3(2;ô r) <=> (a;fcf yfc) e graph d(zkh) VΛ ,

From these facts it is clear that (2.8), (2.9), (2.10) follow from (2.3),
(2.4), (2.5), respectively.

For general z e Q, problems (Pz), (P*), (Cz) are defined just as
for the special case zeP in § 1. Notice that when z = 0 these
problems are indeed the same as problems (Po), (P*)f (Co) from § 1.
In general, the sets of optimal solutions to (Pβ) and (P*) will be
denoted by Xz and Y% respectively.

The next result provides several characterizations of the condi-
tion which will shortly become our blanket hypothesis. Notice that
characterization (a) says that the constraints in (Po) are satisfiable
strictly (Slater condition) and that the function f + ψQ minimized
in (Po) has bounded level sets.

PROPOSITION 2. For any zeP and z'eP the following six
conditions are pair wise equivalent:
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(a) 0 Φ P n dom/ and (fθ+)(x) > 0 for all nonzero xeQ;
(b) 0 Φ Pf] dom/* α^d (/*0+)(j/) > 0 /or αK nonzero yeQ;
(c) 0 ^ PΠdomf and 0 ^ P n dom/*;
(d) + oo > inf {/ - zog) > - co;
(e) + co > inf {/* - z'og] > - oo;
(f) + oo > inf {/ - zog} and + oo > inf {/* - zΌg).

Proof. The proposition follows from the following lemma
together with its dualized version.

LEMMA 1. Let ze P be fixed. Among the conditions
( i ) + oo > inf {/ - zog}
(ii) 0 Φ P n d o m /
( i i i ) (f*0+)(y) > 0 f o r all n o n z e r o y e Q
(iv) inf {/* -zog}>

one has the implications

( i ) — (ϋ) —=> (iϋ) —> (iv) ,

and if 0 Φ PΠ dom/* then all four conditions are pairwise equiv-
alent.

Proof. Since P = dom (z<>g)9 (i) <=* (ii). Since dom / and P are
convex and P is open, it is easy to check that (ii) is equivalent to

0 Φ P Π ri (dom /) .

By separation theory [6, Theorems 11.3 and 11.1], the above condi-
tion fails if and only if there exists a nonzero y such that

inf < , y) ^ sup < , y) and sup < , y) > inf <-, y) .
P dom / P dom /

Since

sup < , y) = (/*0+)(2/) and sup < , y) = ψQ(-y)
dom / P

[6, Theorem 13.3], the situation just described occurs if and only
if there exists a nonzero y such that

-fQ(y) ^ f*0+(y) and ψQ(-y) > - /*0+(-τ/) .

Since /*0 + is never — oo [6, Theorem 8.5], ψQ takes only the values
0 and +oo, and Q n ( — Q) = {0}, the latter situation occurs if and
only if there exists a nonzero yeQ satisfying (f*0+)(y) ^ 0. Taking
contrapositives, we obtain (ii) <=> (iii). To see (i) ==> (iv), note first
that the definitions of /* and (z°g)* yield

f(x) - (zog)(χ) ^ (zog)*(y) - f*(y) , VxVy .
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Using identity (2.10), we conclude that

ίnf {/ - zog} ^ Σ (** - s* log zk) - inf {/* - zo#} .

From this, (i) => (iv) is clear. Finally, notice that

inf {/* - zog} = - ( / * - zog)*(0) ,

so that (iv) *=> 0 e dom (/* — £°#)*. Now assume that 0 =£ P Π dom / * .
Then [6, Theorem 16.4] implies

(/*-*>£)* = / D (-*>£)*,

where Π denotes infimal convolution, so that

dom (/* — z°g)* — dom/ + dom (—zog)*

= dom / - P .

It follows that (iv) ==> (ii) in the presence of 0 Φ Pf\ dom/*.
For the remainder of §§ 2 through 5, unless otherwise specified

we assume that the mutually equivalent conditions of Proposition 2
are satisfied.

THEOREM 1. For each zeQ,
( i ) (Pz), (P*) and (Cz) each have at least one solution;
(ii) xeXz and yeYz if and only if (x, y) solves (Cz);
(iii) inf (P.) + inf (P*) = Σ («* ~ ** log «*);
(iv) X z and Yz are compact convex;
(v) the solutions are unique when zeP, so that we can write

Xz = {xz} and Yz = {i/ } if zeP.

Proof. Let a eQ be fixed. Since dom/ and dom/* are each
convex and since ri(dom (zog)) = P ~ ri(dom (z<>g)*)9 condition (c) of
Proposition 2 is equivalent to

0 Φ ri (dom/) n ri (dom («oflr)) and 0 =£ ri (dom (^o^)*) n ri (dom/*) .

Hence FencheΓs Duality Theorem [2], [6, Theorem 31.1] implies that

inf {/ - zog} - sup {(zo0)* - /*} ,

where both of these extrema are attained finitely. Also, by [6,
Theorem 31.3] the pairs (x, y) such that % yields the infimum and y
yields the supremum are exactly the elements in graph 3/ Π graph
d(zog). In view of formulas (2.9) and (2.10), assertions (i), (ii), (iii)
follow. To see (iv), observe that by [6, Theorems 8.4 and 8.7] the
set Xz is compact if and only if

((/ ~ zog)0+)(χ) > 0, VX Φ 0 .
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Since

((/ - zog)0+)(x) = fθ+(x) - ((sofiOO

by [6, Theorem 9.3] and formula (2.8), this means that

Xz is compact *=> fθ+(x) > 0 whenever 0 Φ xeQ.

Similarly,

Yz is compact <=^ /*0+(2/) > 0 whenever 0 Φ y e Q .

Since each of these recession conditions is satisfied, according to our
blanket hypothesis (see characterizations (a) and (b) in Proposition
2), assertion (iv) is proved. Assertion (v) is immediate from (i) and
the strict concavity of z°g for zeP.

COROLLARY lA. For any zeQ, xe X% y e Yz one has

and

f*(y) £ inf (P ) + Σ zh .

Proof. The vectors x, y, z satisfy

f(χ) + Γ(v) = <χ, v>

and

xeQ,yeQ, xkyk = zkvk .

Also,

inf (Po) + inf (Po ) = 0 .

Hence

inf (Po) ^ /[«) = Σ XkVk - /*(») ,

which implies

/*(») ^ - inf (Po) + Σ «* = inf (Po*) + Σ«*

The first inequality is proved similarly.

COROLLARY IB. Let zeP, and let xz and yz be as in Theorem
l(v). Write ak = zk/ΣJ=iZι, Vfc. Then

{x\f(x) ^ f(x*)} c {*1

{VI /*(») ^ r(ir)}c{y|ΣΛ(α*/»ί) ^ 1} .
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Proof. It suffices to prove the first inclusion. Consider

S = {xI f(x) £ f{x*)} , T = {x\(zog)(χ) ^ (zogχχ')} .

Since int T = {x e P\ (z o g)(χ) > (z © flθ(&*)}, the fact that xz solves
inf {/ — z o g} implies 0 = £ Π int Γ. Hence, there exists a hyperplane
separating S from T, i.e., there exist 0=£beRn and /3ej? such that

<x, by^βVxeS and /3 ̂  <#, δ> Vx e T .

Since f e S n ϊ 1 yields <xz, 6> = β, it follows that

(x - x2, -6> ̂ 0 VxeT .

By [6, Corollary 23.7.1], this means there exists some λ > 0 (recall
6=^0) such that be\d(zog)(χz). By (2.9) this means bk = \(zk/x'k),
Vk. Hence, each xeS satisfies

which implies the first inclusion.
Theorem 1 can be regarded as a rather special nonlinear "perfect

duality" result analogous to the Gale-Kuhn-Tueker Duality Theorem
in linear programming (see also [6, discussion on p. 337 concerning
Corollary 31.4.1]). This is expressed in the following corollary, for
which we make an exception and do not assume the blanket hy-
pothesis.

COROLLARY 1C. Let zeP. If either

inf {/ — zog} or inf {/* — zog}

is finite, then both are finite, in which case

inf {/ - zog} + inf {/* - zog} = Σ (** - «* log zh)

and the two problems have unique solutions x and y characterized
by the conditions

(x, y) 6 (P x P) Π graph df and xkyk = zkVh .

Proof Immediate from Proposition 2 and the theorem.

Many of our subsequent results can best be stated using the
concept of support. Recall from § 1 that for any zeQ we define
the support of z to be

σ(z) = {k\zk > 0} .

In particular, the support of the zero vector is the empty set 0 ,
and to this set we assign cardinality zero in what follows.
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It will also be convenient to have notation to describe the
various faces of Q. If K is any nonempty subset of {1, •••, n) let
us agree to write

Qκ = {zeQ\zk = OVkzK} .

For the degenerate case K = 0 it is natural in what follows to
adopt the convention that Qφ is the singleton consisting of the zero
vector of Rn.

Now for any fixed b e Q, the nonnegative integer

max {card σ(x) \ x e Xz)

is clearly attained by at least one element of Xz. Let I(z) denote
the support corresponding to any such element, and to eliminate
the trivial case Xz — {0} assume that I(z) Φ 0 . For any x e Xz it is
easy to see, using the convexity of Xz and the maximality of
card/(z), that σ(x)<z.I(z). It follows that I(z) is independent of
which element of Xz was chosen to define it, and also that Xz is
contained in the particular face QI{Z). Similarly, if Yz Φ {0} then
there is a well-defined minimal index set, call it J(z), such that Yz

lies entirely within the face QJ{Z) of Q. Finally, note that our
earlier definitions yield I(z) = 0 if Xz = {0} (respectively J(z) = 0 if
Yz = {0}), and in either case the convention Qφ = {0} is just what's
needed. Notice that, for all z e Q, the "complementarity" conditions
%kVk — zk in (Cz) imply that

I(z) Π J(z) - σ(z) .

The next several results deal with a variant of Theorem 1
which involves replacing / and /* by certain related functions. We
define the (coordinatewise) nondecreasing hull of / to be the function

(ndh f)(x) = inf {/(a?') | x' e x + Q), Vx e Rn .

It is easy to verify that ndh/ is the greatest (coordinatewise)
nondecreasing minorant of /. Similarly, the function

(ndh/*)(») - inf {/*(»')!»' ey + Q}, VyeRn,

called the nondecreasing hull of /*, is the greatest nondecreasing
minorant of /*. Note that from now on the blanket hypothesis is
again in force.

PROPOSITION 3. The nondecreasing hulls of f and f* are closed
proper convex functions on Rn satisfying:

( i ) (ndh f)(x) = min {/(»')!&' 6 x + Q}, Vx e Rn,
(ndh /*)(y) = min {/*(/) \y'ey + Q},Vye Rn;
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(ii) (ndh f)(x) - s u p ^ {(x, y) - (ndh /*)(»)}, Vx e Q,
(ndh f*)(y) = sup*6Q {(x, y) - (ndh /)(&)}, Vy 6 Q;

(iii) /or any pair (a, y)eP x P,

f(x) + f*(v) = <x, V> <—> (ndh /)(*) + (ndh f*)(y) =

in ί/iΐs event

(ndh /)(a?) - /(α:) and (ndh /*)(») - /*(y) .

Proof. We can rewrite ndh / as

(ndh f)(χ) = inf {f(x') + ψ^ίOla? = a?' + a"

where • denotes infimal convolution. By the hypothesis 0 ^ PίΊ
dom/* and [6, Theorem 16.4],

where moreover the infimal convolution is attained for each x.
Hence

(2.11) ndh/ - fΠψ-Q = (/* + ψQr ,

where the infimal convolution is always attained. This shows in
particular that ndh /, being the conjugate of a closed proper convex
function, is itself closed proper convex. Similarly, the hypothesis
0 Φ Ppi dom / implies

(2.12) ndh /* - /* ΠΨ-Q = (/ + ψQr ,

where the infimal convolution is always attained. In particular,
ndh/* is also closed proper convex. Assertion (i) is now established.
Now notice from the inf-con volution term in (2.12) that

dom (ndh/*) = dom/* - Q .

Hence

0 Φ ri (dom (ndh /*)) Π ri (dom ψQ)

holds by virtue of our hypothesis 0 Φ Pfldom/*. Therefore we
can apply the other part of (2.12) together with [6, Theorem 16.4]
to obtain

sup {<*, y) - (ndh/*)(»)} = (ndh/* + ψQ)*(x)

= inf {(/ + ψQ)(x') + f _,(*") I α = x' + x"\

= inf {/(*') I s ' e Q n ( z + Q)}.
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It follows that

sup {(x, y) - (ndh /*)(»)} ^ (ndh f)(x), Vx e Rn ,
yeq

with equality whenever xeQ. In particular the first identity in
(ii) is now established. The second identity in (ii) follows similarly
from (2.11) and the hypothesis 0 Φ P Π dom /*. Let us now establish
(iii). Note first that (ii) implies the general inequality

(2.13) (x, y) ^ (ndh/)(aθ + (ndh /*)(»), vfo 2 / ) e Q x Q .

Since ndh / ^ / and ndh /* <̂  /*, one implication in (iii) follows
trivially. Now let (x,y)ePx P satisfy

(2.14) (ndh f){x) + (ndh /*)(») - (x, y} .

By (i) we have

(2.15) (ndh f)(x) = /(a? + a?') for some x'eQ

and

(2.16) (ndh f*)(y) = /*(» + »') for some »' e Q .

Hence

<*, »> - / ( * + aK) + /*(y + y')

^(x + x',y + y'} ,

where the inequality is just FencheΓs inequality. Therefore

0 ^ <x, y') + (x't y) + <*', V'> .

Since each term on the right is nonnegative, this yields

<x, VΎ = 0 = <a/f »> .

Since x and # are in P, this forces

a?f = 0 = y* .

This together with (2.14), (2.15), (2.16) yields

Assertion (iii) is now established.
Proposition 3(ii) says that the restrictions of ndh/ and ndh/*

to Q are the monotone conjugates of each other, in the sense of
Rockafellar [6, Theorem 12.4]. The "subdifferentiaΓ characteriza-
tion given in Proposition 3(iii) will be extended to all pairs (x, y) e
Q x Q in Corollary 2A below. Notice that from Proposition 3(iii),
together with parts (v) and (ii) of Theorem 1, it follows that
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/(a*) = (ndh/)(&') and f*(y') = (ndhf*)(y) , VzeP.

For each z eQ let (Pz) and Xz denote the problem and corre-
sponding solution set obtained by replacing / in (Pz) by ndh/.
Similarly, let {P*) and Ϋ* denote the problem and corresponding
solution set obtained by replacing /* in (P*) by ndh/*. Finally,
the present counterpart of the complementarity problem (Cz) is the
problem

(find (x, y) 6 Q x Q such that
( C ί ) ((ndh f)(x) + (ndh f*)(y) = (x} y) and xkVk = z]c Vk .

THEOREM 2. For each zeQ,
( i) (Pz)9 (P*) and (Cz) each have at least one solution;
(ii) x e ί and y e Ϋz if and only if (xf y) solves (Cz);
(iii) inf (PJ = inf (Pz) and inf (P*) = inf (P*), so that

inf (Pz) + inf (P ) = Σ (zk ~ zk log zk);

(iv) Xz and Ϋz are compact convex, and in factf

(2.17) QI{Z) D Γ - Q Π ( P - QIW\*M) Z) I ^ f

(2.18) Q'7(z) D Ϋ 2 - Q n ( P - QJ( )\-(*Ϊ) z) Y^ ;

(v) Xz - {xz} and Ϋz - {y*} ifzeP.

Proof. First, notice that (2.11) implies

dom (ndh /) = dom f - Q ,

dom (ndh / ) * = dom /* Π Q ,

and from these it follows that

0 Φ P Π dom (ndh /) <=> 0 Φ P f] dom / ,

0 Φ Pf) dom (ndh / ) * <=> 0 ^ P n dom /* .

Thus, our blanket hypothesis is met by ndh /, and so Theorem 1
applies to the modified problems

(2.19) inf {ndh/- zog)

and

(2.20) inf {(ndh/)* - zog}

obtained by replacing / by ndh/ in both (Pz) and (Pβ*). Since
problem (2.19) is (Pβ) and problem (2.20) is (P*) (since (ndh/)* =
/* + αÂ )> Theorem l(i) applied twice yields
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inf (P.) = - inf (P ) + Σ (zh - z* log zk) = inf (P.) .

A similar argument based on (2.12) yields

inf (P. ) = -inf (P.) + Σ (** - zk log **) = inf (P,») .

This establishes assertion (iii). Now by (2.13) and (2.10), for each
x,yeQ we have

(ndh /)(») + (ndh /•)(») ^ <», »>

^ (z°g)(χ) + (z°g){y) + Σ (s* - «* log «*).

Hence the condition that xeXz and 2/ 6 Ϋ% which by (iii) is equiv-
alent to

(ndh/)(aθ - (zog)(χ) + (ndh/*)(») - (zog)(y) = Σ («* - zklogzk) ,

is in turn equivalent to the two equations

(ndh/)(a?) + (ndh/*)(») = <x, y) ,

(z°9)(x) + (zog)(y) + Σ (zk - zk log zk) = <α?, y> .

Since by (2.9) and (2.10) the latter equation is equivalent to the
condition

xeQ,yeQ, xkyk = zkVk ,

assertion (ii) follows. Now suppose for the moment that (2.17) and
(2.18) have already been established. We claim that the rest of
the theorem follows easily. Indeed, since Xz is nonempty and
bounded (Theorem 1), (2.17) implies that Xz is also. Since Xz is
automatically closed and convex (recall ndh/ and — z°g are each
closed convex), this shows that Xz is nonempty compact convex.
Similarly, (2.18) implies Ϋz is nonempty compact convex. This
establishes the rest of assertion (iv) and also (by (ii)) assertion (i).
Assertion (v) follows trivially from the set equalities in (2.17) and
(2.18), because zeP implies σ(z) = {1, — -, n} and hence

I(z)\σ(z) = 0 = J(z)\σ(z) .

It remains, then, to establish (2.17) and (2.18). Of these, we shall
only prove (2.17), as the proof of (2.18) is analogous. Let y be any
solution to problem (2.20) having maximal support, i.e.,

(2.22) yeYz and σ(y) = J(z) .

By Theorem l(ii), xeXz if and only if (x, y) solves the complemen-
tarity problem associated with problems (2.19), (2.20):

(2.23) xeQ,yeQ, xkyk = zk VA;
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and

(2.24) (ndh /)(*) + (ndh f)*(y) = <a , y) .

Using (2.11) together with [6, Theorem 23.8], one sees that (2.24)
is equivalent to

x = x + xf for some x e df*(y) and cc' 6 dψQ(y) .

Since x'edψQ(y) is equivalent to t/eQ, — α'eQ and — x'kyk = 0 V&, it
follows (in view of (2.22)) that conditions (2.23), (2.24) occur if and
only if

x e Q n (x - QJf{z))

for some xeQ satisfying xedf*(y) and xkyk = «tVfc, where J'(z) =
{1, •• ,w}\J(«). But the conditions on x just listed mean precisely
that xeX% in view of (2.22) and Theorem l(ii). Hence

r - < 3 n ( P - QJ/{Z)).

Since P c Q and α(s) = I(z) f] J(z), it can be checked that

Q Π ( P - QJ/(Z)) = Q n ( P - Qz<^σ(z)) .

This establishes the equality part of (2.17). Since P c Q / U ) , the
equality implies Γ c Q Z U ) , and since QeQI{z)Xσ{z), it trivially yields
XZZ)XZ. This concludes the proof of (2.17) and the theorem.

COROLLARY 2A. For each (β, y)eQ x Q,

(ndh/)(<*) + (ndh/*)(y) = <», y)

if and only if there exists (x, y) eQ x Q such that

f(χ) + f*(y) = <χ, v>,

xk rg xk if xkyk = 0

xk = xk otherwise

^ ^ yk if Xkϋk = 0 αmϊ ?/fc > 0 |

^ = Vk otherwise )

Proof Let ( ^ j ) e Q x Q be given, and define zeQ by se t t ing

3fc = %kVk Vfc. Then

(ndh/)(») + ( n d h / * ) ( £ ) = <«, ^>

is equivalent to (x, y) solving (CJ, which by p a r t s (ii) and (iv) of

Theorem 2 is equivalent t o t h e existence of vectors x e P and
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yeYz such that

%k = χkvke Γ(z) U σ(z)

xk ^ xk Vk e I(z)\σ(z)

and

£* = ykVke J\z) U tf(z)

gf* ^ykvke J(z)\σ(z) ,

where we write

I'(z) = {1, , n}\/(z) and J 'W = {1, ,

Using

C α (flc) c 1(3) and σ(z) c <J(?/) c

together with Theorem l(ii), one can check that these conditions are
equivalent to the ones asserted in the corollary.

This section concludes with two new general facts concerning
the geometric nature of subdifferential mappings in i2\

THEOREM 3. Let f be any closed proper convex function on Rn

satisfying

0 φ Pf] dom / and 0 Φ P Π dom /* .

Then Γ = (P x P) Π graph df satisfies

(2.25) <*' - x, y' - y) ^ 0, V(sf »)f (a?', 1/') € Γ ,

α^d /or eαc/z, (xf y)e(P x P)\r ίfeβrβ eccisίs α pαΐr («', 2/0 6 Γ such
that

(2.26) <α>' - », / - » > < 0 .

Γ/̂ αί is, Γ is a maximal monotone subset of P x P.

Proof. The monotonicity property (2.25) is easy to verify.
Now let (x, y) e (P x P)\Γ. We shall exhibit an (&', 2/') 6 Γ satisfy-
ing (2.26). Define a vector zeP by setting £fc = xkykvk. By Theo-
rem 1 there exists a pair (x\ y') e Γ such that xkyk = 2fc V&. Then

<#' - a?, / - y) = <a?', 2/'> ~ <α', l/> - < ,̂ Vfy + <«, y>

= Σ z* - Σ «*(«ί/*») - Σ zάv'M + Σ zk

yields

(2.27) 2 - ζ-\x' - x, y' - »> = Σ αfc(α?;/a?4) + Σ α*(»ί/»*) ,
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where

C = Σ zk and ak = ζ~ιzk Vk .

Now consider two cases.

Case 1: either there is no σ > 0 such that #' = σx or else
there is no τ > 0 such that y' = τy. Then we can apply the
arithmetic-geometric mean inequality to each summation on the
right-hand side of (2.27), obtaining

2 - ζ~\x' - x, yf - y) > Π (*ί/s*)β* + Π (^/l/*)β* .

This together with another application of the arithmetic-geometric
mean inequality yields

1 - (2Q-1 <*' - x, y' - y) > i-Π (*'*/**)'* + A Π (vM**

^ {Π (χί

- {Π {χ'M

where the last equality uses x'ky[ = zk — xkyk Vfc. Hence (2.26) holds.

Case 2: there exists σ > 0 such that #' = σx and there exists
r > 0 such that y' — τy. Then

'k Vk

implies that στ = 1. Now we cannot have (σ, τ) — (1, 1), since that
would imply that (x\ yf) = (x, y) is both in and out of graph df.
Hence (σ, τ) Φ (1, 1), which implies that σ + τ > 2 (since στ — 1).
This together with (2.27) and Σ α* = 1 yields

2 - ζ~\x' - x,y' - y} ^Σa^ + Σakτ = σ + τ>2 .

Hence (2.26) holds in this case also, and the proof is complete.
We remark, incidentally, that the uniqueness result Theorem

l(v) can be given an alternate, operator-theoretic proof based on
the above argument. Indeed, for fixed ze P suppose that

(xf y), (xf, yr) 6 graph df Π graph d(zog) .

Then (a?, y), (x\ y') e Γ, with xkyk = zk = xky'k Vk. Hence,

0 ^ (x' - x, yr - y) < 0

unless we find ourselves in Case 2 above with σ = τ = 1, and in
that situation (x, y) — (x\ yf).
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THEOREM 4. Let f be any closed proper convex function on Rn

satisfying

0 φ Pndom/ and 0 ^ Pfl dom/* .

Then the mapping h(z) = (x% yz) is one-to-one from P onto Γ =
(P X P) Γl graph df, and it is continuous with continuous inverse
h"\x, y) = z, where zk = %ΐ/fc V&. Γfcαί is, h is a homeomorphism
between P and Γ.

Proof. Consider the function I: Γ-+P given by l(x9 y) — z, where
%k — %kVk Vfc. This is one-to-one, by the uniqueness part of Theorem
1. By the existence part of Theorem 1, for each zeP there is a
pair (x% yz) e Γ satisfying l(x% yz) — z. Hence I is onto P and (since
it is also one-to-one) its inverse is the function h. Clearly I is
continuous. The continuity of h is established in Corollary 5A
below, which does not depend on the present result.

In Corollary 11B, results are established which are similar to
Theorems 3 and 4 but which involve the positive reals instead of
the positive orthant.

3* Parametric analysis of optimal values* Central to the
analysis of both inf(P z) and Xz as functions of zeQ is certain
joint convexity structure related to our penalty terms. This is
presented in Proposition 4, which depends on the following.

LEMMA 2. The function σ: R2 ~^[— oof -foo) defined by

(3.1) σ(ξ, ζ) -

+ ζ - ζ l o g ζ if ξ>0 and ζ>0

0 if ξ ^ 0 and ζ = 0

— o° otherwise

is positively homogeneous closed proper concave with conjugate

(0 if η > 0 and 0 <; ω + log η
(3.2) σ*{η, ω) = .

(— oo otherwise ,

and (η, ω) e dσ(ξ, ζ) if and only if

(either ζ > 0, ξ > 0, η > 0, ξη = ζ, 0 - ω + log)?

(or ζ = 0, ζ = 0, Ύ] > 0, 0 ̂  ω + log η .

Proof. One could argue this directly. However, for brevity
we indicate an alternate proof. It is easy to check that
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(3.4) σ(ξ, ζ) =

(Λ*C)(f) if ζ > 0

if ζ - 0

if ζ < 0 ,

where h is the function defined in (2.1) and we have used h*(τj) =
h(η) + 1 from (2.5). The lemma now follows from (3.4) and a one-
dimensional application of [3, Proposition 1], which provides formulas
for the conjugate and subdifferential of the indicator function of a
general convex epigraph set.

PROPOSITION 4. Let 7: R2n —> [— °°, +°°) be the function

i(zog)(χ) + Σ (zk - z k l o g zk) i f z e Q

where zog is as defined in (2.7), (2.2), (2.1). Then 7 is a positively
homogeneous closed proper concave function with conjugate

(0 if yeP and 0 g wk + log yk Vk
(3.6) y*(y, w) = ]

{— co otherwise ,

and (y, w) e dy(x, z) if and only if

(xeQ, zeQ,yeP, xkyk = zkvk ,
(3 7)

(0 = wk + log #fc i/ 2;fc > 0, 0 ^ 7̂ fc + log yk if zk = 0 .

Proof, For each 26Q, (2.5) implies that

) = Σ

Using (2.2) and the fact that fe* = h + 1 has recession function
~^[o,+oo), one can check that

« «* > 0

if zk = 0 .

Together with (3.4), this information yields

(3.8) 7(a, 2) = Σ ^(**, «*)

From this additive separability structure it follows that

(3.9) 7*(y, w) = Σ σ*(Vk, wk)

and

(3.10) (y, w) e dy(x, z) <=> (yk, wk) e dσ(xk, zk) V& .

Combining (3.9) with (3.2) yields (3.6), and combining (3.10) with
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(3.3) yields (3.7). This concludes the proof.
Define functions vf and vf* on Rn by setting

/ Q 1 . , , finf(P.) if zeQ
(3.11) Vf(z) =

(— oo if £ g Q ,

finf (P*) if * 6 Q
(3.12) v,*(z) = ]

By Theorem l(iii) we already know that

(3.13) vf(z) + vf*{z) = Σ (** - s*log«*), VzeQ .

For a further study of V/ and vΛ, the following auxiliary functions
are useful:

jinf (Pf) - Σ (** - ** log s*) if s 6 Q
(©.14) £ W 3 ) . = i Λ • •

( + oo i f z $ Q ,

,Q , ̂  , v finf (P.*) - Σ («* - 2* log ̂ ) iί zeQ
(3.15) M * ) = , •* rfn

(+ °° if « ί Q .
From (3.13) it is immediate that

(3.16) vf = -μ/*, ^/* = —μf .

THEOREM 5. The functions vf and vf* given by (3.11) and (3.12)
are closed proper concave with effective domain Q. They are contin-
uous relative to all of Q, continuously differentiate on P, and
twice differentiate almost everywhere on P. Furthermore, their
conjugates are given by

(3.17) vj(w) = - m i n {f(x)\xk ^ exp (-w k ) V&} ,

(3.18) v%(w) = -min {f*(y)\yk ^ exp (~wk) Vk} ,

and their subdifferentials are given by

(zeQ and 3(#, y)e(Px Q) Π graph df

(3.19) wedVf(z)<=*\such that xkyk — zkΊ~k and

[ — wk = log xk if zk > 0, —wk<> log xk if zk=0 ,

'zeQ and 3(a?, y) e(Q x P) Π graph3/

(3.20) we3v/*0s)<==> s^cfc ίfeαί xkyk = ^fc Vfc α^cί

t — wfc = loĝ /fc i/ ^fc > 0, — wk ^ logyk if zk~0 .

In particular, for each zeP,

VVfiz) = - L ( O α^d Γv/ («).= -L(yz)
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where L: P —> Rn is the mapping

L(Zi, , zn) = (log zlf , log z j .

Proof. We shall prove only the results concerning v/*, as those
for v/ are proved similarly. By (3.16) it suffices to prove corre-
sponding results for μf9 since in particular

(3.21) vMw) - -μ*f(-w) ,

(3.22) w e dvf*(z) ~=> -we dμf(z) .

We begin by observing that

( μf(z) = inf {f{x) - (z<>g)(χ)} - Σ (s* - z* log s*)

- inf {φ{x, z) - y(x, z)} ,

where T is as in (3.5) and φ is the function on R2n defined by

(3.24) 9*x, z) = f(x), V(x,z)eR2».

Let A: R2n —> i?71 be the linear transformation A(x9 z) — z. Then
(3.23) can be expressed as

(3.25) μf(z) = (A(9> - Ί))(Z) .

(See [6] for the operation of forming the image of a convex func-
tion under a linear transformation.) The remainder of the proof
consists of establishing various facts about μf9 working from the
representation (3.25). Let A* denote the adjoint linear transforma-
tion, i.e., A*(w) = (0, w). We shall show that φ — Ί and (φ — τ)*A*
are closed proper convex and also derive their conjugates and
subdifferentials. Observe first from (3.24) that

(f*(y) if w = 0
(3.26) φ*(y, w) - V

(+oo if Wφ 0 ,

(3.27) (y, w) 6 dφ(x, z) -=> z e Rn, w = 0, y e df(x) .

It is easily seen that

0 Φ ri (dom <p) Π ri (dom (—7)) <==> <Z> Φ P {\ dom/.

Hence, by the blanket hypothesis and [6, Theorems 16.4 and 23.8],
it follows that φ — Ί is closed proper convex with conjugate

(3.28) ~ _ u ' __ 2f
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and subdiίferential satisfying

(3.29) d(φ - y)(x, z) = dφ(x, z) - dy(x, z) .

Now (3.28) implies, in particular, that

dom (<p — 7)* = dom φ* — dom 7* .

Hence, 0 Φ range A* Π ri (dom (<p — 7)*)

<==> 3w, (0, w) e ri (dom 9?*) — ri (dom 7*)

<==> 3w32/, y 6 ri (dom /*) and (y, —w)eri (dom 7*)

«=> 32/ e P n ri (dom /*) iw, wk < log yk V/c

<=> 3?/ e P Π ri (dom /*)

*—> 0 Φ P n dom / * ,

where we have used (3.26) and (3.6) to find domφ* and dom 7* and
then [6, Theorem 6.8] to find ri (dom 7*). Therefore, by the blanket
hypothesis and [6, Theorems 16.3 and 23.9], it follows that
(<P—Ύ)*A* is closed proper convex with conjugate

((φ - 7)*A*)*(Z) = (A**(φ - 7)**)(Z)

(3.30) = (A(φ - 7))(z)

= min {φ(x, z) — y(x, z)}
X

and subdifferential satisfying

(3.31) d((φ - Ί)*A*)(W) = Ad(φ -

By (3.25) and (3.30), μf is the conjugate of a closed proper convex
function; hence μf itself is such a function. From the finiteness of
inf (PJ for all z e Q (Theorem l(iii)), it is clear that dom μf = Q.
Since Q is polyhedral convex, hence locally simplicial, [6, Theorem
10.2] implies that μf is continuous relative to all of Q. Combining
(3.23) with (3.28) and (3.26) yields

= ((φ - y)*A*)(w)

= min {φ*(y, 0) - y*(y, -w)}
y

(3.32) = m i n {f*(y) I y e P and wk ^ log ykvk}
y

= min {f*(y)\yk ^ exp wk Vfc} .
y

By (3.21), (3.32) implies (3.18). Now observe that [6, Theorem 23.5],
(3.25) and (3.30), together with (3.31), (3.29), (3.27) and (3.7), imply
that
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w e dμf(z) <=> z e d((φ — Ί)*A*)(W)

<=> 3α, (x, z) 6 d(φ - τ)*(0, w)

*=> 3#, (0, w) e 39>(sc, 2) — 37(a?, «)

/, (?/, 0) 6 dφ(x, z) and (2/, — w) e 37(#, 2)

(3.33)

'3(&, 1/) 6 graph 3/ such that

xeQ,zeQ,yzP, xkyk = zkvk .

wfc = log 2/Λ if 2;fc > 0, wk ^ log i/fc if zk = 0 .

By (3.22), (3.33) implies (3.20). Finally, notice that (3.33) implies
for each zeP that

(3(α?, 2/) e (P x P) ΓΊ graph 3/ such that
w 6 dμf{z) <=> I , ,

l»l/ = zk and ̂ f c = log yk Vk .

Now by Theorem 1, the only pair (x, y) which can possibly satisfy
the conditions on the right is (x% yz). It follows that for each
zeP,

w 6 dμf{z) <=> wk = log y\ Vk .

Hence [6, Theorem 25.1], μf is differentiate on P with

(3.34) Fμf(z) - (log y{, - - , log y'n), VzeP .

Since μf is finite convex on P, [6, Theorem 25.5] implies that μf is
continuously differentiable on P, and AlexandrofΓs Theorem [1]
implies that μf is twice differentiable almost everywhere on P. This
concludes the proof.

COROLLARY 5A. The mapping z —> (x% yz) is continuous on P,
and in fact, differentiable almost everywhere on P.

Proof. It suffices to establish the asserted properties for each
of the two vector coordinates separately. So consider, for example,
the mapping z —> yz, and let E: Rn —> P be the mapping

E(wu , wn) = (exp Wi, , exp wj .

By (3.34),

(3.35) E{Vμf{z)) = y% VzeP.

Since it was shown in the theorem that Vμf has the properties in
question relative to P, and since these properties are preserved
under composition with E, the proof is complete by (3.35).

We conclude § 3 by establishing a variant of Theorem 5 to deal
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with a situation treated extensively in the sequel, namely, the
situation in which z is made to approach 0 along a given ray in
P. Let there be given a fixed vector

(3.36) aeP such that Σ αfc = 1 ,

and consider the z's of the form z = ζa. Write (Pζ), inf(Pc), xζ,
V/(ζ), etc. to denote the previously treated objects when regarded
as restricted to such z's. Thus, for example,

inf (Pζ*) if ζ ^ 0

- i f ζ < 0 ,

where inf (Pζ*) = inf {/* — ζa°g} for each ζ ^ 0. In all discussions
involving the one-dimensional parameter ζ, as opposed to the n-
dimensional parameter z, we assume that a is a given fixed vector
satisfying (3.36).

THEOREM 6. The functions v/ζ) and V/*(ζ) described above are
closed proper concave with effective domain [0, +°°). They are
continuous relative to [0, + <*>), continuously differentiate on
(0, +oo), and twice differentiate almost everywhere on (0, + 0 0 ) .
Furthermore, their conjugates are given by

(3.37) v?(α>) = - m i n {fix) | Π %lk ^ exp (-α>)} ,

(3.38) »;.(α>) - - m i n {/%) | Π tfί* ^ exp (-α>)} ,

α^d ί/^eίr subdifferentials are given by

({-ΣiCLklogxi} if ζ > 0

(3.39) 3v/(ζ) =

(3.40)

t} if ζ = 0

10 if ζ < 0 ,

if ζ > 0

Σα&log^/fc} if ζ = 0

0 if ζ < 0 .

Proof We shall prove only the assertions concerning V/*(ζ), as
those for V/(ζ) are proved similarly. Let B:R-^Rn be the linear
transformation JB(ζ) = ζα, with adjoint JB*(w) = <α, w>. Since (3.16)
implies

(3.41) M O = ~ (μfB)(ζ), Vζ e B ,

it suffices to prove the corresponding assertions about μfB. Using
the facts about μf established in the course of proving Theorem 5,
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we obtain by [6, Theorems 9.5, 16.3 and 23.9] that μfB is a closed
proper convex function on R having effective domain [0, +°°), its
conjugate is

(3.42) (j*fB)*(ω) = (B*μJ)(ω) = min {μf(w)\B*w = ω} ,

and its subdifferential satisfies

(3.43) d(μfB)(ζ) = B*dμAB(O) .

Combining (3.43) with (3.33), we obtain that ωed(μfB)(ζ) if and
only if either ζ > 0 and ω — Σ ak log y\ or else ζ = 0 and ω <̂  Σ α*
l o g ^ for some yePf]df(0). In view of (3.41) this proves (3.40).
Combining (3.42) with (3.32), we obtain that

(μfB)*(ω) = min min {f*(y)\yk ^ exp wk Vk}

= min {/*(»)} ,

where S = {(w, y) | ω = (a, w) and wk ^ Λ(i/i) VA;} (and h is given by
(2.1)). Hence,

where Γ = {(^, i/)|ω = <α, w> ̂  Σ α*̂ (2/*)} On the other hand, for
any # satisfying <ϊ) ̂  Σ akHVk) the t(; defined via

for fc = 2, , n

satisfies ω = <α, w) (as well as wt <; h(yk) Vfc). It follows that

(jtfB)*(ω) = min {/*(?/)}
Γ

In view of (3.41), this proves (3.38). The assertions about continuity,
continuous differentiability, and almost everywhere twice differentia-
bility follow from what has already been proved, much as in the
proof of Theorem 5.

COROLLARY 6A. For each ζ e (0, +°°) write

Then the mapping ζ —> (£(ζ), ^(ζ)) is continuous and coordinatewise
nondecreasing from (0, +°°) iwίo (0, +©o) x (0, +«>), and in fact is
differentiate almost everywhere on (0, +°°).

Proof. It suffices to establish the asserted properties for each
of the two coordinate functions separately. By the theorem, vf(ζ)
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is concave, continuously differentiate on (0, +°°), and in fact twice
differentiate almost everywhere there. Since

f^/(ζ)= -logί(ζ) Vζ6(0, +00)

by (3.39), the asserted properties for ζ->£(ζ) on (0, +00) now follow.
The mapping described in Corollary 6A has other properties also,

as explained below in Theorem 11 and Corollary 11B.

4* Parametric analysis of optimal solutions • We begin by
establishing some general facts concerning the behavior of the
solution sets of certain linearly perturbed versions of (Pz) and (P*).

For each yeRn, write fy—f—( ,y}. Consider the problems

(Pz,v) min {fy - (zog)} ,

which are perturbed versions of (Pβ). Clearly 0 Φ Pfidom/,, and
since (/„)* =/*(• + y), we have 0 ΦPndom(fy)* if and only if
y 6 D — dom /* — P. Hence, for each (z,y)eQx D the blanket
hypothesis is met for (Pt,y). Denote the set of solutions to (Pz,y)
by Xz'y, and let I(z, y) denote the maximal support of these solu-
tions (in the sense defined following Corollary 1C).

Similarly, for each xeRn write f* = /* — (x, •> and consider
the class of problems

which are perturbed versions of (P*). Clearly 0 Φ P Π dom//, and
since (/*)* = / ( • + x), we have 0 ^ P n d o m ( / * ) * if and only if
xeC = dom/— P. Hence, for each (z, x) e Q x C the blanket hy-
pothesis is met for (P*x). Denote the set of solutions to (P2*K) by
Yz'x, and let J(z9 x) denote the maximal support of these solutions.

Problems (Pz,y) and (P*J are not necessarily the duals of each
other in the sense of Theorem 1 unless y — 0 and x — 0, in which
case they coincide with (P2) and (P*)f respectively. (Note that the
blanket hypothesis 0 Φ P(Ί dom/ and 0 Φ P f] dom/* implies that
the choices x = 0 and 7/ — 0 do in fact belong to C and D, respec-
tively.) For general (z, y) e Q x D, for instance, the dual of (Pz>2,)
is the problem

min{/*(. + y) - (zog)( )} ,

i.e., (P*) with /* subjected to a "horizontal" translation in the
amount of y. The solutions to this latter problem are, as we know,
closely related to the solutions Xz'y to (Pz,y). The upper semicon-
tinuity result in Theorem 7(a) below, which for y's near the origin
is a kind of stability result for the problems (Pz) with respect to a
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certain class of perturbations, can therefore also be interpreted in
terms of a dual type of stability for the problems (P*). The roles
of these two types of stability are interchanged in Theorem 7(b).

THEOREM 7. (a) The mapping (z, y) —> Xz'y is an upper semi-
continuous point-to-set mapping on Q x D, and it is actually a
continuous singlevalued mapping on P x D. Moreover, whenever a
sequence {(zm, ym)} aP x D converges to (z°°, y°°) e (Q\P) x D, one has

( i ) inf {\\χ m>*M - x\\\xeXz~>y~}->0;

(ii) xΓ>ym~>0, vkel(z~,y-);
(iii) {xz7n>ym} has at least one cluster point, and all such cluster

points belong to χzCO>y°°,
(b) The mapping (z, x) ~> Yz>x is an upper semicontinuous

point-to-set mapping on Q x C, and it is actually a continuous
singlevalued mapping on P x C. Moreover whenever a sequence
{(zm, xm)} c P x C converges to (z°°, x™) e (Q\P) x C, one has

( i ) mf{\\y*m>*m-y\\yeY*~'n^O;
(ii) yim-'n->0, VkZJ(z~,x~);
(iii) {yz7n>χm} has at least one cluster point, and all such cluster

points belong to γzCO>χCO.

Proof, We shall only prove (a), as the proof of (b) is similar.
Let vfιV be defined in a manner analogous to (3.11), namely

inf (Pz,y) if z G Q

— co ΪL Z&Q ,

and define closed proper convex functions hffg for each z e Q by
setting

It follows from the definitions that

(4.1) h*f,M = - vf,y(z), VyeRnVzeQ .

Hence,

xedh?z(y) <=> hftβ(x) + h%z{y) = (x,

<=* hf,M ~ <&, V) = »/,y
C " } f{x){zg){χ) v

for every zeQ. By (4.1) and the continuity assertion of Theorem
5 applied to vf>y, the quantity h*,z{y) is (finite and) continuous in
zβQ for each fixed y eD. Hence, for each fixed sequence {zm} c Q
converging to z°° e Q, the sequence of convex functions {h*,zm} is
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finite and converges point wise to the finite convex function h*tZoo
everywhere on the open convex set D. Therefore [6, Theorem 24.5]
implies that, for each ε > 0 and each sequence {ym} c D converging
to y°°eD, there exists an integer m such that

dh*f Mvm) C dh*f My°°) + εB, Vm^m,

where B here denotes the Euclidean unit ball in 22*. In view of
(4.2) we can restate what has just been proved as follows: for each
sequence {(zm, f ) } c Q x D converging to (z°°, y°°)eQ x D and each
ε > 0, there exists an m such that

(4.3) Xzm'ym c XzOO>yO° + εJ3, Vm^m .

By Theorem 1, the set Xz>y is nonempty and compact for all (z, y) e
Q x D and is a singleton, denoted by xz>y, if actually (z, y)eP x D.
In view of (4.3), the first assertion of (a) follows. Now suppose
{{zm, ym)}aPx D converges to (z°°, y~) e (Q\P) x D. It follows from
(4.3) that for each ε > 0 there exists an integer m such that

i n f {\\xzm>ym - x\\ \xeXzΰ°>yO°} ^ ε,

This establishes (i). Now clearly (i) implies that

inf {\\x*m>ym - x\\2\xeXzCO>y0°} > 0 ,

where in fact the infimum is attained for each m. Since for the
index set

I •= I(z°°, y°°) - max {card σ(x) \ x e I2°°-η

and for each x e χzCO>v°° we have

ktl ktl

it follows that

kΐJ

This establishes (ii). Assertion (iii) follows from (i) and the fact
that Xz°°>yCO is nonempty and compact. This concludes the proof.

The idea of the additional parameters involved in Theorem 7
can be combined with the proof technique used in Theorem 5 to
obtain an extension of Corollary 5A involving the additional para-
meters. That is, not only are the solution mappings

(z, y) > xz'y and (z, x) • yz>x

continuous on the open domains P x D and P x C, respectively,
(we already know this by Theorem 7) but they are also different!-
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able there almost everywhere. For instance, to prove the assertion
concerning yZyX, one considers the function

(inf {f{xf + x) - {zog){χ')} - Σ (s* - *k log zh) if z e Q,

ί+oo if s£<2,

and establishes by means of a representation analogous to (3.25)
that μf is closed proper convex with known conjugate and sub-
differential formulas. In particular, one obtains that this μf is
differentiable everywhere on int (dom μf) = P x C with gradient

Fμf(z, x) = (i/ % W ) ) , L(V>*) = (log # ' , . . . , log yϊ*) .

The continuity and almost everywhere differentiability of (z, x) —>
yz'x now follow by [6, Theorem 25.5] and AlexandrofΓs theorem
[1], respectively.

The proof just sketched also yields, of course, an extension of
all of Theorem 5 itself to include the additional parameters. We
leave the statement of this to the reader.

For the remainder of this section we put aside the additional
parameters just discussed and concentrate on the behavior of Xz

and Yz as z approaches 0 in a specified manner. Throughout this
section and the next, let a be any given, fixed vector satisfying
(3.36). Also, let the index sets I(z) and J(z) corresponding to z — 0
be denoted simply by / and J.

THEOREM 8. Let the sequence {zm} c P converge to 0 in such a
way that

Ίfl

lim at = ak Vfc, where at = ztl Σ zf ,

and assume that the corresponding solution sequence {{xzm, yzm)}
converges to (x°, y°). Then

(4.4) σ(x°) = I and σ(y°) = J ,

and for each (x, y) e X° x Y° one has

(4.5) Σ ak{xkjxl) + Σ ak(yk/yl) g 1 .

Proof. Let (x, y) be any pair in Γ x Y°. Then

(4.6) σ(x) c / and σ(y) c J .

Since df is monotone and (xzm, yzm), (x, y) e graph 3/, we have

0 ^ (xzm - xf yzm - y)

= Σ *? - <^ z m, v> - <», vzm> + o .
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Since x%m*yΓ = sf V& together with (4.6) implies

<^m, V> = Σ*Γ(lh/ϊO and <a>, r m > = Σ

it follows that

(4.7) ΣαΓ(a?*/O + Σ α ? W » Γ ) ^ l , Vm.Σ

We now show that Iaσ(x°). Indeed, for each kel, (4.7) implies

(4.8) aΐ(xk/xim) ^ 1 , Vm .

If we had xl = 0 for some fee/, then #Γ -* α& would imply (xk/xΓ)~+
+ oo, and since α? -»αfc > 0 this would yield atixjxf1) —» + °°, in
violation of (4.8). Therefore a?i>0VfceJ, that is, Iaσ(x°). Simi-
larly, (4.7) implies Jaσ(y°). Since ( « o j o ) e Γ x 7 0 (e.g., by
Theorem 7(iii)), the maximal character of / and J implies that
actually (4.4) holds. Taking that limit in (4.7) as m -» oo now
yields (4.5).

COROLLARY 8A. Under the assumptions of Theorem 8 one has

(4.9) X° c {x 6 Q1 IΣiXuiaJxl) ^ 1 ~ Σ ^ } ,

(4.10) Γ° c {2/ e QJIΣ»*(α^ϊ) ^ 1 - Σ<»*} ,

Γ x Γ c { ( x , y)eQ'x QJ\Σxh{ahlx\) + Σtf*(α»/lΛ) ^ 1}
/ J

Jn addition, (x°, yQ) satisfies

(4.11) /i 0' ^ Π (»ϊ)β* Π (vΐ)ak ^ μ ,

where β — Σ/u/αfc α ^ J" ^ defined by

μ = sup {Π W * Π(»*)β*I (a?, l / ) 6 Γ x Γ°, α(a?) = J, *(y) - J} .

(Recall that Qτ, QJ are faces of Q as defined following Corollary 1C.)

Proof. To obtain (4.9), apply inequality (4.5) with x an abitrary
element of X° and with y = y°. Inclusion (4.10) follows analogously.
Dividing (4.5) through by β and then applying the arithmetic-
geometric mean inequality, we obtain

where bk = β~xahi Vk. Rearranging this, then raising to the βth

power and taking the supremum, we obtain (4.11).
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The convergence permitted for z in Theorem 8 and its corollary
includes, of course, that in which z approaches 0 along the ray
{ζα|ζ;>0}. This is the situation treated for the remainder of §4.
Thus, we consider z's of the form z — ζa, ζ > 0, and write simply
(xζ, yζ) to denote the corresponding solutions.

We already know (by Theorem 7) that when ζ j. 0 the solutions
(xζ, yζ) have at least one cluster point (a?0, y°) and that each such
cluster point belongs to I ° x Y°. The next two theorems give
conditions under which the pairs (xζ, yζ) must actually converge as
ζ i 0, and moreover to a special pair (x, y) in X° x Y°. This special
solution pair will now be described.

PROPOSITION 5. The problem

(4.12) sup {Π (xXk\xeX°, σ{x) = 1}
I

has a unique solution, call it x, and x is a strong Pareto optimal
element of X\ Similarly, the problem

(4.13) sup {Π (yk)
ak\veY°, σ(y) = J}

J

has a unique solution, call it y, and y is a strong Pareto optimal
element of Y°.

Proof. Consider the problem

(4.14) svφ{θ{x)\xeS) ,

where θ is the concave function on Rn given by

flog Π (XkY]c if %k > 0 Vk e I
θ{χ) =

{— oo otherwise

and S is t h e nonempty convex set

S = {x\xeX°, σ(x) -1} .

Pick any x° e S. Observe that: (i) the level set {x \ θ(x) ^ θ(x0)} is
closed since θ is upper semicontinuous; (ii) xeQ and θ(x) ̂  θ(x°)
imply Iaσ(x); and (iii) xeX° implies σ(x)czl. Together with the
compactness of X°, these facts imply that

T = X°f]{x\θ(x)^θ(x0)}

is a nonempty compact subset of S. Since x e S\T implies θ(x) <
θ(x°) and x°eT, it follows that the solution set of problem (4.14)
coincides with that of the problem
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sup {00) I # e ϊ7} .

Now this problem has at least one solution xf since T is nonempty-
compact and θ is upper semicontinuous. Also, it has at most one
solution, since T is convex and θ is strictly concave on the subspace
{x\xk = 0 V&gJ}, which contains T. Since the exponential function
is strictly increasing, it follows that x is the unique solution of
problem (4.12). Finally, suppose that there were another element
x°eX° satisfying .χk*>-xkvk9 with at least one of these inequalities
strict. Then we would have both σ(x°) = / and θ(x°) > θ(x), con-
tradicting the fact that x solves (4.12). The assertions concerning
problem (4.13) and y are proved similarly.

THEOREM 9. Assume that III J = {1, , ri], that is, assume
(Co) has at least one strictly complementary solution. Then

lim (xζ, yζ) = (x, y) ,

where x and y are as in Proposition 5.

Proof. Let (a;0, y°) be any cluster point of (#ζ, y:) as ζ decreases
to zero through discrete values. Then by Theorem 7(iii), Theorem
8 and Proposition 5 we have

(4.15) (x°, y°)eX° x Y\ σ(x°) = /, σ(y°) = J

and

(4.16) 1 ̂  Σ ak(xk/xl) + Σ ak(yM

Since IU J = {1, — ,n} implies Σ / U J <t*k — h we can apply the
arithmetic-geometric mean inequality to (4.16), obtaining

Rearranging this yields

(4.17) Π (χ%Yk Π («!)•* ^ Π (β,Yk - Π {yk)
ak

/ J I J

But in view of (4.15) and the maximality properties of x and y
(Proposition 5), we also have

(4.18) Π @kY
k ̂  Π (xlYk

and

(4.19) Π {VuYk ̂  Π (vlYk .
J J
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By (4.17) it follows that the weak inequalities in both (4.18) and
(4.19) must in fact be equalities. By the uniqueness properties of
x and y (Proposition 5), this means that x° = x and y° = y, which
concludes the proof.

The proof of Theorem 9 actually shows that, assuming / U / =
{1, -- ,n}, the same limiting behavior holds for z's approaching 0
along the more general paths treated in Theorem 8.

THEOREM 10. Assume that f is polyhedral. Then

lim (xζ, yζ) = (x, y) ,

where x and y are as in Proposition 5.

Proof. Let (x°, y°) be any cluster point of (xζ, yζ) as ζ decreases
to zero through discrete values. We must show that (x°, y°) = (χ9 y).
Since / polyhedral implies / * polyhedral [6, Theorem 19.2], the
argument we shall present showing x° = x can be mimicked to
obtain y° — y also. Thus, it will suffice to assume that

(4.20) x° Φ x

and deduce a contradiction. From Theorem 7(a)(iii) and Theorem 8
we have

(4.21) x°eX°, σ(x°) = I.

Passing to a subsequence if necessary, we can suppose that actually

(4.22) xζ > x° as ζ I 0 through discrete values.

For the function θ used in the proof of Proposition 5, it follows
from (4.20), (4.21) and Proposition 5 that θ(x°) < θ(x). Hence, the
equation

3ε = θ(x) - θ(x°)

defines a positive ε. Since θ is continuous on {x\xk > 0 Vfce/}, there
exists a δ > 0 such that, for each xeQ satisfying σ{x) ZD I,

\\x- a?011 £δ==> \θ{x) - θ(x°)\ ^ε

and

\\x - x\\ ^ δ = > \θ(x) - θ(x)\ ̂ ε .

By (4.22), there exists a ζx > 0 such that

\ \s = si 11 ̂  — ^ 11 =

where sc is defined by
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8< = xζ + (2f - a;0) .

Hence,

0 < ζ ^ ζx — Iβ(a?c) - 0(s°)| ^ ε and \θ(sζ) - 0(3) | ^ ε .

In view of the definition of ε, this yields

0 < ζ g ζ 1 = = > θ(sζ) - Θ(x<) ^ ε > 0 .

Since 0 is concave, this in turn yields

(4.23) 0 < ζ ^ ζx and α; 6 (xζ, sζ] — 0(α) > θ(xζ) .

(We use the familiar notations [p, q] and (p9 q] to denote the straight
line segments between vectors p and q which include and exclude
p, respectively.)

Next, since / is polyhedral, it can be represented in the form

(max {hλ(x)|λ6 A) if xeC
/(α° (+oo if s e c ,

where C is a nonempty polyhedral convex subset of Rn and hλ is
affine for each index λ in some nonempty finite set A. For fixed
0 < p < 1 to be specified in a moment, let vectors rζ be defined for
each ζ > 0 by setting

Using (4.22) and xz, x\ xeC, it can be deduced from the fact that
C is polyhedral convex that there exist 0 < p < 1 and ζ2 > 0 such
that

Observe that

σ =

where for each XeA the set

C(λ) = {αe

can be seen to be convex and closed (although possibly empty).
Suppose 0 < ζ ^ ζ2. For each XeA the set [xζ, rζ] Π C(λ) is either
empty or else a closed line segment (possibly a singleton). Since

[xζ, rc] - U [*c, rc] Π C(λ), VO < ζ ^ ζ2 ,

and the length of [xζ, rc] is /θ||2 - α?°|| > 0 (this uses (4.20)), it
follows that there exists at least one λ(ζ) e A such that the length
of [xζ, rc] n C(λ(ζ)) is at least
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I = ρ\\x - &°||/cardΛ > 0 .

Since A is finite, there exists at least one XeΛ such that λ(ζ) = λ
for infinitely many ζ's in our sequence satisfying 0 < ζ ^ ζ2. By
passing again to a subsequence if necessary, we can suppose that
χ(ζ) = X for each ζ in our sequence satisfying 0 < ζ <̂  ζ2. Now
write

[Pc, qζ] = W, r<] Π C(λ), VO < ζ S ζ 2 ,

where pζ denotes the endpoint of the segment nearer xz, and put

ζ0 = min {ζίf Q .

We conclude the proof by obtaining a contradiction in each of two
possible cases.

Case 1: f(pζ) ^ f(qζ) for some 0 < ζ ^ ζ0. By the convexity
of /, it follows that

(4.24) f(x') ^ f{q") .

Since [pζ,q:] has positive length, qζe(xc, r ζ ]. Hence (4.23) implies
θ(qz) > θ(xζ), that is,

(4.25) Σ % log qi > Σ % log «§ .

In view of the source of q:, we also have

(4.26) qi = xl Vk<ίl.

From (4.25), (4.26) and the definition of z°#, it follows that

(4.27) -(zog)(x<) > -(soflO(9c), for z = ζa .

Adding (4.24) to (4.27), we obtain the contradiction

inf (P.) - f{x<) - (zog)(χ<)

for z = ζα.

Case 2: /(pζ) < f(qz) for each 0 < ζ <; ζ0. Since the segments
[pζ, qζ] c [ojζ, sc] are all parallel with positive length at least I for
0 < ζ ^ ζ0, it can be shown using (4.22) that there exists a segment
[P°, q°] c [x°, x] having length at least I, and such that some sub-
sequence of the pζy& converges to p° and the corresponding sub-
sequence of the qζ's converges to q°. Passing to this subsequence
if necessary, we can suppose that pζ->p° and qz—>q° as ζ [ 0 through
discrete values. Since C(λ) is closed convex and contains [pζ, qc]
for each 0 < ζ ^ ζ0, it follows that
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(4.28) [p°,β°]cC(λ).

Now the Case 2 hypothesis implies that the affine function hrλ strictly
increases in the direction x — x°. Since [p°, q°] has positive length
and direction x — x°, it follows from this and (4.28) that

But since [p°, q°]c [x°, x] czX", we also have

f(p") = inί(Po)=f(qθ).

This contradiction concludes the proof of the theorem.
The following shows that the sharp convergence established in

Theorems 9 and 10 can fail in general.

EXAMPLE 1. Let n — 2, and define a nonpolyhedral / b y setting

fa?,. if 2x1 ^ x\
f(Pu »2) = , , ,,

(+co otherwise.
It can be shown that

f*(v» vύ = if y, = 1 and y2 = 0

+ oo otherwise .

With these functions the blanket hypothesis is met, and orie clearly
has for (Po) and (Po*) that

X° = {(0,0)}, / = 0 , 2 = (0 f 0),

and

Γ° = {(yu 0)|0 ^ ^ ^ 1}, J - {1}, y = (1, 0) .

For each α satisfying (3.36) and each ζ > 0 one can solvέ (P*), that
is,

inf {yl/2(l - y,) - ζα, log Vί - ζα2 log y2 \ 0 < Vl < 1, 0 < y2 < + oo} ,

analytically for #c and then trivially obtain #c via x\y\ — ζak Vk.
Writing β = α2 + 2αx, one finds that

> (0, 0) = x

but

The next theorem and its corollaries present various monotonicity
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properties of (ccc, yζ) as ζ | 0. These rely in part on the following
technical preliminary.

PROPOSITION 6. For each z and zr in P, the corresponding
solutions (x% yz) and (xz\ yz') satisfy

0 ^ {xz - xz', yz - yz')

^ min {Σ (zk - z'k) log (xl/xϊ), Σ (zk-z'k) log (yi/yϊ)} .

Proof. Since (x% yz) and (xz\ yz') belong to graph df and df is
monotone,

(4.29) 0£<χ'-χ'\y-y').

Since x*f y
z eP and x\y\ = zk > 0 V&, Proposition 4 implies that

(4.30) (r, -L(y))edy(x%*),-

where L: P-* Rn is the mapping

L(*if , O = Gog «!, , log^J .

Similarly, Proposition 4 implies that

(4.31) (y\ -L(yz'))edΎ(xz',z').

Since 37 is antimonotone (i.e., its negative is monotone), (4.30) and
(4.31) yield

0 ̂  <(*', z) - « »0, (I/2, ~^(^/z)) ~ (Vz\ -

that is,

(4.32) {x* - x*', y* - yz') ^ (z - z', L{y*) - L(y*')} .

Now notice that Proposition 4 can also be applied with the roles of
the x- and the ^-variables interchanged. It follows that

(x% -L(x'))edy(y,z)

and

{xz\ -L{xzt))edy{yz\zf) ,

which implies similarly by the antimonotonicity of dy that

(4.33) (yz - yz\ xz ~ xz') ^ (z - «', L(a?β)

Combining (4.29) with (4.32) and (4.33) concludes the proof.
It will be convenient to have available the (positively homo-

geneous closed proper concave) function p: Rn —> [— oo, +06) defined
by
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(4.34) p(x)
( if χ$ Q .

For the z's of the form z = ζα, ζ > 0, notice that

(«oflr)(a?) = ζlogρ(x) Vx ,

provided we interpret logO and log(—00) as - c o .

THEOREM 11. Let ζ ^ ζ' > 0. TΛew

(4.35) |θ(#ζ) ^ |θ(ίcζ/) > 0, with equality only if xζ = #c ' ,

(4.36) p(y:) >̂ /θ(?/ζ/) > 0, with equality only if yζ = yζt ,

and

(4.37) p(χ<) = |9(αίc0 and pM) - ^ ' ) 0 ^ if ζ = ζ'.

Proof. We first prove (4.35). Without loss of generality assume
ζ > ζ\ Choosing z = ζa and z' = ζ'α in Proposition 6, we obtain

This is equivalent to

l ^ ίΠ (χi/χϊΎkY-ζf

that is, |θ(α;c) ^p{xζt). Now suppose that

(4.38) ^ c ) - p(x<*) .

Using the first inequality in Proposition 6, we have

0 ^ (xζ - xζf, y: - yζf)

- ζ - Σ Cak(xl/xΐ) - Σ Cαfc(474) + C
Writing

/3 = ζ(ζ + CO"1 and 0 = ζ'(ζ + ζO"1 ,

we deduce that

1 2Ξ £' Σ ak(xl/xi') + ^ Σ α*(474)

^ /3f Π (4/4T* + β Π («ί74)β*

Here the second inequality follows by applying the arithmetic-
geometric mean inequality to each of the two sums separately, and
the equality follows by (4.38). Thus, equality holds in both appli-
cations of the arithmetic-geometric mean inequality. Therefore there
exists a positive number σ such that
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xljxl' = σ Vk .

This implies (using (4.38) again) that

0 < p(xζf) = p(xζ) = Π

Hence σ = 1, so that #ζ = #ζ'. This establishes (4.35). The proof
of (4.36) is similar. Finally, suppose that

ζ :> ζ' > 0, ^ ζ ) = POO,

By (4.35) and (4.36) this implies x: = xζ' and yζ = yv. But then

This concludes the proof.

COROLLARY 11A. // xζ e X" for some ζ > 0, then xζ - xc for
all ζ ^ ζ' > 0. 7/ t e F° /or some ζ > 0, then yζ = yζl for all
ζ ^ C > 0.

Proof. Let xζ e X° and ζ > ζ' > 0, and assume for the moment
that p(xζ) > ίt>(xc'). Then

> - ζ ' ^

= -(ζΌoίf)(χ«) .

Since xc e X°, we also have

f(χζ') ^ f(χc).

Invoking the optimality of xζ', we obtain the contradiction

inf {/ - (ζ'aog)} = /(»«') - (ζ'a°g)W)

Therefore (θ(a;c) ̂  /o(ccc'). Hence, (4.35) implies xc = xζ'. The other
assertion is proved similarly.

COROLLARY 11B. For each ζe(0, +°°) wriίe |(ζ) = (θ(xc)
27(0 = P(yζ) Then

is a maximal monotone subset of (0, +°°) X (0, +00). Moreover,
the mapping

is α homeomorphism from (0, +00) owto Γα with inverse given by
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(4.39) h-\ξ, η) = arιξη, where a = Π (αfc)
αfc .

(Recall that a and p are as in (3.36) and (4.34), respectively.)

Proof. Clearly ha is onto, and by (4.37) it is also one-to-one.
By Corollary 5A the mapping ζ —> (xζ, yζ) is continuous from (0, + <χ>)
into P x P. Since p is continuous on P, it follows that &α is
continuous. For any given (£, 97) e Γα let ζ be the unique element
of (0, +00) such that Λβ(C) = (£, 97). Then

= Π
= Π (Cα*)β*

where a is defined above. This establishes (4.39), and from it the
continuity of h~x is clear. This completes the proof that Γa is
homeomorphic to (0, +00). To see the monotonicity, let

fe, Vi) = (£(Q> « ) eΓ α for i = 1, 2 ,

and suppose without loss of generality that ζ1 ^ ζ2 > 0. By (4.35)
and (4.36) we have

f 1 ̂  f 2 and ft ^ ft ,
and hence

(ίl - f2, ft ~ ft) ^ 0 .

Finally, we establish the maximal monotonicity. For any given
ξ', ηf 6 (0, +00) such that (£'; 77') g Γβ, we must produce a pair (f, η) e
Γa for which

(4.40) , <f - f, ?' - ? > < 0

holds. For the value ζ = α " 1 ^ ' , let (ξ, 97) = ha(ζ). Then (4.39)
yields α " 1 ^ = ζ. Hence f'̂ f = ξη, or equivalently,

log £; + log Ύ]' = log f + log 77 .

Therefore

<log ξ' - log ξ, log 7?' - log 7]) = -1 log £' - log £ |2

Since (£, η) eΓa but (£', η') $ Γa, it follows that

<log ξ' - log £, log ηf - log η) < 0 .

Thus, either

log £' > log £ and log η > log η'
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or else

log ζ > log £' and log ηf > log η .

Upon exponentiating, each of these implies (4.40). This concludes
the proof.

The above proof of maximality, together with (4.35) and (4.36),
shows in addition that

is a maximal monotone subset of R x R. Here vf and vf* are the
parametric optimal value functions treated in Theorem 6. (Cf. (3.39),
(3.40), and also Proposition 8 in §6.)

PROPOSITION 7. One and only one of the alternatives

(4.41) lim p{xζ) = 0 or lim xz = x e P
Clo c i o

holds. Similarly, one and only one of the alternatives

(4.42) l i m p ( y ζ ) — 0 o r l i m y z = y e P
C I O c i o

holds. (Here x and y are as in Proposition 5.)

Proof. It suffices to show (4.41). Both alternatives in (4.41)
cannot occur simultaneously, since that would imply

0 = lim ρ(xζ) = p(x) > 0
C I O

by the continuity of p on Q. Now suppose that

lim xc = x e P
C I O

fails. If it fails because x$P, then

(4.43) 3fce{l, •• ,w}\I

holds by Proposition 5, while if it fails because limc:ox
ζ — x fails,

then (4.43) holds by Theorem 9. So in any case, (4.43) holds. By
Theorem 7(a)(iii), this entails x£->0 for some ft, which implies
p(xζ) -^ 0 and concludes the proof.

The following result partly involves the parametric optimal
value functions ι>f and vf* restricted to the line {ζa\ζeR}, as de-
scribed following Corollary 5A and treated in Theorem 6. The
right directional derivative of vf(ζ) at ζ = 0 will be denoted by
v'f(0; 1). Thus,
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v',(0; 1) = lim ζ-^inf (Pt) - inf (P.)]
C i O

- lim ζ^finf {/ - (ζaog)} - inf {/}] .
C i O Q

Similarly for v'f*(0; 1).

THEOREM 12. One and only one of the following three situa-
tions or "modes" is the case:

(A) l i m ζ i 0 # c = xeP and limζioy
ζ = V = 0;

(B) l i m α o # c = x = 0 and limζiOyζ = yeP;
(C) limζiQp(xζ) = 0 α^d limαo/t>(2/c) = 0.

Moreover,
(A) => vXO; 1) - - log ^(20 and v>.(0; 1) = + «,,
(B) => vXO; 1) = + oo and ̂ . (0; 1) = - log |θ(y),
(C) =>vXO; 1) = + oo α^d ^*(0; 1) = + oo.

(Here x and y are as in Proposition 5.)

Proof. Obviously both (A) and (B) cannot hold, and by Pro-
position 7 each of (A) and (B) is incompatible with (C). Now
suppose, for instance, that

(4.44)
C l o

holds. Then I = {1, , n}, so that the complementary slackness of
solutions to (Co) yields J.= 0 , that is, Y° = {0}. Hence

lim 2/ζ = 0 = y
C i O

by Theorem 7(b)(i) and Proposition 5. Similarly,

(4.45) lim2/ζ = # e P

C ^ 0

implies

lim xz = 0 = x .
C i O

If neither (4.44) nor (4.45) holds, then Proposition 7 implies that
situation (C) of the theorem holds. This concludes the proof of the
first part. Now suppose that (A) is the case. Since we always
have

(4.46) xePDX0 <==> xePpi 3/*(0)

and

(4.47) yePf)Y°<=*yePf) 3/(0) ,

it follows by subdifferential formulas (3.39) and (3.40) in Theorem
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6 that

(4.48) 0 Φ dvf(P) = {ω I Ix e P n X\ ω ^ - log p(x)}

and

(4.49) 0 = 3v/.(0) .

From (4.49) and the fact (Theorem 6) that 0 =£ 9v/*(ζ) Vζ > 0, it
follows by the theory of concave functions of one variable that
v'f*(0; 1) = + oo. From (4.48) it follows that

= inf {ω I Ix e P n X°, ω ^ - log ρ(x)}

= -sup {logp(x)\xePnX0}

= -logp(2S) ,

where the last equality is by Proposition 5 and the strictly increas-
ing nature of the logarithm. The remaining assertions follow
similarly.

THEOREM 13. Assume that situation (C) in Theorem 12 occurs,
and suppose ζ > 0 is such that

(4.50) p(xξ) ^ 1 and ρ(yι) ^ 1 ,

Then for all ζ ^ ζ > 0, the quantities

inf(Pζ)-inf(P0)

and

inf (Pζ*) - inf (P*)

are each positive and sum to

(4.51) ζ — ζ log ζα, where a = Π (α*)αA; ..

Condition (4.50) cα?ι occ^r <mZi/ if ζ < a^e, and a'1 <̂  w /or αii
vectors aeP satisfying Σ &* = l (JVbίe ίfeαί ίfte quantity in (4.51)
is differentiate concave for ζ > 0, is 0 at 0, cmcZ Λαs derivative
tending to + oo as ζ j 0.)

Proo/. For each ζ ^ 0, (3.13) yields

vf(ζ) + vf*(ζ) - Σ (Cα, - ζak log ζαfc)

(where, as always, OlogO = 0). Hence

[vf(ζ) - vf(0)] + [vΛ(ζ) - M0)] = ζ - ζ log ζα, Vζ > 0 ,
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which establishes the sum assertion. By the situation (C) hypothesis
together with Theorems 12 and 6, both of the concave functions
Vf(ζ) and ι>f*(ζ) are differentiate for ζ > 0 and are finite with right
derivative + co at ζ = 0. It follows that

> vf(fi) > - co whenever Vvf{Q ^ 0 ,

and similarly

Vf*(Q > vf«(0) > - oo whenever Vvf,{Q ^ 0 .

But from the subdifferential formulas (3.39) and (3.40),

Vvf{Q ^ 0 <=> ζ > 0 and p(x:) ^ 1

and

PMC) ^ 0 <=> ζ > 0 and p(yζ) ^ 1 ,

and by Theorem 11 and (4.50),

p(xζ) ^ 1 and p(yζ) ^ 1, Vζ e (0, ζ] .

Combining all this yields

vf(ζ) - vf(0) > 0 and vf,{Q - vf,(0) > 0, Vζ e (0, ζ] .

Now suppose ζ > 0 satisfies (4.50). What has already been shown
yields in particular that

ζ - ζ l o g ζ α > 0 ,

that is, ζ < a^e. Finally, it is routine to show that the supremum
of the quantity a~ι over all vectors ae P satisfying Σ ak = 1 is
attained uniquely by a = (1/n, , 1/ri).

5* A method for locating prescribed Pareto optimal solutions•
In this section we sketch a general (and somewhat idealized) pro-
cedure for solving (Co), or equivalently, (Po). After describing the
method, we discuss some of the more prominent aspects of it. The
proof of its various properties will be seen to draw on many of
the results established above in §§ 2 through 4.

THE BASIC METHOD. Choose any a e P satisfying Σ % = 1> and
let {ζm} be any sequence of positive real numbers decreasing to
zero. For each m = 1, 2, •••, calculate the unique pair {xζm, yζm)
which solves the complementarity problem (Cz) for the parameter
value z — ζma. Then pick any cluster pair (x°, y°) of the sequence
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The justification of this is as follows. For each m, Theorem 1
guarantees the existence of a unique solution (xζirt, yζm), and further-
more it can be computed by solving either one of two equivalent,
relatively nice, convex minimization problems. By Theorems 7 and
8, at least one cluster pair (x°, y°) is assured, and any one selected
is guaranteed to be a maximal strictly complementary solution of
(Co), that is, to have the maximum number of coordinate indices k
such that either x% > 0 or y\ > 0. Of course, by Theorems 7 and 8
these same conclusions hold even if the approach to 0 by the para-
meter z is from the direction of a only in an asymptotic sense.

Suppose now that one actually wants to locate the particular
solution pair (x, y), which has the strong Pareto optimal properties
with respect to a described in Proposition 5. There are several
cases in which any cluster pair (x°, y°) selected through the above
method will necessarily coincide with (x, y). For instance, according
to Theorem 12 the above method operates in exactly one of the
three possible "modes" (A), (B), or (C). If either of the relatively
trivial modes (A) or (B) is the case, then (x°, y°) = (χ9 y) is auto-
matic. Alternatively, according to Theorems 10 and 9, (x°, y°) =
(25, y) is guaranteed if either / is polyhedral or else (Co) has a
strictly complementary solution (which, incidentally, can be detected
by inspection of (x°, y0)).

If none of these criteria applies to ensure (x°, y°) = (χf y), then
by Theorem 12 the method must be in Mode (C), and by Theorem
8 any cluster pair (x°, y°) selected must at least determine the
minimal faces of Q, Q1 and QJ

y containing x and y respectively.
With this information, it is possible to find each of x and y by
applying the method to a certain subsidiary problem having lower
dimensionality.

To FIND X: Let fΣ be the restriction of / to the subspace
R1 = {x € Rn I χh = 0, Vk 01} of dimension card I < n. Apply the
method to the problem mm{fI{x)\xeQ1}, where Q1 = {xeRz\xk ^ 0,
Vfce/}. The ^-component of any resulting cluster pair will be the
35 corresponding to the original problem (Po).

To FIND y: Let // be the restriction of /* to the subspace
RJ = {yeR*\yk = 0, Vfc^J} of dimension card J < n. Apply the
method to the problem min {f*(y)\yeQJ}, where QJ ~ {yeRJ\yk ;>
0, VkeJ}. The ^/-component of any resulting cluster pair will be
the y corresponding to the original problem (Po*).

The justification of the procedure for locating x is as follows.
The subsidiary problem, involving essentially card I real variables,
has solution set X° coinciding with that of the original, full-dimen-
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sional problem (Po). Also, it can be seen (e.g., by the results in
the Appendix) that the subsidiary problem also satisfies the blanket
hypothesis used throughout the paper (i.e., the conditions in Lemma
2) with respect to the space R1. Finally, XQ clearly meets the
positive orthant P1 = {x e R1 \ xk > 0, Vk e 1} of R1. Hence, Theorems
8 and 12 imply that the method, when applied to the subsidiary
problem, will necessarily be in Mode (A). This means that the
^-component of any cluster pair is the strong Pareto optimum of
X° with respect to α.

The justification of the procedure for locating y is similar,
except that the method, when applied to that subsidiary problem,
will necessarily be in Mode (B) of Theorem 12.

Of course, in solving either of the subsidiary problems for x or
y one is free to revise the choice of the "direction" vector α. This
vector can also be thought of as describing the relative weights
assigned to the various coordinate axes.

The function p defined in (4.34) provides a precise measure for
gauging the improvement in xcm and yζm made during the course
of the iterations. See Theorem 11 and its corollaries for results
along these lines.

As mentioned above, the "typical" mode for the method to be
in is Mode (C). In this event, Theorem 13 provides a stopping
criterion for the method. It also assures that, once the iterations
have brought one "close enough" (as measured in terms of p), the
convergence (as measured in the differences inf (Pζm) — inf (Po) and
inf (Pζ*m) - inf (Po*)) is very fast.

Another, simpler measure of convergence is provided by Corollary
1A, which implies for instance that

f(xΠ - ζ ^ inf (Po) ^ ζr - f*(yζm) ,

where the interval thus represented has total length ζm.
Corollary IB provides bounds for X° and Y° when the iterations

in the method are stopped short of finding a cluster pair {x\ y°).
By Corollary 8A, any cluster pair obtained by the method also

provides bounds for X° and Y°.
Finally, Theorem 7 presents a great deal of information relevant

to implementing the method under only approximate, rather than
"exact" calculations. The various estimates available from other
results can be combined fruitfully with this.

6* Similarities with Moreau's theorem and differences with
the Proximal Point Algorithm. The present paper treats the
parametrized class of problems (Cz), zeQ. These can clearly be
reformulated as
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( Q find (x, y) e graph T Π graph Sz ,

where

(6.1) T = df and Sz = d{zog) .

Consider now the homeomorphism L: P-* Rn given by

L(zu , zn) = (log ^, , log 2 j ,

which has inverse E: Rn —> P given by

, wn) = (exp wx, , exp wn) .

By means of the product mapping L x L, the results of the present
paper can be transformed from the context of P x P into the
context of Rn x Rn. This is the key to seeing the analogy with
Moreau's theorem.

In particular, those portions of multivalued operators from Rn

to Rn which map P into P can be transformed into multivalued
operators which themselves map Rn into Rn. Thus, new operators
T" and S'w from Rn to Rn are induced by the operators in (6.1) by
setting

graph T = {(u, v) \ 3(a?, y)e(Px P)Π graph Γ,

(£(&) 1(1/)) (u, v)}

and

(6.3) graph S'w = {(u, v) 13(α?, 2/) 6 graph S,, (L(x), L(y)) - (%, v)},

where w — L{z). Of course, (6.3) makes sense only for zeP. In
terms of these induced operators, problem (Cz) can be reexpressed
equivalently as

(Dw) find (u, v) e graph T* Π graph S'w .

Here w = L(z) and zeP. Since Sz for « e P is characterized by

(x, y) e graph Sz <=> xeP,yeP, xkyk = zk V& ,

the induced S'w, w = L(«), is characterized by

(%, v) 6 graph Ŝ  ^=> u e J?%, v 6 Rn, u + v = w .

It follows that

(6.4) SL =

where || || denotes the Euclidean norm on Rn. Hence, if (see below)
the T' induced by T = df via (6.2) is of the form
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(6.5) T'=dφ,

for some closed proper convex function ψ\R%—>(— °o, +00], then
Moreau's theorem (see formulation in [6, Theorem 31.5]) states the
following. For each weRn there exists a unique solution (uw, vw)
to (.DJ, where uw and vw are characterized as the unique solutions
to the dual optimization problems

(Qw) lϊiin

and

«K) m i n \φ*(v) + ~\\v - w\\2\ ,
V { £ )

and one has

inf (Qw) + inf (Q*) = — 11 w | |2 .

Moreover, the mappings w —• uw and w —> vw are each gradient
mappings of certain differentiable convex functions, so that w —»
(i6w, vw) is continuous on 22\ All of this is in direct analogy with
the conclusions of the present Theorem 1 and Corollary 5A concern-
ing problems (Pz), (P*) and (Cz) for the parameter values z e P.

From Proposition 8 and Theorem 14 below, it follows that in
the trivial case n — 1 the T" induced by T = 3/ via (6.2) does in
fact satisfy (6.5). It then follows from (6.4) and (6.5) that, in the
case n = 1, Theorem 1 and Corollary 5A are logically equivalent to
Moreau's theorem. Two simple examples given at the end of the
section, however, show that for n ^ 2 our treatment and Moreau's
are in general distinct.

In the framework of Moreau's theorem and problems (QJ, (QJ)
and (Dw), there is a closely associated iterative method for globally
minimizing φ. Known as the Proximal Point Algorithm, it generates
a sequence {um} c Rn as follows: any u° e R% is chosen to initiate
the algorithm; for m = 0, 1, 2, , um+1 is taken to be the unique
global minimizer of the function

u >φ(u) + — \\u- um\\2,
Δ

that is, the unique element u satisfying the relation

where T' and SJm are as in (6.5) and (6.4). It is known that if φ
achieves its minimum at all, the sequence {um} thus generated con-
verges to some particular u minimizing φ, that is, satisfying the
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relation 0 e T'(u) for T = dφ.
What becomes of this algorithm when transformed via E x E

from the RnxRn setting to the PxP setting of the present paper?
A sequence {xw} a P is generated as follows: any x° e P is chosen to
initiate the algorithm; for m = 0, 1, 2, , xm+1 is taken to be the
unique element x satisfying the relation

0 G (T - Sχm)(x) .

Here T can be any multivalued operator induced, through setting

graph T = {(x, y) | 3(w, v) e graph T, (E(u\ Eiv)) = (x, T/)} ,

by means of a multivalued operator I " of the form (6.5). Assuming
that the relation

eeT(x),e = (l, . . . , 1 ) ,

has any solution x at all in P, the sequence {xm} thus generated
converges to a particular such solution. It would be interesting to
know whether this convergence behavior also holds for T an
arbitrary maximal monotone operator from Rn to Rn satisfying

0 Φ (P x P) n graph T .

A more restrictive form of this is whether such convergence behavior
holds for every T of the form T = df, for any closed proper convex
function /: Rn —> (— <χ>, + co] satisfying

(6.6) 0 ^ P n d o m / and 0 ^ P Π dom/* .

We have not investigated either of these questions.
The preceding shows that the Proximal Point Algorithm is

quite different in character from the method described in § 5. We
conclude this discussion by transforming the method of § 5, by
means of L x L, from the PxP setting into the R% x Rn setting.
It is easy to see that the transformed method entails solving a
sequence of problems (Dw), where the w's are of the form w = ωeJ

rb
for a sequence of real ω's tending to -co. Here e = (1, « ,1),
b — L(a) for the fixed vector a in § 5, and T" is of the form "(6.2)
for some T = 3/, where / is closed proper convex on Rn satisfying
(6.6). The corresponding solutions (uω, vω) to these problems have
coordinates tending to either some finite limit or else toward — co f

and the idealized accumulation points (u, v) of these sequences satisfy
transformed complementary slackness conditions, that is,

(6.7) Vk = 1, '"fn9 either uk — — co or vk = ~ co .

The transformed procedure thus develops certain "asymptotic" in-
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formation concerning the way in which graph T is situated in
Rn x Rn. In particular, if (6.5) happens to hold, the data in (6.7)
corresponds to recession information about φ and/or information
about the rate of growth of φ at relative boundary points of
dom<£>. It would be interesting to know whether the transformed
method just described behaves similarly for every V of the form
(6.5) or, more generally, for an arbitrary maximal monotone operator
T\ We have not investigated these questions.

Next, we establish the two results already cited, pertaining to
the case n = 1, and then we conclude the section with the two
examples dealing with the case n ^ 2.

Note that since n = 1 in the next two results, P is now simply
the open half-line (0, + °°).

PROPOSITION 8. The relations

(6.9) graph Φ = {(log x, log y) \ (x, y) e graph F} ,

(6.10) graph F = {(exp u, exp v) \ {u, v) e graph Φ}

express a one-to-one correspondence between the multivalued operators
Φ: R-^R whose graphs are maximal monotone with respect to R x
R and the multivalued operators F: P->P whose graphs are maximal
monotone with respect to P x P. This correspondence includes in
particular a one-to-one correspondence between the singlevalued
selections ΦQ of such Φ's and the singlevalued selections Fo of such F's.

Proof. Relations (6.9) and (6.10) clearly provide a one-to-one
correspondence between all the multivalued operators Φ: R^ R and
all the multivalued operators F: P —> P. We must show that graph
Φ maximal monotone with respect to R x R implies that the cor-
responding set graph F defined by (6.10) is maximal monotone with
respect to P x P, and vice versa. We check only the first of these
implications, as the converse follows similarly upon interchanging
the roles of the exponential and the logarithm. To see that graph
F is monotone, for i = 1, 2 suppose that

(#*, vύ = (exp uίf exp vt), where (uu vt) e graph Φ .

The assumed monotonicity of graph Φ yields

(u2 - uu v2 - v,} ^ 0,

so that

either [u2 ^ ux and v2 ^ vj or [ux ^ u2 and v1 ^ v2] .

Exponentiating, we obtain
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either [x2 ^ x1 and y2 ^ yλ] or [xλ ^ x2 and yx ^ y2] ,

and hence

(x2 ~ $i, 2/2 - 2/i> ^ 0 .

To see that graph JF is maximal monotone with respect to P x P
we must show that, given any (xlf yx) e(P x P)\graph F, there
exists an (a?2f y2) e graph i*7 such that

(6.11) (x2 - alf 3/2 - 1/iX 0 .

Since (%!, t^) = (log ̂ , log yj 6 (R x J?)\graph Φ and graph Φ is
maximal monotone with respect to RxR, there exists some (u2, v2) e
graph Φ such that

(u2 - ulf v2 - v,) < 0 ,

and hence

either [u2 > ux and vx > v2] or [̂ x > u2 and v2 > vλ] .

For (a;2, i/2) = ( e χ P U2> exp v2) e graph F, it follows that

either [x2 > ^ and yλ > ?/2] or [xx > α;2 and y2 > yλ] ,

so that (6.11) holds. The assertion concerning singlevalued selections
now follows, due to the strictly increasing nature of the logarithm
and exponential functions.

THEOREM 14. The functions <p: R —> (— ooy +00] which are lower
semicontinuous, convex and somewhere finite are in one-to-one cor-
respondence, up to additive real constants, with the functions
f:P—> (— °°, +°°] which are lower semicontinuous, nondecreasing,
convex and somewhere finite. This correspondence can be given
explicit form in terms of arbitrary singlevalued selections Φo from
Φ and Fo from F, where Φ:R->R and F:P—>P are multivalued
operators given by

(6.12) graph Φ - {(u, v)eRx R\ <p(u') ^ φ{u) + (u'-u, v), Vuf e R} ,

(6.13) graphF = {(x, y)ePx P\ f(x') ^ f{χ) + (x'-x, y), Va?'eP} .

Specifically, any such selections Φ0:άomΦ—>R and Fo: άom F—> P
are extended to functions Φ0:R—> [— ^, +00] and FQ:P->[0, +00]
by setting

(6.14) Φ0(u) =

— 00 if u lies to the left of dom Φ

Φ0(u) if ue dom Φ

+ 00 if u lies to the right of dom Φ ,
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1
0 if x lies to the left of dom F ,

F0(x) if xe dom F

+ 00 if x lies to the right of dom F .

The correspondence between φ and f is then expressible in terms of
Φo, Fo and arbitrary numbers u0 e dom Φ, x0 e dom F by means of the
relations

(6.16) φiu) = ^ log (F0(exp μ))dμ, VueR ,

(6.17) f(x) = £ exp (Φ0(log e))df, Vα; e P ,

where we use the conventions

logO = — 00, log (+00) = +00 ,

exp (— c>o) = 0, exp ( + 00) = +00 .

Proof It is known (e.g., [6, §24]) that the functions φ (as
described above) are, up to additive real constants, in one-to-one
correspondence with the multivalued operators Φ (as described
above). This correspondence is given explicitly by means of (6.12)
and the relation

(6.18) <p(u) = [ Φ0(μ)dμ, VueR ,
Ju0

where ΦQ is as in (6.14) for any single valued selection ΦQ from Φ
and u0 is any element of dom Φ. Furthermore, it is known also
that such Φ's are precisely the multivalued operators from R to R
whose graphs are maximal monotone subsets of R x R. One can
apply the same ideas and techniques used in the proofs of these
results to establish analogous results with P = (0, +00) playing the
role of R. We omit the lengthy details and simply state the find-
ings. The functions / (as described above) are, up to additive real
constants, in one-to-one correspondence with the multivalued oper-
ators F (as described above). This correspondence is given explicitly
by means of (6.13) and the relation

(6.19) f(x) = \'F0(ξ)dξ, VxeP,

where Fo is as in (6.15) for any single valued selection Fo from F
and x0 is any element of dom F. Furthermore, these F's are
precisely the multivalued operators from P to P whose graphs are
maximal monotone subsets of P x P. Finally, it follows from Pro-
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position 8 that the extended selections Φo and Fo given by (6.14)
and (6.15) are in one-to-one correspondence by means of

(6.20) Φ0(μ) = log (F0(exp μ))9 Vμ e R ,

(6.21) F0(ξ) = exp (Φ0(log£)), VζeP,

where we adopt the conventions described above. The theorem
follows by combining all these one-to-one correspondences. In par-
ticular, (6.18) and (6.20) give (6.16), while (6.19) and (6.21) give
(6.17). This concludes the proof.

We remark that the correspondence just noted between functions
f on P and multivalued operators F from P to P extends trivially
and in the obvious way to the situation in which P — (0, + oo) is
replaced by Q = [0, + ©o)# The resulting correspondence is between
the Young's functions / o n Q and the multivalued operators F from
Q to Q which are maximal monotone with respect to Q x Q. Also
associated with such /'s, of course, are the conjugate Young's
functions f+:Q->(— <*>, +°°] given by

f+(y) = sup {(x, y) - /(a?)}, Vy e Q .
xeQ

All this is the case n — 1 of monotone conjugacy, which is treated
for general n by [6, Theorem 12.4] and Corollary 2A above (see also
Proposition 3(ii)).

EXAMPLE 2. Let n = 2, and take 9 to be

φ(u) = ψc(u), C = {(̂ x, W2) I U, + Ϊ42 = 0} .

Then T = dφ is given by

graph T" = {(u, v) e R2 x R21 ̂  + u2 = 0, ^ = v2} .

The Γ induced by this T" via (6.6) is given by

graph T = {(α, y)eP x P\ x,x2 = 1, ^ = τ/2} .

For any (sc, 2/), (a?', 7/') e graph Γ one finds that

<>' ~ x, y' - i/> = ζη ,

where

7 = vl - 2/1 e ie .

By appropriate choice of xlf x[, yl9 y[>0 the expression <V—x, y' — y)
can therefore be made to assume any real value. This shows T
fails even to be monotone, much less a subdifferential. (This example
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extends in the obvious way to all n ^ 2.)

EXAMPLE 3. Let n = 2, and take / to be

fix) = ψc(x), C = {(xίf x2) I xλ + aj2 = 4 and

Then Γ = 9/ is given by

y1 = 2/J if aj e ri C

Γ(«) =

xk

^ ^ y j if a? = (1, 3)

V, ^ 2/2} if α = (3, 1)

0 if a? g C .

The T' induced by this T via (6.2) is given by

'{v I vx = v2} if % = L(αO for some αc e ri C

T(u) =
{v\vλ^ v2} if u = (0, log 3)

{v\v1 ^ iλ,} if u = (log 3, 0)

0 otherwise .

We now show that this I " fails to be monotone. Consider (u, v)f

{u\ v') e graph T such that

u = (log a?!, log a?2)' for ^ + x2 = 4 and 1 < #& < 3 V& ,

u' = (log χ[9 log αjί) for ccί + x[ — 4 and 1 < x'k < 3 V& ,

-y = (pf v) for v e J2 ,

t;' = (ι>\ v') for V' 6 R .

One finds that

' — %, vf — v) = = log (xΊx'JXi

It follows that <%' — %, vr — v) can be made to assume any real
value. Hence, T fails to be monotone, and so a fortiori it cannot
be a subdifferential. (This example also extends in the obvious way
to all n ^ 2.)

Appendix* Here we show how the framework developed above
can be made to handle problems similar to (Po) or (Co) but in
which only some of the variables are constrained to be nonnegative.
More precisely, the minimal general hypothesis is identified under
which such problems are fully equivalent to those treated in this
paper, and the formulas essential to make use of this equivalence
are provided. Except for differences in notation, the situation
treated here is exactly that encountered in §5, where certain lower-
dimensional problems were introduced in connection with finding x
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and y in the general case.
Let / be a closed proper convex function on Rn, but do not

assume the earlier blanket hypothesis

0ΦPΠdomf and 0 ^ P n d o m / * .

Let m be a fixed integer satisfying 1 <; m < n, and let C and C*
be the dual cones

C = {xeRn\xk^0Vk^m and % e R Vk > m},

C* = {# e i2w 12/A ̂  0 Vk ^ m and yk = 0 Vλ; > m} .

We consider the three problems

(A.I) min{/(x)|xeC} ,

(A.2) min {f*(y) \ yeC*},

and

(A.3) find (x, y)e(C x C*) Π graph 3/ such that {x, y) = 0 .

Note that the extreme case m = n corresponds to the problems (Po),
(Po*) and ( Q .

It is known [6, Theorem 31.4] that the hypothesis

0 Φ C n ri (dom /) and 0 =£ C* n ri (dom /*)

is the weakest general condition for ensuring that all three of
these problems have solutions. Moreover, it also implies that

and that a pair (x, y) solves (A.3) if and only if x solves (A.I) and
y solves (A.2). Propositions 9 and 10 to follow show that the slightly
stronger condition

(A.4) 0 Φ ri C n ri (dom /) and 0 Φ ri C* Π ri (dom /*)

is precisely what is needed to reduce problems (A.I), (A.2), (A.3) to
the form of (Po), (Po*), (Co)

 a n d moreover have the blanket hypothe-
sis met. The reduction involves the function fm: Rm —+ [— °o? +oo]
defined by

/«(«i, •••,»«) = inf {f(xu , xn) I xk e R Vk > m} .

(A.5)

PROPOSITION 9. Assume that f satisfies the condition

there is no xe Rn such that

xk = 0Vk^m, fθ+(x) g 0, fO+(-x) > 0 .
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Then fm is a closed proper convex function satisfying

fm(xlf , xm) = min{f(xl9 •- ,xn)\xkeR, Vk> m) ,

fm0+(xu - , xm) = min {fθ+(xlf - - , xn)\xkeR, Vk > m) ,

fZiVlf ' ' 'f Vm) = f*(Vl, * , Vm, 0, , 0) ,

f£0+(y19 , yj = /*0+(Vi, , y«f 0, - , 0) ,

i / α ^ ώ (mi?/ i / ίfcere eα i s ί a?TO+1, , x m 6 i?

(2/i, , Vmf 0, *, 0) 6 3/(0?!, , xm, xm+u • • - , » , ) .

Proof. Observe that fm = Af, where A: Rn —> J?m is the linear
transformation

A{xu , 3?m, #m+i, , xn) ~ (a?i, , #m) .

Clearly, the adjoint A*:Rm—>R% is given by

-A*(3/i, , 1/m) = (l/i, * , Vm, 0, , 0) .

By [6, Corollary 16.2.1], condition (A.5) is equivalent to the ex-
istence of a vector y such that A*τ/eri(dom/*). Hence, [6, Theo-
rems 9.5 and 16.3] imply that

(f*A*)(yu , i θ = f*(Vu , ίΛ., 0, , 0)

is a closed proper convex function with conjugate

(Af)(xlf , xj = inf {/(a?!, •••,««, a?Λ+1, , O | xk e R, Vk > m) ,

where the infimum is actually attained. This establishes that fm is
closed proper convex (being the conjugate of such a function) and
also the formulas asserted for fm and f£. The formula for f*0+

follows by [6, Theorem 9.5], and that for /m0+ follows by a closer
examination of the proof of [6, Theorem 9.2]. The characterization
of dfm in terms of df follows from [6, Theorem 23.9]. This con-
cludes the proof.

On the basis of Proposition 9, we can consider seriously in place
of (A.I), (A.2), (A.3) the "reduced" problems

(A.6) min {fj ,
Qm

(A.7) m i n {/*} ,

a n d
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(A.8) find (a, y) e (Qm x Qm) n graph dfm such that (x, y) = 0

where

Qm = {x e Rm I xk ^ 0,

These latter three problems are simply (Po), (Po*), (Co) posed in the
space Rm for the function fm. Assuming condition (A.5), it is clear
from Proposition 9 that solving (A.6), (A.7) or (A.8) is equivalent to
solving (A.I), (A.2) or (A.3), respectively. What remains is to char-
acterize, in terms of the original function /, the blanket hypothesis
required to apply Theorem 1 and all the other results to problems
(A.6), (A.7), (A.8). This is done in our last proposition, which uses
the following technical facts.

LEMMA 3. Let K be a nonempty convex cone in Rn, and let f
be a proper convex function on Rn. Then

0 Φ riKf] ri (dom /)

is equivalent to the condition

[yeK* and /*0+(i/) ^ 0] = > [-yeK* and f*0+(-y) ^ 0] ,

where K* - {y \ (x, y) ^ 0 , Vx e K}.

Proof. We modify the proof of [6, Lemma 16.2], in which K
is actually a subspace. By [6, Theorems 11.3 and 11.1], 0 —r\KC\
ri (dom /) occurs if and only if

31/, sup < , y) <; inf < , y) and inf < , y) < sup< , y) .
dom / rxK dom / riK

By [6, Theorem 13.3] and the fact that K is a cone, the latter
condition occurs if and only if

32/, f*0+(y) £ - fAv) and -/*0+(-τ/) < γA~V)

Since / ; ! Ό + is never — co [6, Theorem 8.5] and ψκ* assumes only the
values 0 and + oo y the latter is equivalent to

33/eJBΓ*, f*0+(y) ^ 0 and [0 < /*0 f(-τ/) if -yeK*] .

The lemma follows by taking contrapositives.
In the following result we write Pm — {x e Rm \ xk > 0, V&}.

PROPOSITION 10. Then following three conditions are pairwise
equivalent:

(a) 0 ^ P w n d o m / m

(b) 0 Φ ri C ίΊ ri (dom /)
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(c) f*0+(y) > 0 whenever y eC* and yk > 0 for some k ^ m.
// condition (A.5) is satisfied, the following three conditions are
pair wise equivalent:

(a*) 0 ^P w ndom/*
(b*) 0 ^riC*nri(dom/*)
(c*) fθ+(x) > 0 whenever xeC and xk > 0 /or some k t=* m.

Moreover, even without assuming condition (A.5), condition (&*) is
equivalent to the conjunction of (c*) and (A.5).

Proof. Since Pm is open and dom fm is convex, (a) is equivalent
to

0 * P m n r i ( d o m / J .

Since fm — Af implies dom fm — A dom /, by [6, Theorem 6.6] the
latter condition is equivalent to (b). By Lemma 3 and the fact that
C* contains no lines, (b) is equivalent to (c). To prove the corre-
sponding equivalences involving f*, note first that, by [6, Corollary
16.2.1],

(A.5) is satisfied *=> 0 Φ A*"1(ri(dom/*)) .

Also, from the formula f£ = /*A* in Proposition 9 we have

dom/^ = A*"1 dom/* .

From [6, Theorem 6.7], it follows that condition (A.5) implies

(Vi, , V.) e ri (dom/J) -=> (yl9 , ym, 0, , 0) eri (dom /*) .

Hence,

0 Φ Pm n dom/* <=> 0 ^ Pm Π ri (dom/*)

^=> 0 ^ ri C* n ri (dom /*)

<==> (C Π rec cone /) c — (C Π rec cone /) ,

where the last equivalence is by Lemma 3. By using the form of
C, the last condition can be seen equivalent to the conjunction (c*)
and (A.5). This concludes the proof.
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