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TWO QUESTIONS ON WALLMAN RINGS

Jose L. BLASCO

In this paper we give an example of a Wallman ring
7 on a topological space X such that the associated com-
pactification (X, Z(.%)) is disconnected and % is not a
direct sum of any two proper ideals, herewith solving a
question raised by H. L. Bentley and B. J. Taylor. Also, an
example of a uniformly closed Wallman ring which is not
a sublattice is given.

I. Introduction. Biles [2] has called a subring .7 of the ring
C(X), of all real-valued continuous funections on a topological space
X, a Wallman ring on X whenever Z(.%7), the zero-sets of functions
beloning to .97 forms a normal base on X in the sense of Frink.

H. L. Bentley and B. J. Taylor [1] studied relationships between
algebraic properties of a Wallman ring .97 and topological properties
of the compactification w(X, Z(.&)) of X. They proved that if .o~
is a Wallman ring on X such that & = <& @ % where &% and &
are proper ideals of & then w(X, Z(.&7)) is disconnected. We shall
prove that the converse of this result is not wvalid. But, when
w(X, Z(.57)) is disconnected we find a Wallman ring .o °, equivalent
to % which is a direct sum of any two proper ideals.

It is well-known that every closed subring of C*(X), the ring
of all bounded functions in C(X), that contains all the rational
constants is a lattice. But this is not true for arbitrary closed
subrings of C(X). We give an example of a uniformly closed Wallman
ring on a space Y which is not a sublattice of C(Y). This corrects
an assertion stated in ([1], p. 27).

II. Definitions and basic results. All topological spaces under
consideration will be completely regular and Hausdorff. A nonempty
collection & of subsets of a nonempty set X is said to be a ring
of sets if it is closed under the formation of finite unions and finite
intersections. The collection .&# is said to be disjunctive if for each
closed set G in X and point x € X ~ G there is a set Fe & satisfying
gzeF and FNG= @. It is said to be normal if for F, and F, in
& with empty intersection there exist G, and G, which are comple-
ments of members of & satisfying F.c G, F,CG,and G,N G, = @.
The collection .& is a normal base for the topological space X in
case it is a normal, disjunctive, ring of sets that is a base for the
closed sets of X.

Throughout this section & will denote a disjunctive ring of closed
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sets in a topological space X that is a base for the closed sets of
X. Let w(X, &) denote the collection of all <-ultrafilters, and
topologize them with a topology having as a base for the closed sets,
sets of the form D* = {Z ew(X, &): De %} where De <. Then X
can be embedded in w(X, &) as a dense subspace when it carries the
relative topology. The embedding map takes each x¢ X into the
unique Z-ultrafilter of supersets of « in &2, The space w(X, &) is
a T-compactification of X ([3], p. 122).

We now state some facts concerning the space w(X, &) which
will be needed. For a proof see ([3], p. 119, p. 123).

PRrROPOSITION 2.1. The space w(X, =) is Hausdorff if and only
if & 1s a normal base on X.

The following result is an interesting characterization of w(X, &)
due to Sanin.

THEOREM 2.2. The space S = w(X, &) is uniquely determined
(in the usual sense) among T,-compactifications of X by its properties

(a) {elgD: De =2} is a base for the closed sets of w(X, ).

(b) For F, F, in =, clgF, N clgF, = cl(F, N Fy).

According to the Proposition 2.1 if any Hausdorff compactification
of X satisfies (a) and (b), then <& is a normal base on X.

I11. Disconnectedness of w(X, Z(.%7)). The next result is a
necessary and sufficient condition for the disconnectedness of
o(X, Z(.o7)) being .57 a Wallman ring on X.

THEOREM 3.1. Let .o be a Wallman ring on a space X. Then
o(X, Z(.%7) 1is disconnected if and only if there is a Wallman ring
.7°, equivalent to .o (i.e., w(X, Z(.7)) = w(X, Z(.57°))), which is
the direct sum of any two proper ideals.

Proof. The sufficiency has been proved in ([1], Theorem 3.14)
with .& = .97°. Necessity. Suppose that S = o(X, Z(.&7)) is dis-
connected. Then there exist nonempty disjoint closed subsets 4 and
B of S whose union is S. Since A is a closed set of S,

A=N{elZ: AcclyZ, Ze Z(.o7)} .

It follows from AN B = @ that {B,cl,Z: ACelyZ, Zec Z(.o7)} does
not have the finite intersection property. Therefore BNelsZ N N
clyZ, = ¢, for some Z,cZ(.w), AcclgZ,1 <i<mn. This implies
A=N{lsZ:1 i<} =clgN{Z:1=<1=n}. So A=clyZ(f) where
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fe” In the same way we find that B = clgZ(g), g € %%

The set .&7° = {h/s:h, s€.% Z(s) = @} is a subring of C(X)
such that Z(.&7) = Z(.o7°). So .&7° is a Wallman ring on X equi-
valent to .o~ The functions k, = f*/(f* + g%, h, = ¢*/(f* + g% belong
to .&7° and they are the characteristic functions of the zero-sets
Z(g) and Z(f), respectively. Since Z(f) N Z(g) = @&, the ideal (h,)
of .o7° generated by h, is proper, 1 <4< 2. On the other hand,
1 = h, + h, implies that .o7° = (h,) D (h,).

The following is an example of Wallman ring which cannot be
expressed as the direct sum of nontrivial ideals.

ExampLE 3.2. Let X =1[0,1)UI[2, 3), & = {feC(X): for some
compact set K X, f is an integer constant on X ~ K}.

Since X is locally compact, Z(<#) is a disjunctive base for the
closed sets of X.

Consider the following funections in C(X)

P =e, xe[0,1) o@)=0, xzc[2 3)
Px) =0, 2€[0,1) @) =e, x€[2,3).

Let .97 be the subring of C(X) generated by <Z U {p,, ®,}. Since
P9, = 0, a function of .o will be of the form

f = oo + 1P + gzo@f + o+ Pl G P+ -+ gojgpg

where ¢,, belong to <# and m, 7 are nonnegative integers.

From the definition of .<Z, there exist compact sets K, [0, 1)
and K,cC|[2, 3) such that if xeX ~ (K, UK, then g¢,(v) =a,.,€Z
(the set of integer numbers). Therefore

(*) f@) =ay, + ae + -+ + ae”, 2€[0,1) ~ K,
f@) = ay + age + -+ + aye’, xe[2,3) ~K,.

Since Z(<#) C Z(.&7) it follows that Z(.97) is a disjunctive base
for the closed sets of X and a ring of sets.

Now, we will show that K =[0,1]U[2, 8] is a compactification
of X equivalent to w(X, Z(.%)). According to Theorem 2.2 it suffices
to show that: (a) The family {clxZ: Ze Z(.&7)} is a base for the
closed sets of K (b) For Z, Z, in Z(.%7), clx(Z, N Z,) = clxZ, N el Z,.

(a) If C is a closed set in K and 1¢C, then the set CNJ0, 1]
is compact and 1¢CNJ[0,1]. Let B be a point in [0, 1) such that
CnlB,1] = @. Then, there exists a function fe€C(K) such that
fdB, 11U 2, 3]) = {1} and f(CN[0, 1]) = {0}). If ¢ is the restriction
of f toX,thenge Z h =pge.>, CcCeclyZ(h) and 1 ¢ cl Z(h). With
the point 3 a similar argument can be used (also in (b)).
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(b) Let f, ge.% and suppose that 1ecl.Z(f)NeclgZ(g). From
(*) there exists g€]0, 1) such that f(x) = m, and g(x) = m, for every
xe[B,1). By our assumption m, = m, = 0, therefore 1e€cl(Z(f)N
Z(9)).

Then K = w(X, Z(.&)), hence Z(.&) is a normal base on X and
& is a Wallman ring.

Now, we will show that the characteristic function of the interval
[0,1) is not in .7 Let he.®Z From (*), there exist B€[0, 1), v¢€
[2,8) and @,,€Z, 0=t =m,0 <k =< j such that

h(x) = Oy + Ape + -+ + aojej ’ xeh’: 3)
h(x) = Qp + Qe + -+ + e, 2€[B,1).

If [2, 3)c Z(h), then ay =0y =+ =a,; =0 because e is a
transcendental number. Therefore A(x) = aye + -+ + a,e™ # 1 if
zelg, 1).

Finally, we will show that .9 cannot be expressed as the direct
sum of nontrivial ideals. Suppose that . = & @ & where ¥ and
7 are proper ideals of . Then 1€.% implies that there exist
fe% and ge 57 such that 1=f+g and fg=0. Hence {Z(g), Z(f)}
is a partition on X. On the other hand, since & and 57 are proper
ideals, the zero-sets Z(f) and Z(g) are nonempty, so [0, 1) = Z(f) and
[2, 8) = Z(g). Therefore g €. &7 is the characteristic function of the
interval [0, 1), which is a contradiction.

IV. An example of a closed Wallman ring which is not a
lattice. Let N denote the set of natural numbers. By a sublattice
of C(X) we mean a subset of C(X) which contains the supremum
and infimum of each pair of its elements. By a closed subring of
C(X) we mean a subring of C(X) which is closed in the uniform
topology on C(X).

ExAmMPLE 4.1. Let <Z& be the set {f € C(N): for some finite subset
McCN, f is an integer constant on N ~ M}. Then <£Z is a subring
of C(N) and Z(<#) = {BC N: B or N ~ B s finite}. It is well-known
that <& is a Wallman ring on N such that @w(N, Z(<#)) is the one-
point compactification of N.

Let @ be the function defined ®(2n) = n, p2n — 1) = —n, n =
1,2, ---. Let .% be the subring of C(N) generated by <Z U {®}.
Obviously Z(&#) Cc Z(.%7). To show that Z(.o7) C Z(<#), let fe &
Then f =9, + 92+ -+ + 9,.9™, where g,€ <%, 0 < 1 =< m. From the
definition of <, there exist m,eN, a,€Z, 0 <1 < m such that
9.2n —1)=92n)=a,,0=1<m for every n =n,. If a,=--- =
a, =0, then f2n — 1) = f(2n) = a, for every n = n, and therefore
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fe<. Suppose a, # 0 for some i, = 1. Then, if n = n, f(2n) =
a, + na, + --- + n"a,, and f@n — 1) =a, — na, + - -+ + (—1)"n"a,,.
So Z(f) is finite and Z(f)e Z(<#). Hence .7 is a Wallman ring on
X.

If ot =9V 0, then Z(p*)={1,3, 5, ---}¢ Z(.%). Therefore
ot ¢ 7 and .7 is not a lattice. Finally, since the functions of .o
are integer-valued, it follows that .o is uniformly eclosed in C(N).
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