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THE STABILITY OF THE AXIALLY SYMMETRIC
PENDENT DROP

HENRY C. WENTE

This paper analyzes the stability of the axially symmetric
pendent drop for three different physical arrangements; prob-
lem A, constant pressure, fixed circular opening; Problem B,
constant volume, prescribed angle of contact with a horizontal
plate; Problem C, constant volume and fixed circular opening.
As examples, the following results are established. Relative to
Problem B we prove that for any angle of contact, a (0<a<π),
as the volume increases an inflection point will appear on the
profile curve before instability occurs. For Problem C we show
that if the opening is narrow enough to support a stable drop
with a bulge then as the volume is increased drops with both
a neck and a bulge will appear before instability occurs.

1* Introduction* This paper is a study of the axially sym-
metric pendent drop as it may be realized in a variety of physical
situations. We shall be interested in those drops which, besides
being in a state of equilibrium, are also stable relative to small
perturbations. In particular we shall examine how the stability
criterion affects drop formation for the following three physical
settings.

PROBLEM A. Constant Pressure, Fixed Circular Opening.
Here the drop is to protrude downward from a fixed horizontal

circular orifice of given radius (e.g., the end of a pipette held verti-
cally) with a pressure prescribed at the opening. This configuration
is most easily realized by taking a flexible circular tube, filling it
with the fluid and immersing one end of it in a resevoir to form a
siphon, and bending the tube so that the exposed end opens down-
ward. The potential energy of such a configuration is given by

(1.1) E{Λ) = σA{Λ) + pg

Here A is the liquid-air interface, σ is the surface tension of this
interface, p is the density of the fluid, and g is the gravitational
constant. A(A) denotes the area of the interface and the integral
is over the exposed volume of the fluid. If the exposed end is set
at the level of the fluid in the resevoir we have the zero pressure
situation and if the tube is narrow enough a stable equilibrium is
attained with the liquid-air interface, A, perfectly flat. By lower-
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ing the tube, the pressure at the opening is increased linearly and
a family of stable pendent drops is formed. At some point the
limit of stability will be reached, and any further increase in pres-
sure will cause the fluid to flow out.

PROBLEM B. Constant Volume, Prescribed Angle of Contact with
a Horizontal Plate.

Here the angle of contact, a, of the liquid-air interface with
the horizontal plate, measured interior to the fluid, is determined
by the energy functional which is

(1.2) E(A) = σA(A) + pg\\\zdv - σXA(Σ) .

Here Σ is the region of contact of the liquid drop with the horizotal
plate, A{Σ) is the area of Σ, and λ = cos a.

For small volumes the surface tension predominates over the
gravitational potential and the stable pendent drops resemble spheri-
cal caps. Allow the volume to increase, by inserting fluid through
a small hole in the plate for instance, and a family of stable drops
is generated until a maximum stable configuration is attained.

PROBLEM C. Constant Volume, Fixed Circular Opening.
Here we have the "medicine dropper" filled with a fluid and

possessing a circular orifice. As in Problem A, if the diameter of
the tube is sufficiently small, the horizontal slice, u = 0, will yield
a stable configuration. The potential energy for this problem is

(1.3) E(A) = σA(A) + f

We can now increase the exposed volume by slowly squeezing the
dropper, thus forming a family of stable pendent drops until the
limit of stability is reached at some maximum volume.

For each of these problems the Euler equation for the drop
interface, A, requires that the mean curvature be a linear function
of height. If we also assume axial symmetry then the Euler equa-
tion becomes an ordinary differential equation for the profile curve.
In § 2 we discuss in some detail the solutions of this 0. D. E.,
stating needed previous results, and adding some new remarks.

In § 3 we analyze each of the three problems. The procedure
is similar in each case. We show the existence of a smooth one-
parameter family of symmetric, equilibrium solutions which contains
a stable configuraton. We run through the family until a maximum
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value of the constraint is reached. This determines the limit of
symmetric stability, and except for one extra condition that needs
to be satisfied in Problem C, the limit of stability is general. The
validity of this procedure is discussed in § 4.

The condition for stability used in this paper and discussed in
§ 4 is determined by the second variation. For example, with
Problem B an equilibrium configuration, Λ, is determined by the
requirement that the first variation of the energy functional, dEA(N),
vanish for every smooth normal perturbation, JV, for which the
first variation of volume, dVΛ(N), also vanishes. (See Formulas
4.3, 4.4.) By the method of Lagrange multipliers this means that
d(E — cV)Λ(N) = 0 for some constant, c, and all smooth normal per-
turbations, N. An equilibrium configuration, Λ, is said to be stable
if the second variation, d\E — cV)Λ(N, N), is positive for all non-
trivial normal perturbations satisfying dVΛ(N) — 0. (See Formula
4.7.) We do not restrict ourselves to symmetric perturbations.
Also, we do not discuss the question of whether or not our condi-
tion for stability implies that any such stable drop in equilibrium
is actually a local minimum of the energy functional compared to
other drops of the same volume. This last question could bear
further investigation.

The results (qualitative in nature) may be summarized as follows.

PROBLEM A. There is a value, r0, such that for tube radius
greater than r0, no stable configuration is possible. If the tube
radius, α, is less than r0, then the horizontal slice for Λ: u = 0 is
stable at zero pressure. For each a < r0, there is a maximum pres-
sure, obtained by lowering the tube, beyond which the drops are
unstable. This maximum pressure increases monotonically as a—>0.
For values of a near r0, the profile curves for stable drops will
develop an inflection point before instability is reached. If a is
very small, then all stable drops will have purely convex profile
curves. Furthermore, all stable configurations may be expressed in
nonparametric form, u — u(xy y), (Theorem 3.1 and Figures 1, 2).

PROBLEM B. For any value of the angle of contact, 0 < a < π9

drops of very small volume are stable. As the volume is increased
and before the point of instability is reached, the profile curves will
develop an inflection point, (Theorem 3.2). For a = τr/2, a con-
sequence of this theorem is that before instability is reached the
drops will develop a neck where it contacts the plate. It will also
follow that if a is slightly less than π/2 the drop will develop a
neck away from the plate before the point of instablity is reached,
(Theorem 3.2).
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For 0 < a < π, as the volume increases from zero the area of
contact with the horizontal plate will initially increase, but before
maximum volume is attained the area will decrease. Drop height
will increase monotonically with volume as long as the configura-
tions remain stable. Finally, for any stable configuration, the
profile curve will contain at most one inflection point, (Theorem 3.6).

For a = 0 it is clear that the profile curve of any drop must
contain an inflection point. We show here that the profile curve
for any stable drop can be expressed nonparametrically, (i.e., the
profile curve will contain no vertical tangent), (Theorems 3.3, 3.8),
(see Figures 1, 3, 6, 7 at the end of the paper).

PROBLEM C. AS in Problem A, there is a maximum radius, rlf

beyond which no stable configuration can exist. If the radius, a, is
less than rlf then A: u = 0 is a stable configuration. If we increase
the volume, then before the point of instability is reached the pro-
file curve will develop an inflection point, (Theorem 3.4). Further-
more, if the radius, α, is small enough stable drop configurations
will arise whose profile curve will possess a vertical tangent. These
drops will then develop a bulge. If this occurs, then before the
limit of stability is reached the drop will develop a neck, (a second
vertical tangent on the profile curve). At some point after the
formation of the neck instability will occur, (Theorem 3.5), (see
Figure 3).

As in Problem B drop height will increase monotonically with
volume until the limit of stability is reached. Also, any drop whose
profile curve contains a second bulge must be unstable, (Theorem 3.7).

For a drop which is symmetrically stable to be stable as well,
the following condition must be satisfied. The profile curve cannot
contain a horizontal tangent away from the drop tip, (Figures 1, 4,
5,8).

There is an extensive literature relating to the axially symmetric
pendent drop. An early treatise (1883) was that of F. Bashforth
and J.C. Adams [1] who developed numerical methods for solving
the 0. D. E.'s determining the pendent and sessile drop. Further
discussion may be found in the book of W. Thomson [15], and
recently P. Concus and R. Finn have produced a series of papers
to which we shall refer in § 2.

There also has been considerable work on the question of
stability. E. Pitts [14] studied all three problems. For example he
established that for Problem C, the maximum volume criterion
determines the limits of symmetric stability. His proof assumes
that drop height can be used as the parameter for the family of
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pendent drops; an assumption supported by his numerical calcula-
tions and which we verify here. E. A. Boucher and M. J. B. Evans
in [5], and Boucher, Evans and H. J. Kent in [6] present the impli-
cations derived from careful numerical calculations as applied to
Problems B and C. They use the maximum volume principle for
finding the limit of stability. Their conclusions support the theorems
of this paper. A. K. Chesters [7] studies Problem C for a very
narrow tube. In particular, he proves that for sufficiently narrow
tube openings (in which case the bulbous drop will be nearly spheri-
cal), that the point of instability occurs after formation of the
neck. (This is our Theorem 3, 5 in limiting form.) The special
condition for asymmetric instability in Problem C mentioned above
and discussed in § 4 seems to have been first analyzed by D. H.
Michael and P. G. Williams in [13].

I would like to express my thanks to Frederic Brulois for his
many helpful suggestions.

2* The profile curves of the pendent drop* The Euler equa-
tions for any of the systems described in the introduction give the
condition

(2.1) 2H= -ku + c

where k = pg/σ, H is the mean curvature with normal pointing into
the drop, and c is a constant which arises as a Lagrange multiplier.
By a normalization we may allow k = 1 and by a vertical transla-
tion of coordinates we can make c — 0, reducing (2.1) to the condi-
tion 2H — —u. If the surface is axially symmetric about the
vertical %-axis the differential equation for the profile curve becomes

(2.2)

Here ψ is the inclination angle, s is arc length measured from the
drop tip, and u0 is the height at the tip.

When r'(s) = cos ψ Φ 0 the solution to (2.2) may be expressed
nonparametricly with r as the independent variable and satisfying
the differential equation

(2.3) (r sin f)r + ru = 0, u(0) = u0 .

It will be convenient to work with the function v(r) = sin <r(r)
allowing us to rewrite (2.3),

(2.4) (rv)r + ru = 0, u(0) = u0, v(0) = 0 .

(a)

(b)

(c)

r'
u

Xs)
Xs)
Xs)

= COS i(

= sin i

= —u

Ir

— (sin iir/r)

r(0)

tt(O)

-ψ-(O)

= 0

= Mo =

= 0 ,

- 2 *
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This equation may be written in the form

(2.5) v' + (v/r) +u = 0

where v\r) represents the meridonal curvature and v/r the longi-
tudinal curvature. It follows (as Concus and Finn have shown) that
v\0) = ~uo/2 = tc. For this reason we choose tc, which is the cur-
vature at the drop tip, as a parameter in (2.2b).

According to P. Concus and R. Finn [9] the basic existence
and uniqueness theorem for the system (2.2) or (2.3) was proved
by Lohnstein [12] in 1891 using t̂he method of majorants. In a
more recent paper [11] W. E. Johnson and L. M. Perko proved an
existence and uniqueness theorem for the sessile drop, (r sin ψ)r —
ru = 0.

We shall need the fact that the solutions to (2.2) and (2.3) are
analytic and that the solutions depend analytically on the initial
conditions. Presumably the method of Johnson and Perko could be
used to establish the result, however it seems easier to use the
method of majorants. Since Lohnstein's thesis is not readily avai-
able we shall present a short proof here.

If we differentiate (2.4) with respect to r, u(r) can be eliminated
from the equation giving

(a) (rv'Y
W

( 2 ' β ) (b) ( r v ' ) ' - ( J L + —)tf = 0 if π/2< \ψ\ < π ,

W=(l~ vψ2 .

LEMMA 2.1. The pair u(r), v(r) is a solution to (2.4) with
u(0) — ~2fc, v(0) — 0 if and only if v(r) is a solution to (2.6a) with
v(0) - 0, v'(O) - tc.

Proof. The proof is straightforward. If v(r) solves (2.6a), one
then obtains u(r) using (2.5).

THEOREM 2.1. Given K > 0 there exists an R > 0 and a func-
tion v{r, tc) analytic in r and tc in the region \κ\ < K, \r\ < R
satisfying the differential equation (2.6a) and the initial conditions
v(Q, tc) = 0, vr(0, tc) = tc.

Proof. (2.6a) may be rewritten in the form L(v) = M(v) where
if v(r) -= Σ»=i V*, then L(v) = (rv')' - vjr = 3α2r + 8αsr

2 + +
(n2 - l)a%rn-1 + and
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M(v) = ~rvf(l - v2)~in = -Ay + Σ<V>*

= -[ay2 + (α2 + alc2)r3 + + pn(alf ,

where pΛ(α l f , α%_x, cx, , c ^ ) is a polynomial of degree (w — 1)
in au , αw_i and is affine in elf , cw_i with positive coefficients.

The series for M"(v) has radius of convergence 1. Thus for any
positive p less than one, there is a constant C, with \cn\ < C/ρn

and cγ — 1.
Now set Liiv) = v'(r) — v'(Q). If v(r) is expanded as above,

then formally we have Lx(v) = Σ?=2 nanr
n~\ We now define ilίi(v) =

Cr [(v/ρ)/(l - (v/|θ))]. The formal solution to Lx(t;) = Mx{v) with
v(0) = 0, ι/(0) = 6X = I a± I majorizes the corresponding solution to
L(v) = AfO). That is, if w(r, bλ) = &xr + Σ"=2 δΛr* is a formal solu-
tion to Lx{w) = Mx(w), w\ϋ) = 6X and if v(r) is a formal solution to
L(v) = Λf(ι;) with v'(0) = αx then if bx ^ | αx | we will have 6% ^ | an \
for all 7i.

However, if we differentiate the system Lλ(w) — Mx{w) we are
led to the second order differential equation

W" = c-f-[r(w/p)/(l - (w/p))]
dr

with w(0) — 0, w\ϋ) — bx. This is a differential equation without
singular point at r = 0. Therefore, given Sx > 0, there is an
analytic solution with w(0) = 0, w'(0) = J5X in some interval \r\ ̂  rt.
Our formal series expression must coincide with this solution.
Choose r with 0 < r < τx. The series w(f9 J?x) must converge
absolutely. Therefore the series for w(r, K) and #(r, Λ;) represents
analytic functions in the domain \r\ < r, |A;| < 2?lβ

Consequence. As shown by Concus and Finn [9] any solution to
(2.2) exists for all s ^ 0. For small s, the solutions may be expres-
sed nonparametricly. We may apply the above theorem to con-
clude that the solutions to (2.2) (r(s, K), U(S, K), ψ(s, tc)) are analytic
in s, and in the initial parameter K = —uQ/2.

We shall refer to <r(s, A:), U(S, /c), ψ(s, ιc)) as the parametric
form for the equation of the profile curves. If no confusion should
result, we shall often write r(s) for r(s, tc) if tc is a fixed parameter.
In this case we would write r'(s) for rs(s, ic). On the other hand,
differentiation with respect to K will always be explicitely indicated.

We shall have frequent need to consider the derivatives of
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solutions to (2.2) with respect to tc. We set (p(s, tc), v(s, tc), ω(s, tc)) =
(rA(s, K), uκ(s, tc), ψίC(s, tc)). In particular we find

(a) ρs = (-sinf)ω ρ(0, tc) = 0

(2.7) (b) vs = (cosψOω y(0, *;) = - 2

(c) ωs = ( — cos ψ/r)ω + (sin ψ/r'ήp — y α>(0, A:) = 0 .

If we express the surface nonparametricly, u = u(r, tc), with

v(r, tc) = sin ψ, then we set

(2.8) φ(r, tc) = uκ(r, it) and h(r, tc) = vk(r, fc) .

In particular, we obtain from (2.5) and (2.6)

(2 9) ( a ) K + (h/T) + φ = = 0

(b) (rhr)r + (r/TΓ3 - l/r)h - 0, Λ(0, Λ:) = 0, hr(Q, it) - 1

if \ψI < 7r/2, while for h>| > ττ/2 we obtain

(c) (rhr)r = (r/PP + l/r)fe .

The following theorem states several key results of P. Concus
and R. Finn [8, 9] pertaining to solutions of (2.2) and (2.3).

THEOREM 2.2. (Concus and Finn, [8] and [9]).
(a) There is a largest value ΰ0 < —2 (smallest ic > 1) so that

the corresponding profile curve, u(r, ic), attains a vertical tangent
at a point (rl9 ΰj). For this curve f^ = — 1 and is an inflection
point for the profile curve if we continue it past (flf ΰj) using (2.2).

u0 = -2.5678, r, ~ . 9176, and ΰλ = -1.0894 .

(b) If u0 ^ u0 ^ 0, then the corresponding profile curve, u(r, tc)
is analytic for all r. As r increases the curve is oscillatory in
behavior and is asymptotic to uQJ0(r) as u0 approaches 0.

(c) If u0 < — 2l/2 then there is a point of first vertical
tangency (rl9 uλ) with

ux < ^0/2[l + (1 - 8/ul)m] < 0 and rx < R

where 1/R = -uQ/A[l + (1 - 8/u$1/2].
(d) Any solution to (2.2) with drop tip at u = uQ < 0 will

increase with u until the r-axis is crossed. If \uo\ is large the
profile curve will oscillate in r describing roughly a series of bub-
bles whose mean curvature is approximately —u/2. Once the axis
is crossed, the solution may once again be expressed nonparametri-
cally u = u(r) with behavior as in (b). The bulges of the profile
curve always occur between the curves ru — — 1 and ru = — 2, while
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the necks always occur above ru — — 1. The curve remains above
the curve ru = —2 until it crosses the u-axis.

For our purpose it will frequently be convenient to work with
the slope function v{r) = sin ψ and satisfying (2.6a) and v(0) — 0,
t '(O) = K ̂  0. Theorem 2.2 gives the following information regard-
ing the function v{r).

COROLLARY TO THEOREM 2.2.

(a) If 0 ^ v'(0) < 1, then v(r) exists as an analytic solution to
(2.6a) for all r > 0.

(b) // v'(0) = tc > l/ 2 then v{r) is defined over an interval
[0, r j with v(rλ) — 1.

(c) By continuity, there is a first solution to (2.6a) which
attains the value 1 at the finite rx. Let & — v'(0) — uo/2 ~ 1.2839 be
the corresponding initial derivative. If 0 < K < K and v\0) — K
then condition (a) applies.

We shall show shortly that if tc > ic and ?/(0) = tc, then condi-
tion (b) applies.

At this point we should note that v\r) = ψ\s) is the curvature
of the profile curve. An inflection point along the profile curve
occurs where vr(r) = 0. We will also need the following result of
Concus and Finn [9, p. 314].

LEMMA 2.2. Let v(r) be a solution to (2.6a) with v(0) — 0 and
v'(0) = fc > 0. Suppose v\r) ^ 0 for 0 ^ r ^ r. Then v"{r) < 0
for 0 < r <; r.

We have the following useful identities.

LEMMA 2.3. Let v{r) be a solution to (2.6a) on an interval
[0, r j with v(0) = 0. We have

—[Wfa)]2 - rlW(n) + 2 \\w(r)dr - v\r,)β,
(2.10a) 2 J o

Suppose further that v'(r) > 0 on the interval [0, r j Then the
identity may be rewritten

(2.10b) — [r&XrJY + [\\v)[v/W]dv = v2(n)
2 Jo2

where vλ —
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Proof. Identity (2.10a) is obtained by multiplying (2.6a) by
rv\ integrating the result from 0 to r19 and performing an integra-
tion by parts. (2.10b) then follows from (2.10a) by a change in
the variable of integration.

We can use these identities to obtain refinements of some of
the results of Concus and Finn. For example, consider a profile
curve where u0 > — 2 so that the curve may be expressed in the
nonparametric form, u = u{r) for r ^ 0. In [9] it is shown that
the successive maxima and minima for u(r) decrease in absolute
value. In particular, if (rl9 ux) is the location of the first maximum,
then 0 < ux < | u0 |. We now show

THEOREM 2.3. If —2 < uQ < 0 then the first maximum, ulf of
the profile curve u(r) satisfies ux < i/ 2 .

Proof. Let the first maximum occur at r — rx. This means
that v(rj) — sin ψ(n) = 0 and v(r) > 0 for 0 < r < rx. We know,
(2.4), that (rvY + ru = 0. Thus if v(rx) = 0 we will have v'fo) = -

Now apply (2.10a) and we derive the identity,

x) - 2 - (4/rϊ)[TlrW(r)dr < 2 .
Jo

In fact, the conclusion of Theorem 2.5 is true for any initial
value uQ. The proof, which we shall omit, follows directly from
the following identity, similar to (2.10a).

LEMMA 2.4. Let <r(s), u(s), ψ(s)) be a solutiou to the system
(2.2) with u(0) — u0. Let (rl9 ul9 ψ^ be the values of <r(β), u(s)9 ψ(s))
at s — s1#

(2.11) i-tr^sO] 2 = ( S m ^ +
2 2

Proof. Take the D. E. (2.2c) multiply it by r{s) and differen-
tiate. This gives

(rψ'Y = — r sin ψ + (sin ψ cos ψ)/r .

Now multiply through by rψ', integrate from 0 to su and follow
this by an integration by parts.

Let a point (f, u) lie on a profile curve. The volume of the
generated drop which lies below the plane u — ύ is given by
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(ΰ — u)rr8ds — πr2u — 2π\ urrsds .

o Jo

However, by (2.2) we find that (r sin ψ)s = — ru cos ψ — —urrs. This
gives us

(2.12) V = πf[rΰ + 2 sin ψ] = πr[ru + 2v] .

Furthermore, if the profile curve does not have a vertical tangent
at (r, u) then using (2.5),

(2.13) V = πf[v - rv\r)} .

Suppose v(r) is a solution to (2.6a) with v(0) = 0, i '(O) = /c > 0.
By Lemma 2.2 we know that v(r) is convex up until a maximum
is attained. The following lemma bears on its behavior after the
maximum.

LEMMA 2.5. Suppose v(r) attains a maximum at rx with v(?\) =
vM < 1. At the next critical point r2 > rx for v(r) we will have
v'(r2) = 0 and v(r2) < 0.

Proof. By Lemma 2.2 v"(r^) < 0 so v(r) is initially decreasing
after Ί\. Since v{r^ < 1 it follows that v(r) is a solution to (2.6a)
for all r ^ 0. By Theorem 2.2b, u(r) has an infinite number of
maxima and minima implying that v(r) has an infinite number of
zeros on (0, +°o). Let r3 > rx be the first positive zero of v(r). We
need to show that v\r) < 0 for rλ < r ^ r3. If not there will be a
6, n < b £ r3 with v(b) = v > 0, v\b) = 0 and ι '(r) < 0 for n < r < b.
There is also a unique α, 0 <; α < rx with v(a) = v, v\a) > 0, and
v(r) > v for a < r <b.

Now apply the integral identity (2.10a) on the interval (α, 6).
We obtain

[av\a)f = ΛbrW(r)dr - 2(δ2 - a2)
Ja

W

where W(r) = (1 - ^2(r))1/2 and ΪF - TΓ(α) - W(b). But TΓ(r) < 1?
for a < r < b from which it follows that [av\a)]2 < 0, a contra-
diction.

THEOREM 2.4. Let u{r) with u(0) = u0 be a profile curve which
does not possess a vertical tangent. Let the first positive maximum
for u{r) occur at r — rx. On the interval (0, rj, u{r) posseses exactly
one inflection point.

Proof. This is a corollary to Lemma 2.5. r1 is the first positive
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zero of the slope function v(r), and so v\r) vanishes exactly once
on (0, rt) which is the sole inflection point for u(r).

The rest of this section is devoted to a comparison of different
profile curves of the family (2.2). We shall be especially interested
in the envelope of this family (Theorem 2.6). As is well known,
this amounts to finding the conjugate points of the family relative
to the drop tip, which in turn determines the limits of stability
for the configurations of Problem A.

LEMMA 2.6. Let v(r), w(r) be solutions to (2.6a) with v(0) =
w(0) = 0 and 0 < v'(0) < w'(0). Suppose that for 0 ^ r < α, v\r) > 0
and set v(a) — vM <̂  1. (Note: If v(a) < 1 then v\a) |Ξ> 0 while if
v(a) = 1 then v'(a) — lim v\r) is the curvature of the profile curve
at the vertical tangent.) There is a be (0, a) so that w'(r) > 0 for
0 <I r < b and w(b) — v(a) — vM. The graph of w(r), 0 < r ^ b lies
to the left of v(r), 0 < r ^ a and given v, 0 < v ^ vM if we deter-
mine r± < r2 with w(rλ) = v(r2) = v, then r{w\r^ > r2v'(r2) > 0.

Proof. The proof is based on the identity (2.10b). Choose a
c > 0 so that w\r) > 0 for 0 ^ r < c and w(c) S vM. Initially this
curve lies to the left of v(r), 0 < r ^ a. We claim that the entire
curve segment does. If not then there is a σ, 0 < σ ^ c such that
the curves intersect for the first time at σ, w(σ) = v(σ) and 0 <̂
w\σ) ^ v\σ). Both v(r) and w(r) have inverse functions r(v) and
r(v) respectively such that 0 < r(v) < r(v) if 0 < v < v(σ). Let
0<v<*v(σ), determine rlf r2 so that w(r1) = v(r2) = v and apply (2.10b).

r2(v)(v/W)dv
0

and

[r2v\r2)f = v2 - [r\v){v/W)dvf W = (1 - ^ 2)172 .
Jo

We conclude that r^w'ir^) > r2v\r2) ^ 0 . If we choose v = v(σ) =
tϋ(α ), then rx = r2 = σ and we conclude w'(<τ) > v\σ), a contradic-
tion. Thus w(r) stays to the left of v(r) and if w(r^) = v(r2) then
r.w'ir,) > r2v'(r2).

The proof is completed by choosing the largest interval [0, b]
for which w\r) > 0, 0 < r < & and for which w(b) <. vM. If follows
that w(b) = v(a) — vM.

THEOREM 2.5. Let ΰ0 < 0 be that largest value for u0 such
that the corresponding profile curve with initial value ΰ0 possesses



THE STABILITY OF THE AXIALLY SYMMETRIC PENDENT DROP 433

a vertical tangent (say at (rly ϋ^), and also an inflection point
there. Any profile curve with initial value uQ < ΰ0 will have a
point of vertical tangency at a point (rlf uλ) which is a bulge in the
drop profile. As u0 decreases to — °°, rt will decrease to 0, and ux

will decrease to — oo.

Proof. This theorem is a corollary of the previous lemma. If
v(r) is the slope function for the profile curve with initial value
ΰQf then vift) = 1 and vf{r^) = 0. Thus if w(r) is the slope function
for the profile curve whose initial value uQ < ϋ0, then w(r) lies to
the left of v(r) and w(rx) = 1, r^'ir^) > 0 implying that the profile
has positive curvature at the point of vertical tangency.

Also by Lemma 2.6 it is clear that rx decreases as u0 decreases,
and TiVXrύ increases. But by (2.4) r&'ixύ + 1 + rιuι = 0 showing
that uλ must decrease. That u0 —> — oo and τx —> 0 as u0 —* — oo follows
from Theorem 2.2c.

LEMMA 2.7. Suppose u(r), u(r) are two profile curves with
initial values u0, u0 which attain a vertical tangent at (rlf ux) and
(rl9 uλ) respectively. The two curve segments u(r), 0 <; r ^ n and
u(r), 0 ^ r ^ n intersect at most once. If u0 is sufficiently close to
u0 then the two curves will intersect once transversally.

Proof. Suppose u0 < u0. By Theorem 2.5 we know that rι <
rlf uλ < ulf and that the slope function v(r), 0 g r ^ r1 lies to the
left of v(r), 0 ^ r ^ rx. Therefore if 0 ^ r ^ rx then v(r) > v(r)
implying that u'(r) > u'(r). It follows that the two curves intersect
at most once.

To complete the proof we fix u0 — —2/c and examine the differ-
ential equation satisfied by the accessary function to u(r) = u(r, ft),
namely φ(r) = φ(r, K) = uκ(r9 tc). Since u(09 it) — —2ιc, ur(0, K) — 0 we

know that 0(0) = - 2 , φ'(0) = 0 and satisfies the D. E.

(2.14) (rφ'/J3)' + rφ = 0, J = (1 + un)m .

This is seen be differentiating (2.3) with respect to tc. Since J > 0,
(2.14) is nonsingular for r > 0. Thus whenever φ(r) — 0 we must
have φ\r) Φ 0. Therefore, to prove the lemma it suffices to show
that φ(r) vanishes at least once.

Suppose this were not so. Then φ(r) is negative for 0 ^ r < rx

with φ'(0) = 0, φ(0) = - 2 . By integrating (2.14) we conclude that
Φ\r) > 0 for 0 < r < rx. It follows that - 2 <; φ(r) < 0 for 0 £ r <
r1 and thus is bounded.

We now compute φ{r) in terms of the triple of functions <r(s, κ)f
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u{s, tc), ψ(s, tc)) satisfying (2.2) using the chain rule.

φ = {Dxu)8\ιc) + D2u, 0 = (A^)s'(yc) + D2r .

Here A, A denote differentiation with respect to the two variables,
s and tc. Recalling that Όλu = sin ψ and Dxr — cos ̂  we obtain φ =
(A^) — (tan ψ)D2r. As we pass through the point of vertical
tangency both D2u and D2r remain analytic. Therefore, φ remains
bounded as r-*rx only if D2r = 0 when ψ = ττ/2.

If we set Λ(r) = vβ(r, Λ:), then by differentiating (2.4) with
respect to tc we obtain (rh)' + rφ = 0. Integrate this expression
from 0 to r. We get

= \ — rφ(r)dr

from which we conclude that as r —> rx limit Λ(r) = Λ(r1)>0. However,
if we compute Λ(r) implicitely as we did φ(χ) we get (recalling that
v = sin ψ1)

λ(r) = -(Ar)(Af) + (cost)At .

But if A^ = 0 when ψ = π/2 then h{χύ = 0. Therefore ^(r) must
vanish at least once on the interval (0, rx).

We are now ready to prove the desired theorem on the enve-
lope of the family u = u(r, it).

DEFINITION 2.1. The envelope of the family of profile curves,
u(r, tc), is the set of points (f, ΰ) satisfying ΰ = u(r, ϋ) and uκ(r, ϋ) =
0 for some tz.

THEOREM 2.6. The first envelope, Γ, of the family of profile
curves u(r, K) is given by an increasing function e(r), 0 < r ^ aQ

where a0 is the first zero of the Bessel function, J0(r). e(r) is con-
tinuous and differentiable with limitr^0+ e(r) = — °o, e(aQ) — 0,
limitr_»o β'W = +°°, and e'(a0) = 0. Furthermore, the following are
true. (Figure 2.)

( i ) If a profile curve attains a vertical tangent at a point
(Ti, Ui), then Γ will touch the profile curve at a point to the left
and below this point.

(ii) If the profile curve does not have a vertical tangent, then
Γ will touch the profile curve to the left of the first zero of u(r).

Proof. Assertion (i) is contained in the proof of Lemma 2.7, so
let u = u(r, K) be a profile curve which does not possess a vertical
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tangent. Denote by b the first positive zero for u(r, tc), and as
before φ(r) — uκ(r, tc). We are to show that the first zero of ό(r)
occurs to the left of b. We know that 0(0) = - 2 , 0'(O) = 0 and
φ(r) satisfies (2.14).

Suppose (ii) is not true. Then for some £ > 0 we would have
u(b) = 0, u{r) < 0 for 0 £ r < b, u\r) > 0 for 0 < r £ b, while ό(r)<
0 for 0 ^ r < δ, φ(b) ^ 0 and φ\r) > 0 for 0 < r <> b. Now equation
(2.3) may be rewritten in the form

(2.15) {ru'/jy + ru = 0, J = (1 + u'ψ2 .

Equations (2.14) and (2.15) allow us to evaluate the integral of
ruφ two ways. Carry out the integrations, equate the result, per-
form an integration by parts, and note that (1/J) — (1/J3) = (u'f/J3,
u(b) = 0. We find

bu\b)φφ) = [b ru'ψ d

J(b) Jo J 3

The left hand side nonpositive while the right hand side is positive,
a contradiction, thus proving (ii).

As fc -» 0, u(r, ic) converges uniformly to u = 0 in r, and φ(χ, K)
converges uniformly to φQ(r) where φQ(r) is a solution to the limit
of (2.14), (rφ'Y + rφ = 0. This means that φQ(r) = -2/0(r) showing
that Γ passes through the point (a0, 0) where a0 is the first positive
zero of J0(r).

We next show that Γ is a regular curve. Let (r, ΰ)eΓ where
ΰ = u(r, /c) and uΛ(f, ic) = 0 for some /c > 0. Γ will be regular if
W«*(Λ ^) ^ 0 As above 0(r) = uκ(r, ic) and also set β(r) — uκκ(r, ic).
By differentiating (2.14) with repsect to κy we find that

(2.16) (r/3'/J3)' + rβ = (Sru'φ'yj5)' .

β(Q) =z 0 and since β(r) is analytic in r, there is an ε > 0 so that
either β and /3' are both positive or both negative on (0, ε). An
integration of (2.16) tells us that β and β' are initially positive.

Let r be the first zero of φ(r) and let a be the first positive
zero of β(r) if such exists. If a does not exist there is nothing to
prove. Otherwise we shall show that r < α.

Suppose a exists. We may suppose that u\r) > 0 for 0 < r ^ α,
for otherwise u(r) would have a zero to the left of a and then so
would φ(r). Thus we assume that r ^ a and u'(r) > 0, 0 < r ^ a.
As before we then have 0(0) = — 2, 0(r) < 0 for 0 < r < α, and
p'(r) > 0 for 0 < r £ a. We now use (2.14) and (2.16) to evaluate
the integral of rφ(r)β(r) two ways. After some manipulations we
arrive at
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a φ ( a ) β \ a ) = Zau\a)φ(a)(φ'(a)Y _ [ a

d

J \ a ) J \ a ) J o J \ τ )

But φ(a) ^ 0 and βf(a) ^ 0 so the left hand side is nonnegative.
However, our assumptions also imply that the right hand side is
negative, a contradiction. Therefore Γ is a regular curve, defined
by a function β(r), 0 < r ^ α0.

As is well known, e(r), is tangent to each profile curve at con-
tact. It follows that e'(r) > 0, 0 < r < α0 and that e'(α0) = 0.

Finally we wish to show that limit e\r) = + w as r->0. For
large tc, let u(r, tc) be a profile curve with a vertical tangent at
(ru uλ). The associated slope function v(r, tc) is convex up on [0, r j
with vr(0, Λ:) = tc. Therefore v(r, tc) < tcr. This result, along with
the estimate of Theorem 2.2c imply that 1/κ < n < II ic + 0(1/tc*).
Let r(ιc) be the first zero of φ(r, tc), 0 < r(ιc) < rλ. We shall show
that v[r(tc), tc] —> 1 as tc —> + oo.

To do this we normalize each curve by setting U — ten and
ϋί = £r, thus obtaining U(R, tc) = tcu(Rjtc, tc) and F(i?, /c) = v(R//c, tc).
If follows that V(i?, yc) is increasing convex up, on the interval
[0, ΛJ with F(0, /c) - 0, VB(0, tc) = 1, V(Rlf tc) = 1 where 1 < Rx(κ)<
1 + 0(l//c2). A direct calculation reveals that

(RVB)B + (R/tc2W - 1/R)V = 0, W = (1 - Γ2)1/2 .

This equation yields an integral identity of the form (2.10).

(2.17) λ[R1V\Rι)Y + -

Using the style of proof in Lemma 2.6 we may use (2.17) to show
that if tc± > tc2, then V(R, AΓJ lies to the left of V(R, tc2). From
this it follows that V(R, tc) is a monotonically increasing sequence
of functions which converges uniformly to VJJR) = R on [0, 1].

We now normalize the accessary function φ(rf tc) = uκ(r, tc) by
setting Φ(R, tc) = φ(R/tc, tc). It satisfies the difFerential equation

[RΦR/J% + (R/tc*)Φ = 0, J 2 = 1 + Ul Φ(0) = - 2 ,
( 2 ' 1 8 ) Φ\O) = o .

Let R(tc) be the first zero Φ(R, K). We claim that R(κ) -> 1 as /c —•
+ oo. First, since R(tc) < ^^Λ:) where VtiZ^Λ), tc\ = 1 we conclude
that lim sup 22(JC) ^ 1. Now F(i2, tc) -^ R uniformly on any interval
[0, c] where 0 < c < 1, and since UB = 7/(1 - F2)1/2 it follows that
J\R, tc) -> 1/(1 - i22) uniformly on [0, c].

Since Φ(0, A:) = - 2 and ΦΛ(0, Λ:) = 0 it follows from (2.18) that
Φ(R, tc) ->-2 uniformly on [0, c], 0 < c < 1. Thus liminf #(*) ^ 1.
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It now follows easily that

limit v[r(κ), fc] = limit V[R(tc), tc] = 1 .

3* The limits of stability* We now analyze the stability of
drop formation for each of the three problems discussed in the
introduction. Our method is similar in each case. We start with a
known stable configuration. We imbed this stable drop in a smooth
one parameter of equilibrium configurations. As long as the con-
straint parameter is increasing the drop will remain symmetricly
stable. This principle will be discussed further in § 4.

PROBLEM A. Let r = a be the radius of the circular opening
for the siphon. If u(r, ic) is the profile curve for a drop in equili-
brium, then the pressure at the mouth of the pipette is p(/c) =
~u(a, tc). The considerations of stability are answered by referring
to the first envelope of the family u(r, K), as described in Theorem
2.6.

THEOREM 3.1. ( i ) For pressure equal to zero at the mouth of
the siphon, the solution u(r) = 0 generates a stable configuration if
the radius, a, is less than a0 where a0 is the first zero of the Bessel
function, J0(r). If a > a0 then the flat interface is unstable

(ii) // a < aΌ, then the condition p= — u(a,/c) determines a
one-parameter family of stable configurations, with pressure increas-
ing with tc, until the first envelope, e(r), of the family is met. At
this point p'(tc) = — uκ(a, tc) = 0 and any further increase in tc will
decrease the pressure, creating instability. (Figure 2.)

Proof. Part (i) follows from the discussion in § 4. Part (ii)
follows from Theorem 2.6. The only thing to check is that p'(tc)
changes sign as our one-parameter family passes through the enve-
lope, e(r). But p"(ιc) = —uκκ(a, tc) is not equal to zero when p\tc) =
ψ(a, ic) = 0 since this is the condition that e(r) be differentiate.
Thus when the envelope is crossed, the drop of maximum pressure
for a given radius, a, is produced.

Other immediate consequences of Theorems 2.6 and 3.1 are the
following.

(1) The profile curve for any stable configuration can always
be given nonparametrically, u = u(r).

(2) As the radius, a, of the opening decreases to zero, the
shape of the "largest" stable supported drop appears as a hemis-
phere of radius, a.
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Let (f!, ύ^ be the point of vertical tangency for that unique
profile curve u(r, tc) which has a point of inflection there.

(3) If a < rlf then all stable drops are convex downward.
(4) The first inflection point, βQ, of J0(r) lies to the left of

a0, the first zero of J0(r). If β0 < a < a0, then every profile curve
corresponding to a stable drop contains an inflection point.

PROBLEM B. (Stability until an inflection point appears.) Our
main result here is the following theorem. (Figures 3 and 6.)

THEOREM 3.2. Suppose that 0 < a < π where a is the prescribed
angle of contact of the pendent drop with a horizontal plate,
measured interior to the liquid. For small volumes stable con-
figurations are obtained by choosing profile curves for which the
drop tip u0 is large and negative, and slicing it at the lowest point
where the angle of inclination is a. As uQ increases from — °o
there is generated a smooth one-parameter family of stable drops
with increasing volume until a value u* is reached, for which the
corresponding profile curve has an inflection point at the point of
contact with the horizontal plate. This configuration is stable.
Further stable configurations of greater volume are generated by
decreasing uQ and tracing the corresponding profile curve beyond
its first infiection point to where the angle of inclination is again a.

Proof. We split the proof into three cases; 0 < a < π/2, a —
π/2, π/2 < a < π.

Case 1. 0 < a < π/2. Consider the equation v(r, tc) = v* = sin a
where 0 < v* < 1. By continuity, there is a unique positive value
tc* such that the slope function v(r, tc*) has v* as its first positive
maximum, say v(r*, Λ:*) = v* and vr(r*, /r*) = 0. By Lemma 2.6, if
K > Λ;*, then v{r, tc) increases to a point above v* while if tz < Λ;*,
v{r, Λ:*) < v*.

Our one-parameter family, determined by the equation v(r, κ) =
v*, will be smooth if grad v = (vr, vκ) Φ (0, 0) along the solution set.
The following lemma will show that when an inflection point first
appears, with tc — tc*, r — r*, and vr(r*, tc*) = 0, then vκ(r*f tc*) Φ 0.

LEMMA 3.1. Let v(r) = v(r, tc*) be a solution to (2.6a) with
v(0) = 0, v\O) = tc and set h(r) = vκ(r, tc*). Suppose that v\r) > 0
for 0 < r < r* and that either v(r*) = 1 or v(r*) < 1 and v\r*) = 0.
Then h(r) > 0 for 0 < r < r* and if v(r*) < 1 then h(r*) > 0,
h'(r*) < 0. Finally, the first positive zero of h(r) will occur to the
left of the first positive zero of v{r).
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Proof, We have that h{r) = h(r, £*) is a solution to (2.9b)
satisfying h(0) = 0, h'(0) = 1. It follows from Lemma 2.6 that
h(r) ^ 0 for 0 < r < r*. Since h{r) is a nontrivial solution to the
linear differential equation, (2.9b), it follows that if h(r) = 0 then
h\r) Φ 0. We can conclude that h(r) > 0 for 0 < r < r*. Now we
show that if v(r*) < 1, v\r*) = 0, then h(r*) > 0. Differentiate the
integral identity (2.10a) with respect to /c, remembering that
v'(r*) = 0, to obtain

v(r*)h(r*)[l - {r*fjW~\ + [\2rvh/W)dr = 0, W = (1 - vψ2 .
Jo

Since v(r) and h(r) are positive on (0, r*) the integral is positive.
Therefore fe(r*) Φ 0 and so must be positive.

To see that h'(r)* < 0, we multiply (2.6a) by h(r), multiply
(2.9b) by v(r), integrate and arrive at the identity

(3.1) r[v'h - vti]lzΐ -

The integral is positive, v'(r*) = 0, v(r*) > 0, implying that
A'(r*)<0.

Finally, let b be the first positive zero of v(r). Suppose h(r) >
0 for 0 < r < b with h(b) ^ 0, vib) = 0, v'(b) < 0 and v(r) > 0 for
0 < r < b. The integral in (3.1) would then be positive while the
left hand side is not, proving the lemma.

We continue with the proof of Theorem 3.2. For κΛ > /c* our
one-parameter family consists of those curve segments v(r, /cL), 0 <J
r ^ rx which are increasing on [0, rx] with v(rlf /O = v* and vr(rL,
/cλ) > 0. The volume of the drop generated by this segment is
given by (2.13), T = V/π = r(v — rv'). For /c > /r:<, the equation
v(r, it) = v* determines r as a function of K with dr/dfc = —vκ/vr =
-h/v'

dT/dfc = (dr/dfc)(v - rv') - rd{rvr)jdtc .

Now drjdtc = —h/v' < 0 by Lemma 3.1 and d(rv')/d/c ̂  0 by Lemma
2.6. Therefore dT/d/c < 0, for κ> K*.

At the point of inflection, tc cannot be used as a parameter
since vr — 0, but h = vκΦθ implying that r may be used as a para-
meter with fc\r) — —v'/h. At the point of inflection fc — ιc*, r — r*,
vr(r*, Λ:*) = 0 and so /c'(r*) = 0. It follows, using (2.6a) that T\r) =
r2v/W at r = r*. Therefore Γ'(r*) > 0. By continuity Γ'(r) will be
positive in some interval about r — r*, implying stability beyond
the appearance of an inflection point in the profile curve.
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The stability of small drops will be dealt with in § IV.

Case 2. a = π/2. Since the differential equation for v(r, tc)
breaks down when v = 1, we shall work with the parametric repre-
sentation of the profile curves (2.2). We need the following lemmas.

LEMMA 3.2. There is a /c* > 0 such that the corresponding
profile curve has its first vertical tangent at an inflection point.
Thus there is an s*>0 so that ψs(s, κ*)>0 for 0 < | s < s * , φ(s*9 κ*) =
π/2 and φ£s*9 K*) = 0.

If tc > tc* then ψ(s, tc) increases to a value greater than π/2.
If tcx > tc2 ̂  tc*, then ψ(s, tcλ) lies to the left of ψ(s, tc2) for 0 <

Ψ ^ 7r/2, and if ψ(sl9 tcλ) = ψ(s2, tc2) = Ψ where 0 < ψ <; π/2, then
φi9 tc,) < r(s2, tc2) and (rψa)(sl9 tc,) > (rψa)(s2, /c2).

Proof. The existence of /c* and the corresponding profile curve
follows from Theorem 2.5. The rest of the lemma is a restatement
of Lemma 2.6 for if κx > κ2 and ψ(slf κ±) = ψ(s2, κ2) then r(sl9 κλ) <
^fe, ^2), (.rψsXSί, /Γi) > (rψ8)(s29 κ2) by Lemma 2.6. This means that
dsjdilr < ds2/dψ implying that i/r(s, /ŝ ) lies to the left of ψ(s, /r2).

LEMMA 3.3. Let ιcι ^ Λ;* 6β chosen so that ψ(s9 fc±) is increasing
for 0 ^ 8 ^ sx where ψ(sl9 fc±) = π/2 and ψ8(sl9 κ±) ^ 0. Let ω(s) =
^«(s, 1̂) α^ώ /θ(s) = rff(s, AΓi). Then p(s) < 0 /or 0 < s ^ sx αwcϋ ω(s)>
0 /07* 0 < s < slβ Furthermore if κ1 = tc*, and st = s* ί/^e^ α>(s*)>
0 as well.

Proof. By Lemma 3.2, ψ(s9 tc) lies to the left of ψ(s, tc^ if tc >
£i, which shows that α)(s) ^ 0 for 0 <̂  s ^ sx. Now α>(0) = 0, ω'(0) =
1, so α>(s) is initially positive. We integrate (2.7a) to obtain

co(σ9 tct) sin ψ(σ9 tc^dσ
0

from which it follows that p(s9 tcλ) < 0 for 0 < s <̂  sλ.
We next show that ω(s) > 0 for 0 < s < sx. If not, there is a

smallest positive value, s, 0 < s < sx with α>(s) = α>'(s) = 0. The
equation ψ(s, tc) = α/r(s, /cj = ^ determines s as a function of Λ:, with
s'(tc) = -ω/fs.

By Lemma 3.2 we conclude that d(rψs)/dtc ^ 0, (^ = 'f, fixed).
But recall that dr/dtc (ψ fixed) is negative, for if ψ is fixed then
so is v = sinψ and then dr/dtc = —vjvr = — fe/t;' < 0 by Lemma 3.1.
If follows that d(ψs)/dtc is positive. However, a direct calculation
yields

dψs/dtc = ψss(
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If ω(s) = ω'(s) = 0 then dψjdtc — 0, a contradiction. Finally, we

wish to show that if κx = £*, then α)(s*) Ξ α)(β*, £*) > 0. Take the

integral identity (2.11) and differentiate with respect to tc. Recall-

ing that φβ(8*, A:*) - 0, cos ψ(s*9 ιc*) = 0 we find that

[4rα> sin α/r cos ψ* — 2,o cos2

The integral is positive, hence ω(s*) > 0.

Proof of Theorem 3.2, Case 2. The proof proceeds as in Case
1. If tc > K* then the curve ψ(s, tc) intersects ψ = 7r/2 with ψs

positive. Thus the equation ψ(s, tc) = ττ/2 allows us to use tc as
parameter. We write

T = (Volume)/7Γ = r(sin ^ — rψr)

and we are to show dT/dκ < 0. We find dT/dtc = (<Zr/cZ*s;)[sin ̂  —
rψ '] — rd(rψ')/dκ, where we differentiate with respect to tc holding
ψ fixed. By Lemma 3.2 we have d(rψs)/dκ ^ 0. Furthermore
dr/d/c = (rs)s\/c) + rκ = (cos ψ)s'(tc) + p = p when ψ = 7r/2. Therefore,
by Lemma 3.3 dr/dyc < 0 showing that dT/dfc < 0 for K > Λ;*.

When the point of inflection appears we have ψ(s*, Λ:*) — π/2,
ψs(s*, Λ;*) = 0, and α>(β*, /c*) = f Λ(s*, Λ;*) > 0. As in Case 1 this
means that tc is not a differentiable parameter, but s is. We easily
compute that tc'(s) = -ψjω so that ιc'(s*) = 0. We set T = V/π
and use (2.12) to find

dT/ds = 2(dr/ds)(ru + sin^) + r\du/ds) .

But dr/ds = (cos^) + ps\tc) and du/ds = s in^ + VS'(Λ ); SO at s = s*
ψ = π/2 we see that dr/ds — 0 and du/ds = 1. This means that
dT/ds — r2 > 0 implying that the drop is stable when the point of
inflection appears.

Case 3. π/2 < a < π. For /c large a profile curve will have a
bulge (ψ = τr/2) at a point (rx, wj. The radius r will then decrease
to a value r2 < rί where a neck forms. Between r2 and rx, ψ > π/2.
From the tip of the profile to (rly ux) the slope function v(r) is a
solution to (2.6a) with v(0) = 0, v'(0) = Λ: and satisfying i '(r) > 0
for 0 < r < n with v(rt) = 1. For a bulge to exist at (rlf Uj) it is
also necessary that v'(rx) > 0.

Between the bulge and the neck the slope function w{r) is a
solution to (2.6b) on the interval r2 < r < rx and satisfying w(r2) =
w(rx) = 1, ^'(n) - v'(n) > 0.
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LEMMA 3.4. Let w(r, ιc), r2 ^ r ^ rt be the slope function for a
profile curve between the neck and bulge. Then w"(r) > 0 for r2 <
r < rίf w(r, ic) has a positive minimum wm(κ) which approaches
zero as K —> + °°.

Proof. If we differentiate (2.4), (rw)' + ru = 0, and solve for
w"(r), we obtain w" = -u' + [(w - rw')/r2]. But % ' < 0 a s f > τr/2
and w — rw'>0 by the volume formula (2.13), showing that w"(r)>0.

At the unique minimum for w(r) at r, r2 < r < rx we have

W\Ψ) = 0, w"(r) > 0. By substitution into (2.6b) we find that w(r) > 0.
By applying the integral identity (2.10b) for the slope function

v(r, it) between 0 and rlf we find

r\v)(v/W)dv - 1/2 .

As /c -» + oo, r(v) =* 0 showing that r^^rx) -»1 as tc —> + oo.
Now take the integral formula which corresponds to (2.10a) for

w{r) and integrate between r and rx. So w\r) — 0, w(rj = 1,
W(r,) = (1 - w\rύ)m = 0. We find

(3.2) — [nw'fo)]2 = f^TFίr) + Γ_X2rW(r)dr + (1 - wψ))/2 .

But as /c-> +oo, r.w'ir,) -»1, n ~> 0, and 0 ^ T7(r) ^ 1. It follows
that w(r) -> 0.

As in Case 1 we shall set h(r, ic) — wκ(r, έ).

LEMMA 3.5. Let w(r, κt)9 r2^ r ^ r1 be the slope function of
a profile curve between the neck and bulge, with its positive mini-
mum at r. Set w(r) = w(r, /c^ and h(r) = wκ(r, A^). Then h\r) > 0
for r2 < r < rt and h{r) vanishes at a point c where f < c.

Proof. Take the integral identity (3.2) with lower limit r{κύ
and upper limit n(^i), differentiate with respect to K to obtain

+ (r2w(r)h(r)/W(f))

( 3 * 3 ) + 2[!(rwh/W)dr = -w(r)h{r) .

We first note that fe(rx) > 0. To see this we compute h(rlf κt) in
parametric coordinates. Let the corresponding s coordinate be sίf

so that rx = r(su tc^). A direct computation yields h(ru tc^ = —pψs +
ω cos ψ where the right hand side is evaluated at (sl9 κλ) and where
p = rκt ω = ψκ as defined in (2.7). At a bulge ψs > 0 and ψ — τr/2.



THE STABILITY OF THE AXIALLY SYMMETRIC PENDENT DROP 443

But by Lemma 3.3 p < 0 and so h(ru /cx) — hfa) > 0.
Suppose that h(r)>0 for f<r<ri. By Lemma 2.6 dir^'ir^/d/e^O

and r1w
f(r1)>0. It follows that the left hand side of (3.3) is positive,

hence h{f) would be negative. Therefore h(r) vanishes at a point
c, f < c < rlf with h(r) positive for r > c.

Since h(r) is a solution to the linear differential equation (2.9c)
with h(c) — 0 and h{r) positive for r > c, it follows that h\c) > 0.
Now it follows from (2.9c) that {rhf)f is positive for r > c and so
rti is increasing. Thus h\r) > 0 for r ^ c.

Finally, we claim that h\r) > 0 for r < c as well. If not then
there would exist an r3 < r with h(r3) < 0, fc'(r8) = 0, λ'f(r8) ^ 0; an
impossibility by (2.9c).

We are now in a position to prove the following extension of
Lemma 2.6.

LEMMA 3.6. Let w{r) = w(r, tct) be a solution to (2.6b) on the
interval r2 < r < rx where w(r2) = w(r^) = 1. As w Lemma 3.5
suppose w\f) — 0 α?ιd Zeί /t(c) = 0 where r < c < rx. Lei ΐί; δβ chosen
so that w(c) ^ $ < 1. ΪTfcβw d{rwf)\dκ with w(r, K) — w is positive
at fc — /Cχ

Proof. Between r and ru w\r) = wr(r9 /rt) > 0 and the equation
w(r, fc) = w determines r in terms of K with r = r(fcι). Take the
integral identity for solutions to (2.6b) analoguous to (2.10b) inte-
grated between w and 1, and differentiate with respect to tz ob-
taining

rw\r)d[rw\r)]jdιc = r

-[jir(dr/dκ)(v/W)dυ .
Jw

But w < w < 1 means that c < r < rx and so dr/ώΛ: = —h/wr < 0.
But by Lemma 2.6 we have dfaw'ίr^ydic ^ 0 and so d[rw'(r)]/dtc>0.

LEMMA 3.7. Let w(r, K) be the solution to (2.6b) on rz(κ) < r <
r^/r) tί iίfc w(r2) = w(r±) = 1, α^d which attains its positive minimum
at r(tc). Then r\tc) < 0 and d[w(r(κ), κ)]jdκ < 0.

Proof. r(tc) is determined by the equation wr(r, tc) = 0. Since
wrr(r, K) > 0 it follows that r(έ) is differentiate with F'(/c) =
-A'(f)/t0"(f)<O, as V(r)>0 by Lemma 3.5. But then w\κ) =

wr = 0 + h(f) < 0.

Proof of Theorem 3.2, Case 3. For π/2 < a < TΓ we have 0 <
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w = sinα < 1. The slope function w(r, tc), rx{tc) < r < r2(tc) has a
minimum wm(tc) which decreases to 0 as tc —> + °°. Thus there is a
unique £* such that w(r, £*) touches the line w = w at a point r*
with wr(r*, Λ*) = 0.

If A: > £* then w(r, £*) will cut the curve w — w twice at
values rt(ιc) < α(/c) < b(tc) < r^/c). Initially, the small drops will
contain no inflection points which corresponds to the profile curve
generated by w(r, tc) from b(tc) to r^tc) where the bulge is, and then
continuing to the drop tip. As before we set T = (Volume)/ττ =
r(w — rw') > 0.

As long as w\r) Φ 0 we may use tc as the parameter. We now
show that dT/dfc < 0 for tc > tc*. For large K we have wκ(b(fc), fc) =
h(b) > 0. In this case we have db/d/c = —h(b)/w'(b) < 0. Now
dT/dtc = (db/d/c)(w - rw') - b(ιc)d(rw')/dκ. By Lemma 3.6, d(rw')/dιc
is positive when h is positive. Thus in this case dT/dκ < 0.

Now suppose that wr[b(/c), tc] = w\b) > 0 but that h(b) ̂  0, as
will be the case for smaller tc > £*. A direct calculation, making
use of (2.6b) yields

dT/dic - (-r2wjW)(~h/wr) + r(h - rh'), W = (1 - w2)1/2

Under present conditions, we see that dT/d/c < 0.
At tc = £*, wr(r*, /c*) = 0 so that /c is no longer an admissible

parameter for the family. However, wκ(r*9 ic*) = h(r*) < 0 implying
that we may solve for tc = ιc(r) in a neighborhood of r = r*. In
this case we obtain /c'(r) = —w\r)Jh(r) and in particular Λ;'(r*) = 0.
Now compute T'{r) when r = r*. With the aid of (2.6b) and the
fact that κ\r*) = 0 we obtain T\r) = -r2w(r)/W(r) at r = r*.
Hence Γ'(r*) < 0 and the configurations are stable in some interval
about r = r*.

For the case when the angle of contact a = 0, the process of
drop formation is altered. The following theorem covers this case.

THEOREM 3.3. If a = 0, drop formation proceeds by considering
the set of profile curves u(r, έ), tc > 0, and for 0 < r < r(tc) where
ur[r(ιc), tc] = 0. As tc increases from 0, the volume will also increase
until a maximum volume is attained. This point will be reached
before the profile curves develop a vertical tangent, and dr/dtc is
negative.

Proof. For small tc, u(r, tc) = —2/cJ0(r) so r(tc)-+βQ the first
positive zero of Jλ(r) — Jo(r) as tc —> 0. In § IV we will show that
these configurations are stable.
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If u(r9 /c) does not attain a vertical tangent, then by Lemma
2.1, the second critical point for v(rf /c) occurs when v is negative.
Therefore, if v(rlf /c±) = 0 where rx is the first positive zero of
v(r, tc) we will have vr(r, ic) < 0. This implies that v(r, /c) = 0 may-
be solved differentiably for r(/c) with dr/d/c = —h(r)/v'(r).

IfT = (Volume)/;:, then a direct calculation yields that dT/d/c=
r(h — rh') where v = 0 is fixed. By Lemma 3.1, the first positive
zero for h(r) occurs to the left of the first positive zero of v(r).
Also, as K -» 0, v{r) and h{r) coalesce. It follows that for small /c,
dT/d/c is positive and dr/d/c is negative.

Furthermore, for small /c, h(r) and h\r) are both negative at
r(κ). If for some /cx > 0 we have dr/d/c = 0 it would mean that
h[r{tcd\ = 0. This would mean that r(/c^) is the second positive zero
for h(r, /Cx). Since h(r) satisfies the linear D. E. (2.9b) we must
have h'ir^)] > 0. This means that dT/d/c < 0. Therefore, as long
as dT/d/c > 0 we must have dr/d/c < 0.

Finally, it will follow from Theorem 3.8 that by the time a
profile curve with a vertical tangent is reached, a maximum volume
will have been attained.

PROBLEM C. (Stability through bulge and neck.) Consider a
tube with a circular opening of radius, r0, starting with the solu-
tion u == 0 and exposed volume zero. If the family of profile curves
is written in the parametric form (2.2) then the equation r(s, /c) = r{

determines the family of profile curves. From this it follows that
/c may be used as the parameter unless rs — cosψ = 0, (i.e., the
profile curve has a vertical tangent).

Recall that there is a unique ΰ0 = —2ic0 such that the corres-
ponding profile curve has a vertical tangent at a point (fl9 ΰ^
where r^i — —1, ^i =• 9176, which is also an inflection point on
the curve.

As we shall see, if r0 < r1 then stable configurations with bulges
will always occur, while if r0 is substantially larger than r1 then
all stable configurations may be expressed nonparametricly, u =

0

THEOREM 3.4. Consider the one-parameter family u(r, /c) of
profile curves satisfying (2.3). Let V(r0, /c) denote the exposed volume
determined by the profile curve u(r, /c), 0 <; r ^ r0.

(a) Vκ(r0, 0) is positive for 0 < r0 < 7 where 7 is the smallest
positive solution to rJ0(r) + 2J0'(r) = 0.

(b) // r0 < 7, then Vκ(rQ, κ)> K ̂  0 will remain positive until
after an inflection point appears on the profile curves. (Figure 4.)
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Proof, By (2.13) T = (Volume)/ττ = r(v — rv'). Since r = r0 we
find that dT/dtc = r(Λ- — r&') where h(r) is a solution to (2.9b). For
a fixed Λ:, dT/d/c is a function of r. A direct calculation using
(2.9b) yields (dT/dtc)r = r2h/W* where W = (1 - v2)172. Since Λ(0) = 0,
fe'(O) = 1 we see that dT/dtc is positive at least as long as h(r) is.
But by Lemma 3.1, the first positive zero of h(r) occurs after the
first positive zero of v\r), proving (b).

If tc = 0, then W = 1, h(r) = Jx{r) and the condition dT/dtc = 0
reduces to J^r) — rJ'(r) — 0. This is equivalent to the stated con-
dition in (a).

REMARKS. It will be shown in § 4 that due to nonsymmetric
perturbations an axially symmetric pendent drop (other than u = 0)
whose profile curve contains a horizontal tangent away from the
axis cannot be stable for Problem C. This has the following impli-
cations. (See also [13].)

(1) If tc is small, then u(r, ic) = —2tcJ0(r). By Theorem 3.4,
this will determine a drop stable with respect to symmetric per-
turbations if r0 < r{tc) where r{tc) is the first positive root of h — rh',
with limit r{κ) = 7 as tc —> 0. For nonsymmetric perturbations, the
limit [of stability is determined by the condition ur(r, tc) = 0 with
solution r(ιc). Limit r(tc) as tc-^O is β1 where Jx(βύ = Ji(βι) = 0.
It is easy to check that βλ < 7 which shows that for r0 > βu the
nonsymmetric perturbations govern stability.

(2) Suppose we choose r0 slightly smaller than βλ. Then u ==
0, 0 <̂  r ^ r0 is initially stable and as we increase tc the volume
will increase (indicating symmetric stability). In this case, the
drop configuration will become unstable, not when the volume ceases
to increase, but rather when ur(r0, tc) = 0 for some positive tc.

THEOREM 3.5. Suppose r0 < r1 where (fu ΰx) are the coordinates
of the simultaneous inflection point and vertical tangent for the
profile curve u(r, £0)

As tc increases from 0, the profile curves determine a one-para-
meter family of stable drops until a values tcx is reached, at which
point the profile curve develops a vertical tangent at r = r0. This
configuration is stable,

A further one-parameter family of stable drops with increasing
volume is generated by decreasing tc, with the drop profile having
a bulge whose radius exceeds r0.

At a point tc2f 0 < tc2 < tcu the bulging drop profile will again
develop a vertioal tangent at the opening, forming a neck. This
configuration remains stable. Further stable drops are now formed
by once again increasing tc. The resulting drops possess both a



THE STABILITY OF THE AXIALLY SYMMETRIC PENDENT DROP 447

neck and a bulge.
Finally if r0 = r1 the drops u(r, tc), 0 ^ r ^ r0, 0 <Ξ| tc <̂  icx are

stable. In this case, further stable drops of greater volume are
generated by increasing tc beyond κλ. The resulting drop will pos-
sess both a bulge and a neck, although the radius of the bulge will
be small than r0. (Figures 4 and 5.)

Proof. Let r0 <* flβ By Theorem 2.5, there will be a smallest
positive value ιc1 such that the profile curve u{r, tcx) will attain a
vertical tangent when r = r0. For 0 < tc < κx the slope functions
v(r, tc) satisfying (2.6a) will be increasing on the interval 0 <̂  r <̂  r0,
(for any tc, the first root of vr(r, tc) = 0 will be greater than rx).
It follows that none of the curves u(r, tc), 0 ^ r ^ r0 where tc < κx

has an inflection point on the interval. Thus by Theorem 3.4, the
volume increases with tc and all profile curves define stable drops
unti l tc = tcγ.

At K — κlf we express the profile curve parametricly using
(2.2), with ψ(sl9 Kj) = π/2. The constraint is r(s, tc) = r0. Since
rs(slf tCj) — cos ̂ i = 0, tc is not an admissible parameter, but by
Lemma 3.3 p(sλ) = rκ(sl9 κx) < 0 showing that s is an admissible
parameter for the family at the point of vertical tangency.

We have tc'(s) = —rs/rκ = — cos ψ/p(s). Thus when s — slf tc — tcx

and κ\8χ) = 0, we may write T(s) = (Volume)/τz: = ro(smψ — roψ\s)),
and find that T'fo) = -ψ^Mrl = r\ > 0, as ^"(s) = ~1 whenever
ψ = 7Γ/2.

If r0 < fi then ^ ( s j > 0 where ψ(slf tcλ) = π/2. It follows that
tc\s) will change sign as s increases through s1# Thus stable drops
of larger volume are generated by decreasing tc. On the other hand
if r0 = Ψx then ψs{sx) = 0, ^(s^ ΛΓX) = ττ/2. In this case a direct
calculation shows that ιc"(βύ — 0, £"(sΊ) = —l/pisj) > 0. Thus as s
increases through su tc will continue to increase as stable drops of
larger volume are formed.

For r0 < rl9 once past the vertical tangent our stable drops
will have a bulge. Between the neck and the bulge π/2 < ψ < π
so once again we may use tc as parameter. The slope function
w(r, tc) = sin^ satisfies (2.6b) for r2 < r < r1 where w(r2) — w(rx) = 1.
Its properties were discussed in Lemmas 3.4-3.7. If r0 e (r2, rx) then
T(£) = ro[i(; — row'], which implies that dT/d/c = ro|> — rofe']. We
claim that dT/d/c < 0 if r2 < r0 < n.

A direct calculation, using (3.5) shows (dT/d/c)r = — r2/*yγF3 where
W = (1 - w2)172. Since A'(r) > 0 for all r by Lemma 3.5, it follows
that dT/dtc has a maximum at r = c where h(c) = 0. But for r = c,
dT/dtc = -c2h'(c) < 0. Therefore, dΓ/d* < 0 between the neck and
the bulge implying that the drops remain stable.
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Finally we show that as the neck forms, the drop still remains
stable. Once again ^ = π/2 so K cannot be used as parameter. We
wish to use s as parameter. Let ψ(s9, tc2) — π/2, r(s2, κ2) = r2 so we
need to solve r(s, ic) — r2. This determines tc = tc(s) at s = s2 if
rjβ2> &ύ — p(s2) ^ 0, in which case tc'(s) = — cos ψ/p(s).

To show that p(s2) ^ 0 we compute h(r, κ2) = wκ(r, /c2) in terms
of s and κ2. Since w~smψ it follows that h(r, tc) = (cosψ)(ψss'(/c) +
ψv) where r(s, /c) = constant implies that S'(Λ ) = — p/cosψ. We find
that

h(r, κ2) = - |θ(8, £ 2 )^ s (s, £2) + (cos ^)α)(β, /c2)

where r = r(β, /c2), ^(s, A:) = r^s, /c), and ω(s, /c) = ψ»c(β, /c). As s-^s2,
ψ->π/2 and we get fe(r2, A:2) = —p(s2f fc2)ψ8(s2, κ2). But as r-^r2 from
the right, &(r, Λ:2) is negative and decreasing. Hence h(r2, κ2) < 0.
It follows that ψs(s2, tc2) > 0 (we're at the neck) and p(s2f κ2) > 0.

We may use s as a parameter when s = s2, ψ = π/2. Repeating
our calculations at the bulge we get T'(s2) = r\ > 0 and the drop
remains stable.

PROBLEMS B AND C. (Monotonicity of Drop Height.) We now
prove the remaining assertions concerning drop formation as stated
in the introduction. In particular, we show that drop height
increases monotonically with volume as long as the drops are stable.
We first prove the following lemma.

LEMMA 3.8. For ic > 0 let (r(s, ic), u(s, ic), φ(s, ic)) be a solution
to (2.2) with its derivative with respect to /c, (p(s, ic), v(s, R), ω{st ic))
a solution to (2.7), and let sm > 0 be the first positive zero of
ψs(s, ϋ) with ψm = ψ(8m, ic), 0 < ψm < 7Γ. The following are true.

(a) ^ S 8 < 0 if either 0 < s <> sm or ψ(s, ic) ̂  π/2.
(b) // 0 < ψ < ψm, then d(ψ8)/dtc > 0, (ψ fixed).
(c) ω(s, ic) > 0 for 0 < s ^ sm.

Proof. By differentiating (2.2c) one obtains ψss — [cos ψ{ru +
2 sin ψ)/r2] - sin ψ < 0 when ψ ^ π/2. For 0 < ψ < π/2, 0 < s < sm,
ψa(s, ic) > 0, we recall that ψs(s, ic)~vr(r, ic) where r = r(s, ic), which
implies that ψss = (cos ψ)vrr. However, by Lemma 2.2 vrr < 0 and
(a) follows.

From Lemmas 3.2 and 3.3 we can conclude that if 0 < ψ <= π/2
and ψ < ψm then d(rψs)/d/c ^ 0, dr/dtc < 0 where ψ = ψ is fixed.
We conclude (b) if 0 < ψ ^ π/2.

If ψ (and hence ψm) > π/2 we appeal to Lemmas 3.4-3.7. We
have w(r, £) = sin ψ(s, ic), h(r, ic) = wκ(r, ic), and there are values
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r < c < r1 where wr(r, £) = 0, w(r, ϋ) = sin ψmf h(c, ϋ) = 0, and
hr(r9 ϋ) > 0 on the interval. Let sin ψc = w(c9 ϋ). It follows
from Lemma 3.6 that if ψ < ψc then d(rψs)/dtc > 0 and dr/d/c <̂  0
proving (b) in this case. On the other hand if ψ > ψc we compute
directly

dψjd/c — d(wr)/dtc = wrr( — h/wr) + hr

which is positive, proving (b).
The situation is now similar to that of Lemmas 2.6 and 3.2. In

particular, (b) allows us to conclude that for /c > R, the graphs of
the functions ψ(s, tc) lie to the left of ψ(s, K) and at a given level,
ψ = φ, possess a greater slope. It follows that ω(s, a) = φκ(s, ic)^Q
for 0 ^ s <̂  sm. By repeating the argument in Lemma 3.3 we have
that co(s, ϋ) > 0 for 0 < s < sm.

Finally, if ψm = π/2 then ω(sm, ϋ) > 0 by Lemma 3.3. Otherwise
we use the identity

h(r, K) = — ^ s + o) cos ψ̂  .

If ψs = 0, f w < π /2 then h > 0 by Lemma 3.1 while if ^ s = 0, ψm >
π/2 then h < 0 by Lemma 3.5. In either case we conclude that

<*>(sm, a) > o.

THEOREM 3.6. Lei 0 < a < π cm<2 consider the one-parameter
family of pendent drops as described in Theorem 3.2. The follow-
ing are true.

(a) Drop height increases monotonically with volume through-
out the range of stability. (In fact, drop height is a differentiable
parameter for the entire family of stable drops.)

(b) The area of contact of the drop with the horizontal plate
initially increases with volume, but will start to decrease before
the maximum volume configuration is reached.

(c) The profile curve of a stable pendent drop never contains
more than one inflection point.

Proof. Step 1. Monotonicity of drop height, H, through the
appearance of an inflection point on the profile curve.

Let ψ(s, κ)9 R > 0 satisfy ψs > 0 for 0 ^ s < sm and ψs(sm ϋ) =
0, ψ(βm9 it) = ψm. Let 0 < a < ψm and suppose a = ψ(s, ϊc) where
0 < s < sm. We have, using (2.2b),

(3.4) H(a, K) = \a(smψ/ψ9)dψ .
Jo

Since ψs > 0, s is regarded as a function of (ψ, ic) with ψs(ψ, fc) =
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ψs[s(γ, tc), tc]. This leads to

dH/dtc(ψ = a fixed) = \ ( — sm ψ/fi)(dψjdtc)dψ
Jo

which, by Lemma 3.8, is negative.
At the point of inflection ψs(sm, it) = 0, ψ(sm, it) — ̂ m = a. By

Lemma 3.8 ω(sm, it) = ψκ(sm, ϋ) > 0 so that s is a differetiable para-
meter for the family. Starting from H = u — u0 — u + 2κ, one
finds that dH/ds(ψ = a fixed) = (sinα) + (uκ + 2)tc\s). But at s — sm,
κ'(sm) — —ψj(ϋ — 0 and so dH/ds = sinα > 0, proving Step 1.

Step 2. Beyond the first inflection point, a Ξ> π/2.
Let (s, ί) with α/r(s, yr) = α define a member of our one-parameter

family after the first inflection point has appeared. Thus ψ(s, it),
0 ^ s ^s, ic > 0 increases to a maximum greater than a and, by
Lemma 3.8, ψ88 < 0 for 0 < s <̂  s. It follows that no profile curve
of our one-parameter family can contain a second inflection point,
so (c) is automatically true in this case.

Since ψ£s, it) < 0 we use tc as parameter. For a > π/2 we
compute dr/dtc using the nonparametric equations. We find dr/dtc
(v — sin a fixed) = —h/vr. By Lemma 3.5 we find that h < 0,
vr < 0 and so dτ\dκ < 0. If a — π/2 we compute dr/dtc using the
parametric form

dr/dtc(ψ = π/2) = — (α> cos ψ + ρψs)/ψs

Now the expression in parentheses is just h(r, tc) written para-
metrically, and by Lemma 3.5 the limiting value of h(r, tc) as a —>
π/2 is negative (were at the neck). Thus dr/dtc < 0 in this case
also. This proves (b) for a > π/2.

Moreover, if we set T = (Volume)/ττ we find from (2.12) that

(3.5) dT/d/c(ψ = a) = 2(dr/d/c)(ru + sin a) + r2[(dH/dtc) - 2]

observing that since H = u — uQ — u + 2ιc we have dH/d/c — (du/d/c) + 2.
But rn + sinα = —rψs > 0 from (2.2c). Since dr/dtc < 0, it follows
that dH/dtc ̂  2 if dT/dtc ̂  0. This proves (a) for a ^ π/2.

Step 3. Beyond the first inflection point, 0 < a < π/2.
Let the equation ψ(s, ic) = a determine a profile curve with

just one inflection point. Thus ψ(s, it), 0 ^ s ^ s has a single critical
point at s = s1 with ^(β^ it) = 0, ^(s^ Λ;) = ψm> a, and ^β(s, ϋ) < 0
for sx < s <i s.

For a < α/rw < π/2 the profile curve can be expressed nonpara-
metrically u = u(r, ^), 0 ^ r ^ r with the critical point at r = rλ.
We have h(rίf it) > 0 by Lemma 3.1. We show first that if h(r, κ)*>
0 for rx ^ r ^ r then dH/dtc(v fixed) and d V/dtc(v fixed) are both
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positive. Note that dτ/dκ — —h/vr ^ 0. Since H = u + 2/c and T=
V/π — r(v — rv') we find that

dT/dφ fixed) - (r2v/W)(-h/v') + r(ft - rft')

dH/dφ fixed) = (v/W)(-h/v') + (Φ + 2) .

From (3.1) we see that if v' < 0, A ^ 0, and i; > 0, then ft' < 0,
showing that dT/dκ is positive. One also finds using (2.9a) and
(2.9b) that φr(rf R) — h/Wz which is nonnegative. Therefore φ(r, £) +
2 > 0(0, K) + 2 = 0 showing that dH/dtc is also positive. On the
other hand, if ft < 0 then dτ\dκ — — h/vf < 0 and from (3.5) we
conclude that if dT/dtz ̂  0 then dH/dtc ̂  2.

By Lemma 2.5 if ^ m < π/2, the second critical point of v(r, /c)
occurs when v is negative so that as long as ψm < π/2 a second in-
flection point cannot develop on the profile curve.

Now suppose that ψm ^ π/2. Since a < π/2 and our profile
curve is assumed to possess a single inflection point, the profile
curve must contain both a neck and a bulge (or a similtaneous
vertical tangent and inflection point if ψm = π/2). Let the neck
occur at r = rx and let v(r, £), r ^ rx be the slope function for the
profile curve beyond the neck. We assume that vr < 0 for τx < r ^
f where v(r, £) = sin α so that tc is an admissible parameter. At
the neck h(ru ϋ) <£ 0 and A(r, £) < 0 initially for r > rx. We claim
that if the profile curve determines a stable drop out to (r, n) then
A and K must be negative for r1 < r ^ r. To see this we observe
that for any r e (rl9 f] the corresponding profile curve must be
stable for Problem C. This means that dT/d/c(r fixed) = r(ft-rΛ') >
0 for rx < r <£ f. Near r l f this is true by Theorem 3.5, so that hf

is initially negative. But should ft' vanish for some r e (rly r] we
would have ft — rft' < 0 implying instability of our pendent drop
for Problem C and hence also for Problem B. We may now repeat
the previous argument using (3.5). We have dr/dκ = —h/v' < 0 and
so dT/dφ fixed) ^ 0 implies that dH/dic ̂  2.

Finally we must show that when a profile curve develops a
second inflection point, the drop of maximum volume will already
have been formed. Since ψ8S < 0 for ψ ^ π/2 a second inflection
point can only develop at a point beyond the neck with ψ0 < π/2.
This means that the slope function v(r, K), r ^ rι beyond the neck
will satisfy vr(r, ic) ̂  0 for rx < r <> r where v(r-κ) = sinα. Again
we may assume that ft(r, ϋ) and ftr(r, K) are negative for r1< r ^ f
for otherwise the drop is unstable by the previous argument.

At r = f, we have vr(r, K) ̂  0 but ft(r, ^) < 0 which means that
we can use r as parameter of the family. Now tc'(r) — —vr/h ^ 0.
Since K was an increasing parameter for K < it we see that r is a
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decreasing parameter at r = r. Therefore, in order to prove insta-
bility, we need to show that dT/dr(v = sin a) > 0 at r = r.

A direct computation gives

dT/dr(v fixed) - (r*v/W) + r(h - rh')(-v'/h) = G(r, k) .

There is an initial value r2, r1<r2^r with vr(r2, ic) = 0. At this
point G(r2, R) > 0. Now write F(r, R) = h{r, ic)G(r, ic) so that
F{r2, ic) < 0. We must show that F(r, ic) < 0 as well. A direct
computation using (2.6) and (2.9) yields

Fr(r, ic) = (Zrvh/W) + [vf - (v/r)](h - rh')

which is negative for rλ ^ r <; r. It follows that F(r, K) < 0 and
the drop is unstable.

THEOREM 3.7. For Problem G consider the one-parameter family
of pendent drops as described in Theorems 3.4 and 3.5. The follow-
ing are true,

(a) Drop height increases with volume throughout the range of
stability, and may be used as a differentiate parameter for the
entire family of stable drops.

(b) The profile curve of a stable pendent drop contains at
most two points where the tangent line is vertical, (i.e., a stable
pendent drop cannot have a second bulge).

Proof. Case 1. The profile curve can be expressed nonpara-
metrically u = u(r, ic).

Here, tc is an increasing parameter. Let φ(r, ic) = uκ(r, ic) and
let 0 < rx < r2 be the first positive zeros of φ(r, ic). First we show
that dH/dκ(r fixed) is positive for 0 < r ^ r2. As before H = u —
uQ = u + 2/c implying that dH/dtc = φ + 2. But ^(0) = —2 and
φr(r, ic)>0 for 0 < r ^ n by (2.14) showing that dHfdic > 0 for
0 < r ^ rlf while for r1< r ^ r2, ^(r, £) ^ 0 showing that dH/dκ^2.

On the other hand we show that dV/dic < 0 at r = r2. Differ-
entiate the volume formula (2.12) setting T = V/π. One obtains
dT/d/c(r fixed) = r[rφ + 2(cos3 α/r)̂ r]. At r = r2, ^ = 0 and φr < 0
showing that dT/d/c is negative. Thus as long as dT\dκ is positive
we have dH/dfc positive.

Case 2. The profile curve out to the first bulge.
In this case we know that φ(r, ic) vanishes exactly once out to

the first vertical tangent, (see proof of Lemma 2.7). The argument
is as in Case 1, so that dT/dtc > 0 and dH/d/c > 0.

Case 3. At the neck or the bulge.
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Here we must use the parametric equation with arc length as
parameter. By Theorem 3.5 we have that dT/ds (r fixed) is positive
at both the neck and bulge. But dH/ds — ns + (uκ + 2)tc\s), where
^ s = sin^ and tc'(s) = — (co8ψ)/p. It follows that when ψ = τr/2,
dH/ds = 1.

Case 4. Between the neck and the bulge.
Here, as in Theorem 3.5, tc is a decreasing parameter. The

configurations are stable so dT/dtc<0. We are to show that dH/dtc
is negative as well. From Case 1 we have dH/dtc(r fixed) = φ +
2 = 2~(h/r) ~ K using (2.9a). Suppose we have rx< r < r2 where
the neck and bulge occur at rx and r2 respectively. We will show
that the maximum value of dH/dtc on the interval (rl9 r2) is nega-
tive. By differentiation we obtain, using (2.9c), (dH/dtc)r = —h/w3.
By Lemma 3.5 we know that h\r) is positive on the interval so
that (dH/dtc) has its maximum at r = c, when h(c, ic) = 0.

We compute dH/dtc at r = c. Again referring to Lemma 3.5
we find that the profile curve for this situation does not contain an
inflection point, showing that the parametric slope function ψ(s, ic)
satisfies ^s(s, ic) > 0 for 0 <; s ^ s where r(s, ic) — c. Since ψs > 0
we can let ψ be the independent variable, and express the height,
H, as an integral, (3.4).

S ψ
(sin ψ/ψ8)dγ .

0

Here ψ8 is regarded as a function of ψ and tc, and the condition
c — r(s, £) determines s = s(tc) with s'(κ) = — p/cos ψ. The upper
limit of integration is then ψ = f(κ) = ψ[s(i£), ic]. Now h(c, ic) = 0
and h(r, ic) = vκ(r, ic) = (cos ψ)(dψ/d/c) so that dψ/d/c(r = c) = 0 when
tc = ic. We differentiate (3.4).

(sin ψ
0

The first term on the right hand side vanishes when K = ic and by
Lemma 3.8 dψjd/c is positive. It follows that dH/dκ (is negative)
when h(c, ic) = 0.

Case 5. Beyond the neck.
Beyond the neck, the profile curve can again be expressed non-

parametrically u — u(r, ic), r > rγ. It is easy to check that φ(r, ic)
is initially positive when r > rx. This implies that dH/dtc ̂  2 until
Φ(r, ic) vanishes again. As in Case 1, dV/dtc will be negative when
this occurs. Thus as long as dV/d/c > 0 we will have dH/dtc ̂  2.

Case 6. No second bulge.
We need to show that φ(r, ic) = uκ(r, ic) vanishes at least once
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between the neck and second bulge (if such exists). Let the neck
occur at (rl9 ut) on the profile curve while the second bulge is located
at (r2, u2). Letting u be the independent variable we have

(2.6) V{u2) - V(ux) = TΓP r2du

where V(Ui) is the volume of the generated drop below the level
u == ut. Now differentiate (3.6) with respect to /r, holding ut and
u2 fixed. We obtain, recalling (2.12)

2(dr/d/c)(ru + sin ψ) + 2r cos ψ(dψ/d/c)
u2 Γu2

= \ 2r(dr/dtc)du

For r near rx we have dujdκ{r fixed) > 0. This implies that dr/dtc
(u fixed) < 0 for u near ux. If dr/d/c (u fixed) is negative for
Wi < u < w2, then the right hand side of our equation is negative.
However, cosτ/r = 0 at uλ and u2 and r^ + sin ψ = —rψ8. It follows
that the left hand side is nonnegative. Therefore, dr/d/c(u fixed)
vanishes at least once between the neck and the bulge. The same
must be true for φ(r, £). — uκ(r, ^).

PROBLEM B. The Limit of Stability when a = 0.
Consider that profile curve with a single vertical tangent at

(r*, u*) which is simultaneously an inflection point. It follows from
Theorems 2.2 and 2.5 that there is exactly one such curve. The
nonparametric representation u = u(r, Λ:*) is continuous for all r ^
0, differentiable for r Φ r*, and we have r* = .9176, u* = -1.0894,
r*u* = - 1 , Uo* - »2Λ:* ~ -2.5678.

LEMMA 3.9. Let v(r, ιc*) = v(r) be the slope function for the
profile curve just described. Let rx(v)9 0 <Ξ v ^ 1 be the inverse
function for v(r), 0 ^ r ^ r* and let r2(v) be the inverse function
for v(r), r* ^ r ^ a where v(a) — 0. Let (f, v), 0 ^ v < 1, be a
point on the decreasing portion of v{r). We have the following
formula

[fv'(r)]d[rv'(r)]/dκ = 2^ r2(dr2/dtc)(v/W)dv

-2\r1(dr1/dκ)(v/W)dv
Jo

where differentiation is with respect to tc holding v fixed.

Proof. For ιc near Λ:*, tc < /c* the equation v(r, it) — v deter-
mines r = r(/c) with r(/c*) = r. For each K < tz* take the integral
identity (2.10a) from 0 to r(κ), differentiate it with respect to it,
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l e t K —• Λ;* t o g e t

[rv\r)]d[rv'(r)]/d/c = 2[rh(v/W)dr .
Jo

However, by differentiating v(r, tc) = v we get dr/d/c = —Λ/t;' if
v' =£ 0. Then result follows by changing the variable of integration.

Our main assertions pertaining this profile curve will follow
from the following lemma.

LEMMA 3.10. Let v(r) = v(rf ιc*) be as in Lemma 3.8 with
v(r*) = 1, v'(r*) = 0 and let a > r* to be the first positive zero for
v(r). For some c, r* < c < a we will have h(c) — ch'(c) — 0.

Proof. As in the proof of Theorem 3.2, Case II we recall that

dr/dtc = —hjvr = — (cosψ/ψs)ω(s) + ρ(s) if ψ8 Φ 0 (v fixed) .

An application of LΉospitaΓs rule shows that limit (cos ψ/ψ8) = 0
as s->s*. Hence at s = $*, drjdtc = p(s*) < 0 by Lemma 3.3. It
follows that h(r) is continuous across r — r* with h(r*) = 0, h(r)>0
for r < r*, and h(r) < 0 initially if r > r*.

We know that the profile curve determines a stable drop for
Problem C to some point beyond the vertical tangent, (Theorem 3.5).
Therefore, initially for r > r*, dT\dκ — r(h — rhf) is positive,
where T = (Volume)/ττ.

If h\r) = 0 for some r, r < f ^ a and h(r) < 0 as well, then
h — rh' < 0 at r = f proving the lemma in this case.

Now suppose that h(r) < 0 and ti(r) < 0 for r* < r ^ α. We
first show that for some rίf r* < rx< α, d(rv')ldtc(v fixed) = 0.

By Lemma 2.6 we have d(rv')/d/c ^ 0 and dr/d/c < 0 for 0 < r <
r*, which implies that d(v')/d/c > 0 on the same interval. A direct
calculation in terms of the parameter s gives

ψ8d(rψ8)/d/c = r(-ωf88 + f8ω8) + ψs(-ω cosψ + pψ8) .

The right hand side is positive when ψ8 = 0. Since ψ8 = v\r) it
follows that initially for r > r*, d(rv')/d/c < 0.

Suppose that d(rv')/dtc is negative for r * < r < α . Since d(rv')/d/c —
r(dv'/d/c) + (drjdφ' < 0 and dr/d/c = — λ/*>' < 0 it follows that
dv'/d/c < 0 for r* < r < a. However, we also have v\dr\dκ)r =
— dv'jdic. But dv'\dκ and v' are either both positive or both negative.
Thus (dr/d/c)r < 0 when vf Φ 0. However, at the start of the proof
we showed that drjdtc was continuous across r = r* with dr\dκ =
p(s*) < 0. Thus dr/dfc is a negative decreasing function of r for
0 < r ^ a.
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Since r2(v) > rx(v) it follows from (3.7) that (rv')d(rv')/dκ is
negative when r — a, implying that d{rv')\dκ is positive there, con-
tradicting our assumption.

Thus for some rlf r* < rx < a we will have d(rv')/dιc = 0. By
(3.7) this means that the difference of the two integrals when v =
v(r^ is zero. But for rλ < r<a we are still assuming that drjdtc =
—h/v' < 0. It follows that if we set v < v(rt) in (3.7) the expres-
sion becomes negative.

In particular when v — 0 and r = a we find that d{rv')\dκ is
positive. But d{rv')\dκ = -(ft - rh') - rhv"/vf. If v(a) = 0, v'(α) <
0, then t;"(α) > 0 by (2.6a). Since we are assuming h(a) < 0, it
follows that ft(α) — ah'{a) is negative.

We are now in a position to prove the following result.

THEOREM 3.8. Let £* be the parameter value for which the
corresponding profile curve has a vertical tangent and inflection
point at (r*, u*), as in Lemma 3.10. Let c, r* < c < α, where
u\a) = 0, be the first positive root of h — rhr.

( i ) If ro> c then the drop profile u(r, ιc*), 0 <; r <; r0 wϋί 6e
beyond the point of instability for Problem C.

(ii) For Problem B with a = 0 instability will occur before
the drop generated by the profile curve u{r, /c*) is produced.

Proof. At r = c, fr — rti = 0 and h — rh' > 0 for r < c. It is
easy to check that ft — rft' must change sign at r — c. Therefore
dTjdtc (r fixed) = ro(h — roh') < 0 for ro> c initially. This means
that for rQ> c, r0 near c, the configuration is unstable for Problem
C. But this implies that for all r0 > c, the corresponding drop is
unstable for Problem B as well.

If K > 0 is small, then h — rh' will be positive for 0 < r <; a(κ)
where a(/c) is the first positive root of v(r, ic). If tc = £* then we
have r* < c < a(/c*) = a and h — rh' = 0 at <?. Since ft — rft' must
change sign at a zero we can conclude that there is a value κl9 0 <
tcx < Λ;* such that the first root of r — rh' coincides with the first
root of v(r, ιcλ). Referring back to Theorem 3.3, we see that u(r, id)
is the limiting drop for Problem B, a = 0.

4* Analysis of the stability criterion* In this section we
give a justification of the procedure used in § 3 for determining
stable configurations. We shall focus our discussion on the constant
volume, prescribed angle of contact problem.

Denote by Σ the rigid surface to which the pendent drop is
adhering. In our case Σ is the horizontal plane, z = 0. Let A
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denote the liquid-air interface of the drop. We suppose that Σ is
an oriented manifold of class C2 imbedded in R6 and that A is
represented by a regular mapping x: G —> R3 where G is a smooth
bounded domain in R2 with xeC2(G) and dΛczΣ. Let η be the
unit normal on Σ chosen to point into the liquid and f the outward
unit normal on A.

The potential energy, suitably normalized, of the drop is given
by (1.2) which we rewrite

(4.1) E(x) = A{A) + \\\ zdv - \A{ΣΛ)

where λ is a constant determined by the properties of the fluid and
A(ΣA) is the area of contact of the drop with Σ.

Suppose the drop, A, is embedded in a smooth one-parameter
family of surfaces, A(ε) with dA(ε) c Σ described by mappings
x(u, v, ε): G —> Rz satisfying

(4.2) χ(Uy v, ε) = x(u, v) + ε[N(u, v)ζ(u, v) + dxτ(u, v)] + o(ε) .

Here ξ(u, v) is the outward unit normal on A = Λ(0), N{u, v) =
ξ-(dx/dε) at ε = 0 is the normal component of the perturbation and
dxr(u9 v) is the tangential component. We suppose that the varia-
tion is smooth so that N(u, v)eC2(G).

Note. Since x: G —> R" is an embedding of G onto A, there is a
smooth map N: A —> R3 with Noχ = N. For convenience we shall
identify N and N. No confusion should result.

The first variation of the energy is given by

(4.3) dEx(N) = f ί (z - 2H)NdS + j(~X esc a + cot a)Ndσ

Here dS is the element of area on Λ, dσ is the element of arc
length on dA, a is the interior angle of contact of A with Σ along
dA, and H is the mean curvature of A with respect to the outward
normal, ξ, on A. The first variation of the volume is

(4.4) dVx(N) = [[ NdS .

If A = Λ(0) is in equilibrium, then dEx(N) = 0 for all NeC\A)
satisfying dVx(N) = 0. This gives the necessary equilibrium condi-
tions

(a) 2H = z — c for some constant c

(b) λ = cos a .
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For 0 < a < π, we must have — 1 < λ < 1.
In this paper we considered axially symmetric drops whose

profile curves satisfied (2.2). It follows that the set of all possible
symmetric drops satisfying the Euler equation (4.5a) may be repre-
sented parametrically by a mapping x: Bι —> Rs where (using polar
coordinates p, Θ) we have

(4.6) %{p, θ, sf R, c) = (r(ps, tc) cos θ, r(ps, ic) sin θ, u(ps, ic) + c> .

The condition that the boundary of this surface lies on Σ is
just u(s, K) + c — 0, while the angle of contact condition (4.5b) is
ψ(s, ic) = α.

If A is an equilibrium surface satisfying (4.5) then the second
variation is given by

E(N, N) = d\E - cV)(N, N)

( 4 ? ) - ^[d(z - 2H)(N)]NdS + j - [8a(N)]Ndσ

RN)dS + JN(Nλ + pN)dσ .

Here Δ — Laplace operator on A and

R = ~2(2H2 -K)+ξ3

where H = mean curvature, K = Gaussian curvature, Nx — outward
mormal directional derivative of N along dΛ.

p = KΛ cot a — KΣ esc a, where KΛ is the curvature of A Π Π
relative to the normal vector, ς, and Π is the normal plane to dΛ.
KΣ is the corresponding curvature of Σ ΓΊ Π relative to the normal, η.

ξ3 is the vertical component of ξ — (ξlf ξ2, ξ3) .

Essentials of this formula may be found in Blaschke [4]. A
complete derivation may be found in [16].

DEFINITION 4.1. An equilibrium drop for which A satisfies (4.5)
is said to be stable if E(N, N) is positive for all NeC2(Λ), N ^ 0
with 3VX(N) = 0.

Note. In the case that I1 is a horizontal plane, a horizontal
translation of A leaves both the potential energy and the volume
unchanged. This induces a two-dimensional subspace of (nonsym-
metric) normal perturbations for which E(N, N) = 0 and dVβ(N) = 0.
The definition of stability must be altered in the obvious manner.

The quadratic form, E(N, N), can be written in several different
ways. If we set
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(a) (F G)t = (( FGdS
(4.8) ]]:

(b) (F G)SΛ = jFGdσ

then

(4.9) E(F, (?) - (F 2G)A + (F bG)iA

where SG = -ΔG + RG on A

bG = G1 + pG on dΛ .

With the aid of Green's theorem we obtain

(4.10) E(F, G) = [F, Gl + f f FG(R - l)dS + JFGpdσ

where

(4.11) [F, Gl = \^{VF VG)dS + j( FGdS .

Since x: -Bx -» i?3 is given by a C2(5j) regular mapping, it follows
that [F, G\ is an inner product on G\B^ which is norm equivalent
to the standard inner product

(4.12) (F G)1 = \[ (FWGU + FVGV + FG)dudv .

E(F, G) is thus a continuous, symmetric bilinear functional on
Wi(Bi), the Hubert space completion of C 1 ^ ) in the norm (4.12).
Therefore, we may apply the developed theory for eigenfunctions
and eigenvalues to conclude the following theorem. See [2] for
example.

THEOREM 4.1. There exists a sequence of eigenfunctions φn e
C\Λ) and eigenvalues μn such that

(a) &ψn = μnφn, μ1 < μ2 ^ μz ^ .
(b) bφn = 0 on dΛ.
(c) {φn) is & complete orthonormal sequence on L2(Λ).

In this paper, the surfaces A are axially symmetric in the
form (4.6). It follows that all of the eigenfunctions of Theorem
4.1 may be obtained by separation of variables. This reduces
Theorem 4.1 to a Sturm-Liouville problem for ordinary differential
equations. [See 3, Chap. X], and in fact one could use this approach
to prove Theorem 4.1 in the axially symmetric case.

We have x(p, θ) = [A(p) cos θ, A{ρ) sin θ, B(p)] where A(p) =
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r(ps, ic) and B(p) = u(psf ϋ) + c, and A(0) = 0, A'(0) = 0, A'(p)2 +
JS'^o)2 = s2. The coefficients of the first fundamental form e, f, g are
given by e = s2, f = 0, and g = A2(^).

If N(p, θ) = /(|θ) is symmetric, then

(a) E(N, N) = 2πelf, f) = 2τr[[α/'2 + RWf*]dp + 2πprf\D

where a{p) = (g/e)1/2 = A(1o°)/s, W = (eg - f2)172 =

r = r(s , Λ), and p = K Λ cot α = ψ s (s, /r) cot α.
( 4 1 8 ) (b, ίVCίO-i ., I

(c) (N'N)A = 2π[l PWdp =
Jo

If iSΓ(/0, β) = /(<o) cos ί(/(/θ) sin θ), then

(a) E(N, N) = πek(f, f)

= π[[ afn + -^-/2 + ΛW/ ld/o + πprf\l).
(4.14) J o L α J

(b) dV(N) = 0.

(c) (N'N)Λ = π\ pWdp = π(/ /)0.
Jo

Now set

(4.15, W «/)=-[<«/')7
(b) 6(/) = /'(I)

We then have the following restatement of Theorem 4.1.

THEOREM 4.2. // Λ is axially symmetric in the form (4.6) then
the complete set of eig en functions and eigenvalues are given with
separated variables as follows.

Ifk = Q (symmetric case), there is an infinite sequence of eig en-
functions {Nj0(p, θ) = fj0(p)} and eigenvalues {Xj0} with

(4 16) ( a )

(b) λ00 < λ10 < λ20 < .

If k^l, there is an infinite sequence of eigenvalues {Xjk} and a
corresponding two-dimensional space of eig en functions spanned by
fjkip) cos kθ and fίk(p) sin kθ satisfying

(a) L(fik) + WlaW]fjk - \ihfik, b(fjk) - 0.

(b) xok < xlk < x2k < . . .

Furthermore λ00 < λ01 < λ02 < and λ01 = 0.
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Proof. A straight forward application of the Sturm-Liouville
theory for ordinary differential equations with a regular singular
point at p = 0. I t is important to note t h a t the systems (4.16) and
(4.17) have a regular singular point at p = 0 whose indicial equation
has roots k, —k. (Note: If A is the surface u = 0, the solutions
to (4.16), (4.17) are just the Bessel functions, Jk(V\p).)

The fact tha t the listing of eigenvalues in (4.16b) and (4.17b)
are all distinct follows from the Sturm-Liouville theory, while the
fact t h a t λ00 < λ01 < λ02 < is a consequence of the formulas (4.13),
(4.14) and the characterization of the smallest eigenvalue, λofc, by
its minimizing property for the Rayleigh quotient, ek(f, / ) / ( / / ) 0

Finally, as noted by Concus and Finn, a horizontal translation
of A leaves both the energy, and volume unchanged. Therefore, a
differentiation yields a normal perturbation satisfying (4.17) with
k = 1 and λ01 = 0.

Consider the one-parameter family of axially symmetric pendent
drops as constructed in § 3 determined by the condition φ(s, ϋ) =
α, 0 < a < π. For small volumes K itself could be chosen as para-
meter with the volume —> 0 as tc -> + oo. In general if ε is the
parameter the condition ψss'(ε) + ψκκ'(ε) = 0 most be satisfied. The
construction of a smooth one-parameter family relies on the condi-
tion grad ψ = (ψs, ψκ) Φ (0, 0). This was established in § 3. There-
fore (s'(ε), Λ '(S)) is unique up to a scale factor. Suppose t h a t we
have parametrized our family of pendent drops satisfying ψ(s, R) —
a by ε(ε > 0) where

( 1 ) limit F(ε) = 0 as ε • 0

(4.17) ( 2 ) F'(ε) > 0 for 0 < ε < ε

( 3 ) V\ε) = 0

where V'(β) = 0 occurs after the appearance of an inflection point
on the profile curves. As noted in the introduction, the following
theorem was proven by E. Pit ts [14] in the symmetric case.

THEOREM 4.3. The family of pendent drops, A(ε), determined
by the condition ψ(s, ic) = a, 0 < a < π, and for which condition
(4.17) is satisfied are all stable for 0 < ε < ε. Furthermore if V'(ε)
changes sign as ε increases through ε, then A(ε) is unstable for
ε > ε.

Proof. As e-»0, tc —>+<χ>, and volume-> 0, the drop surface,
A(ε), resembles a spherical cap of radius 1/tc. Let x(p, θ, ε) be the
representation of A(ε) in the axially symmetric form (4.6). Let
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y(p, θ, ε) = κ(ε)x(p, θ, ε). By following the argument used in the
proof of Theorem 2.6, y(p, θ, ε) will converge uniformly as ε —• 0
along with its first two derivatives to a parametric representation
y(p, θ, 0) = y0 of a spherical cap, Aa, with radius 1 and cutting the
plane z ~ 0 at an angle a. Such a cap is an equilibrium configura-
tion in a gravity free environment and is well known to be stable.
This means that

(4.18) ma - minimum EWo(N, N)/(N-N)Ja > 0

where the minimum is taken over all NeC2(Λa) satisfying dV(N) =
0 and (N-Na)Aa — (N-Nb)Aa = 0 where Na, Nb are the normal com-
ponents of variations arising from horizontal translations in two
independent directions.

(Note: Because of the invariance of our configuration under
horizontal translations, we are forced to alter Definition 4.1 in the
above manner.)

From the convergence of y{p, θ, ε) to y(p, 6, 0) we can infer
that m[y(ε)], the minimum of the corresponding Rayleigh quotient
for y(p, θ, ε), converges to mα as ε —> 0. But it is also easy to
check that m[x(ε)] = m[y(ε)]. Therefore, for small ε, m[x(ε)] > 0 and
the drops determined by Λ(ε) are stable.

As observed in Theorem 4.2 all of the eigenvalues associated
with nonsymmetric perturbations are positive and satisfy 91^(^0=0;
except for λOi = 0, the eigenvalue whose eigenfunctions correspond
to horizontal translations. We may therefore conclude that if
Λ(ε) is stable with respect to symmetric perturbations, then it is
stable.

We have F'(ε) > 0 for 0 < ε < έ and we know that Λ(e) is
stable for small ε. We next show that Λ(ε) is stable for 0 < ε < έ.
For each ε > 0 let m(ε) be the minimum of the Rayleigh quotient,
(4.18), over all normal perturbations NeC2[Λ(ε)] for which dV(N) =
0, (N-Na) — (N-Nb) = 0. It is known that m(ε) is continuous in ε
and that the minimum will be attained for suitable N.

If our claim is false, there is an εl9 0 < ε1 < έ with m(e) > 0
for ε < βi and m(εx) = 0. There corresponds a symmetric normal
perturbation, JVi, achieving this minimum. By applying the method
of Lagrange multipliers to (4.18) and recalling (4.7), it follows that
Nx(p9 θ) will satisfy

(a) 2(Nt) = γ(some constant, 7) on Λ.

(b) 6CΉ) = 0on dΛ.

(c) 37(2^) = 0.

(d) (N N)Λw=
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Observe that this implies that E(Nl9 N,) = (NrZNJj + (N^bN,)^ =
"/(l iVJj = 7<3F(iV1) = 0. Since Nλ is symmetric we have N^p, θ) =
g(p) where

(a)

(b) b(g) = 0.
(4.20) K J

(c) dv(g) = 0.

(d) (flr flr)0 = l .

Now consider the normal perturbation corresponding to dx/dε,
which is (dx/dε) ξ. By (4.6), noting that (dx/ds) ζ = 0 we obtain

(4.21) N = N(p, ε2) = (dx/dε) ξ = N^'fa) + Nέ'fa) .

Here Nκ = (dx/dfc)-ζ and iVc = (δx/de)>ξ. For example, from (4.6) one
has 3&/3c = (0, 0, 1) from which it follows that Ne(p, θ) — — cos ψ(ps, ic).
The triple (s'(e^), ιcf{ε^), c'(εx)> is determined by the conditions
ψ(s9 R) = a, u(s, K) -f c = 0 yielding

(a) ^β(s, /c)s'(εθ + ^,(s, ic)/c'(e1) = 0.
; (b) u,(s, ^ s ' ί ε j + tt.(s, ^)^r(βχ) + c'(ε,) = 0.

Since 2(N) = δ(z - 2BΓ)(JSΓ) it follows that 2(NK) = 0 and 2(NC) =
1. We also have 0 = (da)(N) = b(iV) = ^'(^)b(iVff) + c'(εJb(iVc). If
we set Nκ(p, θ) = Up), Nc(p, θ) = /β(^) and N(p, θ) = / ( ^ we find

(a) L(/,) = 0, L(fe) = 1.

(4.23) (b) 0 - δ(/) - tc'(sMfc)

(c) ^'(ε,) = icX

From (4.20) and (4.23) it follows that L(g - τ/β) - 0. But L is
a second order differential operator with regular singular point at
p = 0, and g — τ/ c is a bounded solution at p — 0. Therefore </ —
τ/c = r/ r for some r, or ^ = τ / β + γ/c with (τ, 7) 9̂  (0, 0).

We compare / = tt\s^fκ + c'(εx)/c with ^, where L(f) = c'(ε2),
L(^) = 7 and &(/) - 0, b(g) - 0. The triples <s'(£l), ^ ( e j , c'(εx)> and
<(T, τ, 7> are both solutions to (4.22) if we choose σ so that (4.22b)
is satisfied. But (ψS9 ψκ) Φ (0, 0) implies that the solution space for
(4.22) is one-dimensional. From this we can infer that (τ, 7) = m(fc\
cr) for some m Φ 0, and thus g(p) = mf(p). However, by (4.20) we
have 3v(g) = 0 and by our assumption at ε = εx ŵ e have dv(f) =
v'fa) > 0, which is a contradiction.

Finally we suppose that v'(e) > 0 for 0 < ε < ε, v'(e) = 0, and
v'(ε) < 0 for ε > ε. We are to show that Λ(e) is unstable for ε > ε.

Once again we have /(ε) = κ'(β)fκ + c'(ε)/c with
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(a) L[/(ε)] - *'(e)L(Λ) + c'(e)L(fc) = c\έ).

(4.24) (b) 6(/) = 0.

(c) v\e) - A J ' Φ W . ) + c\ε)dv(fc).

We first show that c'(έ) ^ 0. If c'(έ) = 0 then we would have ιc\ε)Φ
0 and f(£) = tc'(έ)fκ. This, along with the assumption i;'(έ) = (/(ε) l)0 =
0 implies that fκ satisfies the system L(fκ) = 0, &(/,) = 0, and dv(fκ) =
(/. l)o = O We may now apply the Fredholm alternative for L
with boundary conditions 6, [2, p. 183]. Since L is self-ad joint
and the function 1 is orthogonal to the kernel of L, there is a
function h(p) satisfying L{h) = 1, b(h) = 0. We may conclude that
h = τfκ + / c for some constant r. Now A, and f£ are both solutions
to L(y) = constant, b(y) = 0. But the condition (ψay ψκ) = grad ψ^O
guarantees that the solution space is one-dimensional. But h = τfκ +
fc and fκ are clearly linearly independent. Thus c'(έ) Φ 0.

For each ε near έ choose Gε in C2(Λ), symmetric, and with
37((χ.) = l. Let Z. = Nξ - dV(Nζ)Gε, so that 3F(^) - 0. If we
now compute E(Zt9 Zε) we get

(4.25) E(Zε, Zε) = v'(6)[-c\ε) + v'(e)E(G., G.)] .

Since c'(έ) ^ 0 and v\e) changes sign at ε we may conclude that
E(Zίf Zε) < 0 for ε > ε.

REMARK. AS we have just seen, the order of the eigenvalues
as listed in Theorem 4.2 implied that for Problem B the limits of
stability are determined by the symmetric perturbations.

EXAMPLE. Consider a drop pendent from a horizontal plate,
with no volume constraint, but a constant pressure, as might be
arranged by connecting a drop hanging from a plate to a water
source by a siphon through a small hole in the plate. In this case
stability is determined by the smallest eigenvalue in the listing.
But λ00 < λ01 = 0. This configuration is always unstable.

Now consider the pendent drop of Problem C. Here stability is
determined by considering normal perturbations, NeC\Λ) for
which 3V(N) — 0 and N = 0 on dΛ. This means that the boundary
term will disappear in the expression (4.7) for the second variation,
leading to the following definition.

DEFINITION 4.2. An equilibrium surface, Λ, is stable for Pro-
blem C if

(4.26) E(N, N) = (2N, N)Λ = U ^IFJSΠ2 + RN2)dS
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is positive for all NeC\Λ), N = 0 on dΛ, and 3V(N) = 0.

As in Theorem 4.2 there is a listing of eigenfunctions and
eigenvalues by separation of variables, (gόk{p), μ3-k) where

(4.27)
< μiu <

< ^oi <

and

However, it need not be true that μoι — 0. The horizontal transla-
tion determines a normal perturbation which vanishes on the
boundary only if the profile curve for Λ has a horizontal tangent
on the boundary. Therefore if the profile curve for A does not
possess a horizontal tangent then stability is determined by the
symmetric perturbations. Once a horizontal tangent appears, the
configuration is unstable since then μ01 <^ 0. (See also [13].)

For u = 0, the eigenfunctions are the Bessel functions and it is
well known that u — 0 is stable for Problem C if r0 < β1 where βx

is the first positive zero of J^r).
Finally we note that for Problem B with angle of contact a = 0,

(4.3) breaks down because of the boundary expression. The appro-
priate set of perturbations is to require N = 0 on dΛ, yielding
the corresponding eigenvalues (4.27). In this case u\r) = 0 on
the boundary, hence μ01 = 0. Thus, as in Theorem 4.3, stability is
determined by the symmetric perturbations.

•pressure at mouth

Problem A. Constant Pressure, Fixed Circular Opening.
(Theorems 2.6, 3.1).

0<a<π/2

Problem B. Constant Volume, Prescribed Angle of Contact, a.
(Theorems 3.2, 3.3, 3.6, 3.8).
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Problem C. Constant Volume, Fixed Circular Opening.

(Theorems 3.4, 3.5, 3.7, 3.8).

FIGURE 1

u •'•- c ( r )

The first on\ (dope

Maximum radius is
α,,Ξ2.4048, ./„'«»))•'•• 0

Drop configuration
tit maximum pressun
for various radii

Problem A. Constant Pressure, Fixed Circular Opening.

(Theorems 2.6 and 3.1)

FIGURE 2
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0 < a- π/2

α-τr/2

a>π/2

"CΓ

Problem B. Costant Volume, Prescribed Angle of Contact.
For a > 0, the sketches represent stable drops of increasing volume,
through the appearance of an inflection point on the profile curve,
(Theorem 3.2). Also indicated is direction of contact radius with
plate, (Theorem 3.6). For a = 0, two stable drops are sketched,
while the third must be unstable, (Theorem 3.8). Drop height
increases monotonically with volume, (Theorem 3.6).

FIGURE 3



468 HENRY C. WENTE

rλ<rQ<ax

ro<rι

Problem C. Constant Volume, Fixed Circular Opening.
Below are sketched stable drops configurations for openings of
various radii, r0: rQ < in, r0 — in, T\ < r0 < ax. Here « ! ^ 3.8317
where /i(«i) = 0 represents maximum possible radius, TΊ = . 9176 is
the largest radial value for which a profile curve can possess a
vertical tangent, (Theorems 3.4, 3.5). Drop height increases mono-
tonically with volume, (Theorem 3.7).

FIGURE 4

r o < r, (at neck)

r o < r, (at bulge)

r0

=rι (at vertical tanμent)

FIGURE 5. Drop formation for Problem C when a vertical tangent appears
on the profile curve, (Theorem 3.5).
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<*=•• π/2 s a>π/2

FIGURE 6. Drop formation at inflection points for Problem B, (Theorem 3.2).

FIGURE 7. The drop is unstable for Problem B since the profile curve
contains a second inflection point (Theorem 3.6).

FIGURE 8. The second envelope contacts the profile curve between the
neck and second bulge. The profile curve for the drop below con-
tains the contact point with the second envelope. It must be
unstable for Problem C. (Theorem 3.7, Case 6).

REFERENCES

1. F. Bashforth and J. C Adams, An Attempt to Test the Theories of Capillary Action,
Cambridge Univ. Press, 1883.
2. L. Bers, F. John and M. Schechter, Partial Differential Equations, Interscience,
1.964.
3. G Birkhoff and G. Rota, Ordinary Differential Equations, Ginn and Co., 1962.
4. W. Blaschke, Vorlesungen iίber Differentialgeometrie I, Springer, 1930.
5. E. A. Boucher and M J B. Evans, Pendent drop profiles and related capillary



470 HENRY C. WENTE

phenomena, Proc. R. Soc. London A, 346 (1975), 349-374.
6. E. A. Boucher,M. J. B. Evans and H J Kent, Capillary phenomena. II. Equilib-
rium and stability of rotationally symmetric fluid bodies, Proc. R. Soc. London A, 349
(1976), 81-100.
7. A. K. Chesters, An analytical solution for the profile and volume of a small drop or
bubble symmetrical about a vertical axis, J. Fluid Mech., 8 1 Part 4, (1977), 609-624.
8. P. Concus and R. Finn, On capillary free surfaces in a gravitational field, Acta Math.,
132 (1974), 207-223.
9. , The shape of a pendent liquid drop, Philos. Trans. Roy. Soc. London Ser.
A, 292 (1979), 307-340.
10. R. Finn, Capillarity phenomena, Uspehi Math. Nauk., 29 (1974), 131-152.
11. W. E. Johnson and L. M. Perco, Interior and exterior boundary value problems from
the theory of the capillary tube, Arch. Rat. Mech. Anal., 29 (1968), 125-143.
12. T. Lohnstein, Dissertation, Berlin, 1981.
13. D. H. Michael and P. G. Williams, The equilibrium and stability of axisymmetric
pendent drops, Proc. R. Soc. London A, 351 (1976), 117-128.
14. E. Pitts, The stability of pendent liquid drops, Part 2. Axial symmetry, J. Fluid
Mech., 63 Part 3, (1974), 487-508.
15. D. W. Thomson, On Growth and Form, 2nd Edition, Cambridge Univ. Press, 1973.
16. H. C. Wente, Dissertation, Harvard, 1966.

Received August 9, 1979. Research supported in part by NSF grant MPS75-07402
and by a Summer Faculty Fellowship from The University of Toledo. The paper was
completed while the author was on a subbatical visiting the University of Minnesota,
Stanford University and the University of Bonn, Germany.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF TOLEDO

TOLEDO, OH 43606




