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EXISTENCE AND REGULARITY FOR THE PROBLEM
OF A PENDENT LIQUID DROP

E. GONZALEZ, U. MASSARI AND I. TAMANINI

The subject of this paper is the study of the existence of
a pendent drop. We carry out this study in full generality by
exploiting the local minima of a suitable functional, chosen to
represent the energy of the drop.

If we denote by EaRn+1 a liquid drop hanging from the fixed
horizontal reference plane {t = 0}, then we can write the global
energy of that configuration in the following way:

(0.1) JT(E) = \ \DφE\ + v \ φEdHn + A tφE(x, t)dxdt
Jί<0 Jί = 0 Jί<0

Here, the first integral is the measure of that part of the boundary
of E lying in the half-space {t < 0}. Physically, it corresponds to
the energy due to surface tension. The second integral, proportional
to the measure of the boundary of E contacting the horizontal plane,
represents the energy given by the attraction between the liquid
and the plane itself, while the third one corresponds to the gravi-
tational energy.

Exact definitions of these objects will be given in the next
section.

The constant v is determined experimentally, depending on the
materials in the liquid-solid-vapor interface; physically, it represents
the cosine of the angle between the exterior directed normal to the
liquid surface, along the intersection with the contact plane {t = 0},
and the positive (vertical) ί-direction. The constant K ̂> 0 takes into
account the gravitational acceleration, and is referred to as the
"capillary constant" (see e.g., [12]).

We have to minimize the functional (0.1) among the sets of
finite "perimeter (in the sense of De Giorgi; see [7] or [11], where
the equivalent notion of mass is used), having prescribed V volume.
It is clear that we cannot expect a finite lower bound for (0.1) in
such a class, as physical considerations may suggest. Indeed, a
pendent drop is just a local minimum of the energy functional.

In order to prove the existence of such a local minimum, we
introduce a ground floor (i.e., a plane {t — T) with a suitable T < 0)
and minimize the energy among those configurations E lying between
floor and ceiling: for small gravity, we can prove that such minima
do not reach the floor. We do this by observing that as gravity
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decreases to zero, the corresponding minima approach — in the sense
of a good convergence — the solution in the absence of gravity, which
is part of a sphere.

We remark that when it is possible to describe the part of the
boundary of E, lying below the contact plane, as the graph of a
function u e C\Ω), Ω open in Rn, then we can write the functional
(0.1) in the equivalent way

(0.2) J^iu) = ( Vl + \Du\2 + v\Ω\ - —f u2dx

It follows that a minimum of (0.2) satisfies the Euler equation

(0.3) div Tu = -Ku + λ , Tu = Du (l + \Du\2)~m

in which λ is a constant ensuing from the volume constraint.
In the physical case n — 2, considering only rotationally symmetric

solutions (i.e., solutions symmetric about the vertical ί-axis), equation
(0.3) takes the simpler form:

(0.4) λί ruf(r) ) ' = _ χ

with u — u(r).
The behavior of a solution of (0.4), in its dependence on the

initial value u(0) — u0 < 0, has been studied extensively by P. Concus
and R. Finn in a series of papers ([12, 2, 3, 4]; see also [28, 29]).
We refer to [4] for a recent detailed exposition on this argument.

Several interesting results dealing with equation (0.4) have also
been obtained from the computational point of view; see [12] and
the references cited there for a general account.

The question of existence of a drop suspended from an arbitrary
aperture, consisting of a simple closed curve in i?3, was studied by
H. C. Wente in [34]. The method employed in that paper still involves
minimization of a suitable functional, however by means of complex-
variable techniques, and gives an affirmative answer for sufficiently
small gravitational field; it differs completely from our method, which
relies on De Giorgi's Theory of Perimeter and works in any dimension.

In this framework, developed in [5], [6], [7] (see also [1], [19]
for a detailed treatment of the subject), several capillarity problems
have been recently solved; first of all, the problem of existence of
equilibrium surfaces in a capillary tube, whose solution was obtained
by M. Emmer in [9] (see also [13], [32] for extensions of Emmerys
result to capillary tube of general cross-section, and [27], [14], [15],
[30], [31], [33], [17] for interior analiticity and boundary regularity
of Emmer's solution). E. Gonzalez and I. Tamanini ([20], [21], [22])
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studied subsequently the problem of a sessile drop (i.e., a liquid drop
sitting on a flat plate), proving existence, regularity and convexity
of the equilibrium configuration. Further contributions along this
line were obtained by U. Massari and L. Pepe in [25], [26].

Definitions and notations to be used in the sequel are given in
the first section. Section 2 is devoted to the gravity-free problem,
that is to the study of the minima of (0.1) with K — 0, while e-gravity
problems are studied in § 3. Sections 4 and 5 deal with some
properties of ε-solutions that are used in the last two sections to
present the conclusive existence and regularity results.

For convenience of the reader, some questions related to the
existence of multipliers have been quoted in the Appendix.

We wish to thank P. Concus for many helpful suggestions on the
use of comparison surfaces, in §6.

When writing the manuscript we were informed by E. Giusti
that he obtained an analogous existence result, without any use of
comparison surfaces.

l Notation and definitions* We denote by 2 = (x, t), with
xeRn and t eR(n^2), an arbitrary point in Rn+1, by Hs the s-
dimensional Hausdorff measure ([11]), by BV(Ω) the set of Lebesgue
integrable functions f(y) over the open subset Ω of Rm, whose gradient,
in the sense of distributions, is a vector measure with finite total
variation. That is,

BV(Ω) = \feL\Ω): \\Df\

where

JjD/| = sup [\/(y)div g(y)dy: g

We refer to the quantity \ \DφE\, involving the characteristic function

φE of a Borel set E(zRm, as the perimeter of E in Ω; when Ω = Rm,

we simply write \ | J D ^ | , the perimeter of E.

If the boundary dΩ of Ω is locally Lipschitz, then ([23]) each
function feBV(Ω) has a trace belonging to Lι(dΩ). The functional
(0.1) is therefore well-defined on sets E having finite perimeter in

Rn+ι; of course, I \DφE\ means the perimeter of E in the half -space
Jί<o r

Ω = {(#, t):t< 0}, while I φEdHn corresponds to the trace over dΩ.

Setting for T < 0

Sτ = {(x, t): T < t < 0} ,



402 E. GONZALEZ, U. MASSARI, I. TAMANINI

by A c Sτ we intend that there exists δ > 0 such that A c Sτ+δ. We
call G (a set of finite perimeter in Rn+1) a local minimum for the
functional J^ defined by (0.1) — a pendent drop— if there exists
T < 0 such that

( i) GaSτ

(ii) for each F of finite perimeter, with \F\ = \G\ and FA
G cz Sτ, the inequality J^(G) <; J^(F) holds, where:

G = (F - G) U (G - F) and ]Fj = Hn+ι(F) .

2* Free-gravity problem* Consider the functional

(2.1) j

in the class

j < 0}:

where F > 0 is a fixed constant and ve i ί .
When |v| < 1, the isoperimetric inequality ([8], [18]) implies at

once the existence of a unique minimum for J^l in g7. Such a
minimum Eo is the intersection of the half-space {t < 0} with a ball,
centered at the point c0 on the ί-axis and having radius Ro; radius
and position of the center are to be determined in such a way that
the measure of the intersection is V and the cosine of the contact
angle is v. That is

(2.2) EQ = {(x, ί) eΛ +1: t < 0, | s | < fttf) - (#5 ~ (ί - co)
2)1/2}

where ROf cQ are to be determined through the relations

(2.3) |*.|=V; ^ Λ

The minimum height of the solution EQ is given by

(2.4) Q^e^R0 a + »)W-»

S V

We remark moreover that every ball of volume F, lying in {t < 0},
is a solution of the problem in the case v — 1, while for v = —1 no
solution can occur.

3* ε-gravity problems* We prove in this section that the func-
tional
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(3.1) SQβ) = \ \Dφx\+v\ φEdHn + \ φEdHn + e( tφE{z)dz
JST Jί=0 Jt = T JST

attains its minimum in the class

(3.2) gV= {EaSτ:\\DφE\< +00, \E\ =

for every ε > 0.
With respect to the minimization of <β^, we may restrict ourselves

to rotationally symmetric sets. Indeed, if for Ee g^ we define

Pit) = (ω-^φE(x: t)dxj

Es = {(x,t)eR"+\\x\

then we derive from Lemma 2 in [20]:

equality holding if and only if E8 = E, that is, the set E is already
symmetric. We define

(3.3) gfΓ = {E°:Ee cgτ) .

LEMMA 3.1. For \v\ ̂  1, the functional Jβ^l defined by (3.1) has
a finite lower bound on gV.

Proof. Clearly we have

i \D<PB\ > \
Jί<0 Jt

for any Ee i?r, from which we obtain

0 £ ί = ^ ( \DφE\+ ϋ ^
2 J< 2

and then

(3.4)

which concludes the proof.

LEMMA 3.2. Let {Eh} be a sequence of sets in gV such that ^ε(
const. Vh. If — 1 < v ^ 1, then a subsequence of {Eh} converges in
L\Rn+ι) to a limit set Ee Htτ.
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Proof, The existence of a subsequence of {Eh}, convergent in
L\oc(Rn+1), follows easily from (3.4) together with a known compactness
result ([24]). Now, we have for almost all t < 0:

(3.5) \ψEh{
χf ^ d x = \\D(P*κ\ - c o n s t

We can thus find a ball BB c Rn, such that every set in the sequence
lies in the cylinder BR x (T, 0). Hence, convergence of the previous
subsequence actually takes place in Lι(Rn+1).

LEMMA 3.3. // |v| <^ 1, then the functional ^ 7 is lower semi-
continuous with respect to L\Sτ)-convergence.

Proof. Let Eh—>E in L\Sτ)f and suppose there exists σ > 0
such that the inequality

(3.6) J?r(E) > ^(Eh) + σ

or equivalently

(3.7)
\ \DφEh\ < \ \DφE\ +v\ (φE- ψEh)dHn
JSJI JS j< j ί=0

+ \ (<PE — φEh)dHn + ε I t{φE - φEh)dz - σ
Jt=T JST

holds, for infinite indices h. Combining (3.7) with the estimate

\f\n\ \Df\ +c(δ)[ \f\dz
dSτ JSτ(δ) JST

(which holds for every / e BV(ST) and δ e (0, - Γ/2), provided we define

Sτ(δ) = {ze Sτ: dist(«, dSτ) < δ) ,

see [9]), we then obtain

ί _ \DφEh\<\ \DφE\ + \ \DφE\
JSτ~Sτ(δ) JST JSj ίδ)

+ (c(δ)-εT)\ \φE - φEk\dz - σ

from which we derive a contradiction, letting h —> + °° and then
δ i 0, and taking into account the lower semicontinuity of perimeter
functional (see [5]).

According to the previous lemmas, we can state the following
existence result:

THEOREM 3.4. For every T < 0, V > 0, — 1 < v <̂  1 and for every
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ε > 0, the functional J^ε defined by (3.1) has a minimum Eε in the
class gV, which is a rotationally symmetric set, so that we can
write:

(3.8) Eε ={(x,t)eSτ:\x\ < pε(t)}

for a suitable function pεe BV((T, 0)).

4* Some properties of ε-solutions* We study in this section
the behaviour of the solutions Eε, found in Theorem 3.4, as ε tends
to zero.

From now on, we shall assume that T = T(v, V) is a negative
number, smaller than the minimum height Q0(v, V) of the solution
EQ in the absence of gravity (see (2.4); the data v and V will be held
fixed). Moreover, we shall write S instead of Sτ.

PROPOSITION 4.1. // M < 1, then

(4.1) Eε >E0 in L\S)

(4.2) JT(E.) >JTO(EO)

as ε —> 0.

Proof Let A c S b e a fixed set of volume V. We have for every
ε > 0

ΛE'ε) ^ ^T(A) < const. ,

so that (3.4) implies that the perimeters of the 2£β's are uniformly
bounded.

Now, the sets Eε are all included in a fixed cylinder, as we have
pointed out during the proof of Lemma 3.2. This fact, together
with the compactness result already mentioned, entails the convergence
in L\Rn+ι) of the JB'/s to some set Fe g*Γ. We claim that F minimizes
functional ^ defined by (2.1). Indeed, by the assumption T < Qo

we have Eo e &τ, and moreover we have

(4.3) j^(S.) £ JTO(EO) - e\t(φs,(z) - φEo(z))dz

owing to the minimality of E8

9s.
Letting ε —> 0 in (4.3), we obtain from the lower semicontinuity

of J^l with respect to Z/-convergence

Uniqueness of the solution EQ allows to conclude that F = EQf thus
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proving (4.1).
From (4.3) we derive also

^ lim inf jTt(Eg) ^ lim sup J^e(EB) ^ .^(Eo)
ε -*0 ε—+0

which yields (4.2).

L E M M A 4.2. There holds for \v\ < 1:

(4.4) lim \ φEtdHn = \ φEodHn .
£->0 Jt~O Ji=0

Proof. Let εh —» 0 be such that, for the corresponding solutions
2?Λ Ξ Eεk, there exists

lim ί φEhdHn = α .

Denote by J5Λ, h = 0, 1, 2, , the intersection of the half-space {£ < 0}
with a suitable ball in JB%+1, centered on the £-axis and chosen in
such a way that

\Bh\ = V Vh

(4.5)

\ φBodHn = a .
Jt=O

In view of the isoperimetric inequality ([8], [18]) we have, for every
h ^ 1:

^\ \DφBh
Jt<0

and hence

letting h —> + oo and recalling (4.2) we obtain

Now, £Ό is the unique minimum of J ^ , so that Eo = Bo and

lim \ φEhdHn = \ φ

from which (4.4) follows at once.
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LEMMA 4.3. There holds for \v\ < 1

(4.6) l imί \DφEε\ = ( \D<PEQ\
ε-*Q JS JS

(4.7) lim ( φEβHw = 0 .

Proof. From (4.3) we have

\ \DφEε \ + v\ φEdHn + a \ tφEε(z)dz ^ jTε(Eε) ^ J^(E0)
JS Jί=0 JS

and then, from (4.4)

lim sup \ \DφEt\ ^ I \DφEQ\ ,
ε^O JS JS

while

ί ID^J^liminf \ \DφEε\
JS ε-+0 JS

follows from (4.1) and lower semicontinuity of the perimeter func-
tional.

REMARK 4.4. An obvious consequence of the previous results is
the (pointwise a.e.) convergence of the functions defining the
rotationally symmetric solutions E,9 Eo. We recall (see Theorem 3.4)
that such functions pε: [T, 0] —> [0, + oo) are defined through the
relations

E ε = { ( x , t ) e S : \ x \ < pε(t)} , ε ^ O .

Since modifications of any set of finite perimeter by sets of zero-
measure do not affect its perimeter, we may assume the existence
of both the one-sided limits of pε, at every point in the interval
(Γ, 0). Such limits do coincide, except for a countable set of points.

We have actually the following stronger result:

THEOREM 4.5. The convergence pε —> pQ is uniform on (T, 0).

Proof. We shall prove the statement in the theorem by showing
that every subsequence of {pε}ε>0 admits a subsequence uniformly
convergent to p0 on (Γ, 0).

Let εh —> 0; for the corresponding sequence ph = p£/ι we have, in
view of (4.1)

lim ωA°\p7,(t) - p
Λ-H-oo JΓ

- 0 .
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Hence, a subsequence (not relabeled) of {ph} satisfies, for almost all

te[T,0]:

(4.8) lim ph(t) = pS) .

Assume by contradiction there exist σ > 0 and a monotone sequence
{th} c [T, 0] such that

\ph(th)- po(th)\ >σ

If {th} is not decreasing, then choose t e (T, 0) such that

(4.10) t < t0

(4.11) lim ph{t) = po(t)

(in the opposite case, i.e., {th} not increasing, choose t s.t. (4.11) holds
with t > t0).

There follows that, for sufficiently great h

\ \DφEh\ = \ \DφEh\ + \_ \Dφjh\ + \ JDφEfι\
JS Jth<t<0 Jt^t^th JT<t<t

^ ( IDg>XhI + a).Ipt(t h) - pl(t)I + ( _ | D φ E h I .
Jίo<ί<o Λ Jr<ί<ί n

On the other hand, form (4.9), (4.11) and from the continuity of p0,
we derive

\ρh(th) - p h ( t ) \ ^ σ - (\po(th) - | O 0 ( i ) | + \po(t) - ph(t)\) ^ - J

provided that t is close to t0 and /ι is great. Therefore,

^ ί
Jt
Jto<t<o

and letting fe —> + oo we obtain

lim inf ί I D ^ | ^ ί | JD^o | + ωJ^X + \

which contrasts with (4.6) as t approaches t0.

5* Regularity of ε-solutions* The main result in this section
is the following.

THEOREM 5.1. Let t0 e (Γ, 0). / /
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lim inf ρε(t) > 0

then there exists a neighborhood U of t0 such that pεeC2(U).

Proof. In view of Remark 4.4 we can find a neighborhood W
of t0, such that

(5.1) inf ρε(t) = mε > 0 .
w

Hence, there exists a ball B lying in the plane {xx = 0} and centered
at (0, , t0), which satisfies

Eε ΓΊ ( R + x B ) = {(xlf y , t) e Λ - + 1 : (y, t)eB ,
( ' } 0<x

where y = (a?2, , a?J e Λ71"1 and /,(#, ί) ^ ^.(^, ί) = mε/2. Function
/, belongs to BV(B) and, owing to the minimum property of pε, it
minimizes the functional

Iε(u) = S VTΓWΰf + [ \u- fε\dHn_ι + ε ( tudydt
JB JdB JB

in the function class

Hε = j u e ΰ F ( δ ) : % ̂  fε, ^(u - ψε)dydt =

We then conclude that fε minimizes the functional

Iε(u) + λε I udydt

in the function class

Kε = {u e BV(B): u ^ ψε}

as well, for a suitable multiplier λε 6 R, whose existence is granted
by the results in the Appendix. From known regularity results
(see e.g., [10]) we obtain fε e C2>a(B), 0 ^ a < 1, thus proving the
theorem.

REMARK 5.2. As a consequence of the theorem we can state,
that if lim inf ̂ ^ ρε(t) > 0V£0 e {a, b) c (Γ, 0), then ρε e C2(a, b) and there
exists a real number Λε such that

<5 3) W M ' - wfτw? -5ί + Λ Ϋ t 6 ( « 6>

Now, let [α, 6] be a sub-interval of (Qo, 0) (we recall that Qo denotes
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the height of the apex of the drop below the contact plane, in the
absence of gravity; see (2.4)). In view of Theorem 4.5 we conclude,
that for small ε each function pε is greater then a positive constant,
independent of ε, in the whole interval (α, b). This fact allows the
proof of the following result, concerning the convergence of the Λε'&
defined in the preceding remark.

PROPOSITION 5.3. There holds

(5.4) limΛL - - — = Λo

with Ro defined by (2.2), (2.3).

Proof. As in the proof of Theorem 5.1, we can find a ballJBc
[xL — 0} (with radius independent of ε) and a function ψ positive on
J5, such that

(B Π {y = 0} c (α, 6)

1/c ^ 2ψ on B

and fc minimizes the functional

(5.6) [ Vl + IDu |2 + [ \u - fe\dHn_λ + e\ tudydt + λεί udydt
JB )oB JB JB

in the class {u eBV{B): u ^ ψ}.
About the multipliers λfi we know the estimate (see (A6), (A7)

in the Appendix):

_L

where

Vε = \ if, - Ϋ)dydt
JB

We may then assume λε —> λ0, from which we conclude that the
function fOt limit of the //s, minimizes functional (5.6) with ε = 0.
From (5.3) we have therefore:

n

6. The existence theorem* So far we obtained a minimum Eε

of the functional .β^ defined by (3.1), for every ε > 0. In order to
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get the existence of a pendent drop it suffices to show, that when ε
is small enough, there exists tεe(T, 0) such that lim inf t_u pε(t) = 0.

Indeed, in this situation the set

Gε - Eε n {t > tε)

clearly yields the minimum value for ^%, when compared with the
subsets of the strip S having finite perimeter and volume equal to
\Gε\. In other words, following the definition given in §1, we can
assert that Gε is a local minimum of functional (0.1), with tz — ε.

To this end, we compare the boundaries of solutions Ee with
surfaces of constant mean curvature (see [4]).

We begin by noting that if p[(t) > 0, then there exists, in a
suitable neighborhood U of the point r = pc(t), the inverse function
uε{r) of pε; moreover, from (5.3) we deduce

On the contrary, if p'.(t) < 0, then the following equation holds
instead of (6.1)

(6.2) 1 ( * p * ί Y = εUε + Λe (reU).

In either case, denoting by ψUε(r) the angle between the tangent line
to uE and the r-axis, measured counterclockwise from the r-axis
itself, we can combine (6.1) and (6.2) in the single equation

(6.3) —!— (r*-1 sin ψw.(r))' - ~eu£(r) - Λt .

We also need the following results (see [4]):

LEMMA 6.1. Let u(r), v(r) be functions defined over 0^α^?'^6,
s.t.

( r - 1 sin ψv(r)Y ^ ( r - 1 sin ψu(r))' .

If sin^(a) ^ sin ψu{a), then sin^(&) ^ sin^tt(δ), and equality holds
if and only if u = v + const in \a, 6].

LEMMA 6.2. For every H > 0 and for every a such that

(6.4) 0 < a < ^ - - A
nH

there exists an unique b with
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(6.5) ^ L 1 !< 6 < !
H

and an increasing function v: [a9 b] —> R for which

(6.6) -^z-Sτ%~1 s i n **(r)Y = nH (r e &> &))

(6.7) sin ψv(a) = sin ^(&) = 1 .

Moreover, there holds

(6.8) vφ) - v{a) ^ ^ - .
iϊ

The proof of Lemma 6.1 is quite obvious, so we outline only
that of Lemma 6.2. We point out that the surface obtained by
rotating the graph of function v(r) in the lemma (which is part of
an ellipse roulade when n = 2, see [4]) about the vertical axis, has
constant mean curvature H.

Integrating (6.6) yields

(6.9) v\r) =
v 1 - #2(r)

where flr(r) = Hr + Br1"*.
For the constant of integration JB we have, in view of (6.7)

B = α^-1 - Han = bn~' - £Γ6W > 0

and letting c — (n — ΐ)/nH we get from (6.9)

(6.10) t (δ) - v(a) < - jL(Γ 7

 d r + (* ^

Defining

α ( r ) = ( r _ α ) ( i _ ff(r))-i

^(r) = (6 - r)(l - ff(r))-1

and noting that a'{r) > 0 > /S'(r), we have from (6.10)

vφ) — v(a) ^ V 2 (i/α(c)l/c — α + Vβ(c)Vb — c) .

Now, functions

Va(c)(c

Vβ{c)φ

are decreasing and

- a) = (c -

- e) = φ -

- o)(l - 9(c)

- c ) ( l - fif(c);

we can conclude

vφ)-

ι)-1/2 0 < α

)-1/2 c < b

•)

< G

< H
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We are now in position to prove the following

THEOREM 6.3. If T <Q0- %c{n)RQ and 0 < ε < εo(T), then there
exists tεe(T, 0) such that

lim inf pε(t) = 0 .

Proof. Assume by contradiction the existence of a sequence
{εj converging to zero, such that

lim inf ρh{s) > 0
8-*t

for every te(T, 0) and every h, with ph = pBh.
In view of Remark 5.2, for every h we have pheC2(T, 0); more-

over ph satisfies the Euler equation

X : I = ^ + A

in which

(6.12) lim A = -»•

(see (5.4)). Now, let 2\ = T + (Qo - Γ)/3 and Γ2 - ϊ7 + (2(Q0 -
and denote by the(Tlf T2) a point such that p[(th) Φ 0. For the sake
of definiteness, assume pf

h(th) > 0, since in the opposite case one can
proceed analogously.

Let ah — ph(th) and Hh = ( — εhT — Λh)/n; there follows from Theorem
4.5 and (6.12) that

(6.13) lim ah = 0 lim JET* = — ,

so that, in view of Lemma 6.2, we can find (for sufficiently great h)
bh e {{n - l)lnHh, 1/Hh) and vh: [ah9 bh] -> R satisfying (6.6), (6.7) to-
gether with vh(ah) = th.

An application of Lemma 6.1 to uh, vh (uh denotes the inverse
function of ph) allows the conclusion that uh is defined over the whole
interval [ah, bh\ and verifies there

uh(r) ^ vh(r) Vr e [ah, bh] .

Finally, as a consequence of the choice of T, we have from (6.8)

vhφh) ^ ^ + T2<Qo + c(n)(-±-- Ro)
Hh \Jtίh /

and therefore, for great k
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Vhφκ) < Qo

Now, in the interval (T, Qo) the sequence {ph} tends uniformly to
zero (Theorem 4.5), so contradicting the fact that

nHh n
0 .

From the minimality of Eε there follows that the set of points
tβe(T,0) such that \im inft^tep£t) = 0 is a closed interval in (Γ, 0)
(of course, it may consist of a single point). Denoting by Qε the
maximum of such interval, we conclude that pε is positive and regular
in (Qe, 0); Qε thus represents the minimum height of the pendent drop

(6.14) Gε = {(<*, t): t 6 (Qβ, 0), | x \ < pε(t)}

7* Regularity at the vertex. At this point we have proved
the existence of a local minimum of (0.1) for sufficiently small tc;
nevertheless, we cannot say anything about the effective volume of
such solution, nor about the effective smallness of K.

It is however clear, that by a homothetic transformation of the
co-ordinate system we can expand (or contract) our solution so that
it becomes a local minimum of (0.1) (for a different /c, of course)
among sets of prescribed volume V; or, so that it becomes a local
minimum of (0.1) for a prescribed value of it > 0, in the class of sets
having its own volume (which remains unspecified).

Thus, we can obtain by this method pendent drops of fixed volume
in a weak gravitational field, or pendent drops of small volume in a
prescribed gravitational field.

The following considerations are devoted to the study of the
behavior of our solution near its minimum height Qc.

Let τ e (Qβ, 0), and denote by B(τ) the ball centered on the ί-axis,
passing through the boundary point (pΛ(τ), 0, 0, τ) eRn+1 and
satisfying (see (6.14)):

(7.1) Hn+1[(Gε - B(τ)) f]{Qε<t< τ}] - Hn+1[B(τ) Π {t < QM

R(τ) will denote the radius of B(τ).

LEMMA 7.1. / /

(7.2) limpet) = L > 0
tίQe

then there exists τ e (Qc, 0) such that

(7.3) B{τ) n {Q. < t < τ}dGε Π {Qs < t < τ) .

Proof. It follows from (7.2) that



EXISTENCE OF A PENDENT DROP 415

(7.4) limie(r) = + <χ> .
r i Qε

If the assertion in the lemma were false, then we could find, in view
of (7.4) and the mean value theorem, a sequence {tj} converging to
Qε from above, such that

(7.5) lim #(*,.) = +oo .

Taking into account (7.2), (7.5), we derive from (5.3)

P''<ti) n ~ 1 +et- + Λ < 0

P?(t)
when j > j0, since, as we shall see in the following remark, there
holds εQε + Λε < 0. Then we can easily conclude that p"(t) < OVί e
(Qε, tH). Hence, we can describe the boundary of Gε, lying in a
neighborhood of the point (L, 0, 0, Qε) eRn+ι, as the graph of a
suitable function t — u(x) which, in view of the results in §5, would
be analytic over its domain of definition; but this leads to a contra-
diction, since the (not-identically constant) function u should be
constant ( = Q£) over an open set.

COROLLARY 7.2. There holds

(7.6) \imρε(t) = 0 .

Proof. If not (see Remark 4.4), we get from the lemma the
existence of a ball B(τ) satisfying (7.3). Defining

~ _ (Gε for t ^ τ
ε " {B(τ) for t S τ

there follows from the isoperimetric inequality

^ + ι ( G c ) = Hn+1(Gt); snβε) < jrt(Gc) ,

a contradiction.

REMARK 7.3. The inequality εQε + Λe < 0 we used in the proof
of Lemma 7.1 really holds for a local minimum Gε. Assuming the
contrary, we derive from (5.3): p"(t) > 0 for every te(QB,0), and
then either oGε is a (regular) graph in the ί-direction, or there exists
r close to Qε s.t. the corresponding ball B(τ) satisfies (7.3). In either
case, as we saw just before, we are led to a contradiction.

COROLLARY 7.4. There exists 8 > 0 such that 3Gε Π Bδ(0, , 0, Qε)
is representable as a graph of an analytic function t = u(x).
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Proof. Assume the contrary; then it would be possible to find
a sequence {tά} of local maximum points for pe9 decreasing to Qε. On
the other hand, we have from (5.3)

pWj) ^ ^ f + εQε + Aε

which is positive for j great enough.
The assertion about analiticity follows from the methods of §5.

The preceding results, together with that of §5, can be sum-
marized in the following

THEOREM 7.5. If G is a local minimum of the functional
defined by (0.1), then dG (Ί {t < 0} is an analytic n-dimensional
manifold.

A. Appendix: Existence of multipliers. For convenience of
the reader, we quote the proof of the following result, which we
used in the proof of Theorem 5.1.

THEOREM A.I. // / minimizes functional

I(u) = ( τ/1 + I Du\2 + [ \u — /|d.ff«-i + ( ίmfo/dί
Jΰ JdB JB

in the class

H= \ue BV(B): u ^ ψΛ (u - ψ)dydt = ί (/ - ψOdytfί = F > ol

(τ/r denotes a Lipschitz function over B), then there exists XeR such

that f minimizes I(u) + X\ u dydt in the class K= {u e BV(B): u ̂  ψ).
JB

The method of proof appears in [16], and involves various steps.

LEMMA A.2. For any ΎJ > 0 and XeR, the functional

Iv λ(u) = I{u) + -̂ -l u2dydt + X \ udydt
2 JB JB

attains its unique minimum uV)λ e COtl(B) in the class K.

Proof. From the inequality 2ab ̂  σa2 + b2/σ(σ > 0) we derive

Iv,x(u) ^ \ l / l + \Du\2 + [ \u- f\dHn^ - —([ t2dydt + X2\B\)

JB JdB Ύ] \JB I

that is, a lower bound for the functional and the necessary compactness
property.
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Lower semicontinuity and strict convexity of IV)λ allow the
conclusion about existence and uniqueness of the minimum in K. Its
regularity can be obtained from a wellknown gradient estimate.

LEMMA A.3. The function

h(X) — I (uv,χ — ψ)dydt
JB

is continuous over R and satisfies

(A.I) limΛ(λ) - 0

(A.2) lim h(X) = + oo .
JI-+-00

Proof. It is easy to show, that as λ, tends to λ0, the sequence
of corresponding minima {uηtλj} tends in L\B) to a function v, which
minimizes Iη>χ0. Uniqueness implies therefore v = uVtx0.

On the other hand, letting c = maxΰ{ —1}9 we have

(λ — c) \ (uv x — ψ)dydt <; Iv λ(uv λ) — \ tuv λdydt
JB JB

— v 1 (uVtχ — ψ)dydt — λ \ ψdydt
(A.3)

ί (ί + c)(uη,x - ψ)dydt ^ Cl(ψ, B) + ( \f\dHn_1
JB JdB

and this yields (A.I).
As far as (A.2) is concerned, define for <5 ̂  0 and φeHlΛ{B)f

Uδ = Uηti + dφ

)dB

so that

α(0) ^ a(δ) + δί

Hence, the function a(d) + S \ φdHn^(δ ^ 0) attains its minimum at
JdB

δ — 0, from which we obtain

\ .P^fj?9* l2dydt + η \ uv,χφdydt
JBVI + \DuVtχ\2 JB

+ λ \ φdydt + \ φdH%_x + I tφdydt ^ 0 .
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In particular, choosing φ = 1 we have

η \ uv,xdydt + X\B\ ^ -H^dB) - \ tdydt
JB JB

that is

V \ (u»>,λ - f)dydt + X\B\
JB

(A.4) c c
^ -H^idB) - \ tdydt - η \ ψdydt ^ c2(f, B)

JB JB

and hence (A.2).

Proof of Theorem A.I. In view of Lemma A.3, for every rj > 0

there exists λ̂  s.t. I (uη λ —tlήdydt — V. Moreover, from (A.3), (A.4)

we have:

(A.5)

hence we can assume Xη-+X as η —> 0. There follows that uζ>̂

converges in L\E) to a function u0 minimizing IOtλ in the class K.
From the relation

\ uodydt = I fdydt
JB JB

we derive IQ,λ(uQ) = IOtλ(f), which concludes the proof of the theorem.

REMARK A.4. From (A.5) we easily derive the following estimates
concerning multipliers λ:

— Hn-ι(dB) — \ tdydt
(A.6) λ ^ C2{B) = ^

\B

Λ + ί \f\dHn.t
JSlf

(A.7) - y
+ c
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