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THE SYMMETRY OF SESSILE AND PENDENT DROPS

HENRY C. WENTE

Let X denote a bounded, open, and connected subset of
Rn+ι (n>\) which we consider to represent the interior of a
liquid drop (when n — 2). The principal result of this paper will
be to show that under suitable conditions X is an axially sym-
metric drop in the sense that there is a vertical line (axis) such
that any nonempty intersection of X with a horizontal hyper-
plane is an open disk whose center lies on the axis. Condition
1: X adheres to a horizontal hyperplane, Σ (i.e., XΠΣ = Φ but
XΠΣΦΦ), with the mean curvature, H, of the liquid-air inter-
face, Ω, a differentiable function of the vertical coordinate and
the angle of contact, a, of Ω with Σ a constant along dΩ,
0<a<π, (Theorem 1. 1). Condition 2: X adheres to Σ with the
mean curvature a smooth function of height and the contact
region of X with Σ a disk (special case of Theorem 1. 2).

1* Introduction* Let (xu -, xn, u) be a Euclidean coordinate

system for Rn+1. Theorem 1.1, which we now state, corresponds to
the equilibrium state of a homogeneous pendent (or sessile) drop
adhering to a horizontal hyperplane, Σ.

THEOREM 1.1. Let X be a bounded, open, and connected subset
of Rn^ which is adhering to the hyperplane Σ: {u = 0}. Suppose
that the boundary of X, dX = Σx U Ω where Σx = Σ Π X and Ω, the
liquid-air interface, is a hyper surface with boundary of class C2

embedded in Rn+1 such that Γ = dΩ = ΩΓ\Σ. Suppose that the mean
curvature, H, of Ω measured relative to the exterior normal is the
restriction to Ω of a CΊ-function on Rnil depending on the u-coor-
dinate alone. Finally, suppose that the angle of contact, a, of Ω
with Σ measured interior to X is a constant along dΩ where
0 ^ a ^ π. Then there is a vertical line about which X is axially
symmetric such that any nonempty intersection of X with a hori-
zontal hyperplane is an open disk with center on the axis.

The physical case of XaR'3 and mean curvature H=—ku + c
(k > 0) corresponds to a sessile drop when X is above Σ, a pendent
drop when X is below Σ. The case k = 0 of constant mean curva-
ture is the situation of no gravity.
J. Serrin [8] treated the case where the liquid-air interface, Ω, may
be expressed nonparametrically, u = u(xlf -, xn) with H & linear
function of height. It turns out that the method of proof used
there may be adapted to the present situation. The key tools are
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the E. Hopf maximum principle [5], the Hopf boundary point lemma
[6], and Serrin's boundary point lemma at a corner [8]. We shall
state these "lemmas" in § II. The method of proof is to take a
vertical hyperplane, TQ, which initially lies outside of X and move
it towards and into X through the one parameter family of hyper-
planes, T, parallel to To. As T moves into X one takes that part
of Ω through which T has passed and reflects it about T forming
the reflected surface, Ω'(T). Initially Ω'{T) lies inside X and we
look for a first time when this will fail. At this point one applies
one of the touching lemmas to conclude that Ω\T) is identical to
the unreflected portion of Ω.

This device was first introduced by Alexandrov [1] who was
able to show that the only embedded compact hypersurface of con-
stant mean curvature is a sphere. The procedure was then refined
by Serrin in [7] and [8].

I became interested in this problem through the work of P.
Concus and R. Finn [2] who made a study of axially symmetric
pendent drops. Their work induced the author to investigate the
stability properties of such drops [9]. A detailed study of the
axially symmetric sessile drop has recently been done by Finn [3].
I should also like to mention the paper of E. Gonzalez [4], in which
it is proven that for any prescribed volume and any angle of con-
tact a, 0 < a ^ π, there exists a sessile drop of minimum energy.
By a symmetrization argument, such a drop must be axially sym-
metric. I am indebted to S. T. Yau who brought up the problem
considered in this paper and suggested that the method of Alex-
androv might work.

The question of symmetry also arises naturally in the "medicine
dropper" problem. Again let X denote the interior of the drop in
contact with the horizontal hyperplane, Σ. Suppose that Σx ~
X Π Σ is a disk and the mean curvature of Ω is linear in height.
The conjecture is that X is contractable and axially symmetric.
The following theorem covers this case.

THEOREM 1.2. Suppose Σ is the hyperplane {u = 0} and let X
be a bounded, open, and connected subset of Rn+1 adhering to Σ.
Suppose that Σx = Σ Π X has nonempty interior in Σ which is sym-
metic about an [n — ΐ)-plane, 77, in Σ with the property that the
boundary, Γ, of Σx can be decomposed into two parts Γ — Γ+ U Γ_
where Γ+ is the graph of a nonnegative C2-function, g, from Πx —
Σx ΓΊ Π such that g is positive on the interior of its domain and
vanishes on dΠx. Γ_ is the reflection of Γ+ about 77.

Suppose that the boundary of X, dX — Ω U Σx where Ω is a hy-
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persurface with boundary, Γ — dΩ = Ω Π Σ, which is of class C2 on
its interior and on that part of dΩ not touching 77. Suppose also
that the mean curvature, H, of Ω is the restriction to Ω of a
Cn-function of u alone (except perhaps on Ω f] 77). Let Tπ be the
vertical hyperplane generated by 77. Under these conditions X is
symmetric about Tπ and the nonempty intersection of X with any
normal line to Tπ is a line segment with center on Tπ.

Remark 1. Clearly, if dΩdΣ is a circle we may apply Theorem
1.2 to conclude the axial symmetry of X as asserted earlier.

Remark 2. If dΩ c Σ = R2 is a square region with rounded
corners we may conclude that X is symmetric about the vertical
hyperplanes generated by the two diagonals. However, if dΩ is a
rectangle with smoothed corners, unequal sides, and /u 4 are the
lines of symmetry for dΩ, then our theorem does not allow us con-
clude corresponding symmetry for X about the generated vertical
hyperplanes. (We do not consider the case when dΩ may have
corners off of 77 although the arguments should work at least in
certain cases.)

Remark 3. Consider the dumbell-shaped region AεaΣ = R2 con-
sisting of the union of two disks Dt — {(xlf x2)\(xl ± 2)2 + x\ <̂  1} con-
nected by a narrow neck Rε = {(xlf x2) | — 2 <; xλ <; 2, — ε ^ x2 <; ε},
and suppose X adheres to Σ with Σx — Aε (again with rounded
corners). The results of Theorem 1.2 assert that X must be sym-
metric about the plane x2 = 0. Aε is also symmetric about xλ = 0.
However, in this case dAε cannot be represented by a graph plus
its reflection and so we cannot conclude that X is symmetric about
a?! = 0. In fact, for the case of no gravity, with H = constant, and
large volume for X, one would not expect the equilibrium configu-
ration for X of least area for Ω to possess such symmetry.

II* The touching principle* The theorems stated in this sec-
tion are well-known results from the literature. We state them
here for the sake of completeness and reference.

Let w(x) = w(xl9 - —, xn) be a differentiate function in some
region of Rn. We shall write wt = wt{xl9 •••,#») to represent the
partial derivative of w with respect to xt. Higher order derivatives
are represented similarly.

Let M(w) be a linear differential operator in some open set

(2.1) M(w) - Σ aiS(x)wid +
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We assume that aiS(x) and 6<(ac) are continuous in G, that ati(x) =
aH(x)> with the summations in (2.1) for 1 <Ξ i, j <; w. Λf(w) is elliptic
on G if

(2.2) Σ <*,,(&)£*& > 0 for all a? 6 G

and f = (ξu - , £») =£ (0, , 0). It is uniformly elliptic on G with
ellipticity constant K > 0 if

(2.3) Σ «*(&)£<£/ ^ « I £ |2 for all a? 6 G .

LEMMA 2.1. (E. Hopf Maximum Principle [5]). Let weC\G)
satisfy M(w) ̂  0 where M is an elliptic operator on G. If there is
a point xoeG with w(x0) ̂  w(x) for all xeG, then w(x) is constant
on G.

LEMMA 2.2. (Hopf's Boundary Point Lemma [6]). Let G be a
region in Rn and suppose that in a neighborhood of x0 e dG, the
boundary of G is of class C1. Let M(w) be a uniformly elliptic
operator on G and suppose that w(x) 6 C\G) (Ί C\G) satisfies M{w) ̂  0
on G. If w(x0) ;Ξ> W(X) for all xeG then either w(x) is a constant
on G or the inward normal derivative dwjdv < 0 at xQ.

LEMMA 2.3. (Serrin's Boundary Point Lemma at a Corner [8]).
Let GdRn be a bounded region which has a C2 boundary in a
neighborhood of x0 e dG. Let T be a normal plane to dG at x0 and
let G+ be that component of G lying on one side of T which contains
x0 in its closure. Let M(w) be a uniformly elliptic differential
operator on G+ which satisfies (2.3) for some K > 0 on G+. Suppose
also that

i,3

for some constant K>0, all xeG+, any ξ = (ξu , £ j , where η =
(Vu m"tV%) is a unit normal to T, and where d is the distance
from x to T.

Let w 6 C\G+) satisfy M(w) ̂  0 on G+ and suppose that w(x0) ^
w{x) for all x 6 G+. If w(x) is not constant on G+, then either
dw/ds < 0 or d2w/ds2 < 0 in any direction which enters G+ non-
tangentially at x0.

There is a touching principle corresponding to each of these
maximum principles. The proofs are well known and similar. We
sketch the proof in the first instance.
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LEMMA 2.4. (Interior Touching Principle). Let M(w) be an el-
liptic operator on G as described in Lemma 2.1. Suppose there is
a function w(x) eC2(G) which satisfies

(2.4) L(w) = M(w) + c(x)w ^ 0

on G where c(x) is continuous. If w(x) ^ 0 on G and ιv(xQ) — 0,
then w(x) = 0 on G.

Proof. It is sufficient to prove the lemma on any relatively
compact neighborhood, U, of x0 where UaG. We set w(x) = eβX]u(x)
where β > 0 and xx is the first coordinate. A direct calculation
yields L(w) = eβXlL(u) where L(u) •= M(u) + c(x)u. Here M(u) has
the form (2.1) with dtj(x) = aίβ(x) and c(x) = β2aL1(x) + βaλ{x) + c(x).
Thus M(u) is uniformly elliptic on U and for large enough β,
c(x) > 0 on U. Therefore M(u) ̂  — c(x)u ^ 0 on U> and u(x) has a
maximum at x0 showing that u(x) [and thus w(x)] is identically 0
on U.

LEMMA 2.5. (Boundary Point Touching Principle). Let G, xQ be
as in Lemma 2.2. Suppose that w(x) eC\G) f] C\G) satisfies (2.4)
where M{w) is a uniformly elliptic operator on G and c(x) is conti-
nuous on G. If w(xQ) = 0, w(x) ^ 0 for xeG, and the inward
normal derivative dwjdv = 0 at xQy then w is identically 0.

LEMMA 2.6. (Boundary Point Touching Principle at a Corner
[8]). Let Gj G+, T, and x0 be as in Lemma 2.3. Suppose that
w{x) eC2(G+) satisfies the differential inequality (2.4) on G+ where
the uniformly elliptic operator, M(w), on G+ satisfies the conditions
of Lemma 2.3 and c(x) is continuous on G+. Let w(x0) = 0, w(x) ^ 0
for x 6 G+, and suppose that for any nontangential direction enter-
ing G+ at x0 we have dw/ds = d2w/ds2 = 0. Then w(x) vanishes on G+.

Now let u(x) and v(x) be two solutions to the same prescribed
mean curvature equation

(2.5) div(Γ^) = nH(x, u) , Tu = Fu/(1 + \Fu\2)

in a region, G. The operator άiv(Tu) is quasi-linear and may be
written in the form

= Σ ai5(x, u, Vu)ui5

( 2 * 6 )

where W2 = 1 -r \fu\2 ~ 1 -^ \p\2. It follows that
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(2.7) Σia«(x, u, ru)ξfo = (1/TF)[(1 + p2)\ξ\2 -
i

Now let w(x) = %(#) — v(aj). Then, as is well known, w{x) is a solu-
tion to a homogeneous linear elliptic P.D.E. of the form M(w) +
c(x)w Ξ= 0. Here ikf(w) is in the form (2.1) and the principle part of
M{w) is

(2.8) aiά{x) = I aid(xf u + t(v — u), Vu + UVv —
Jo

where ai3-(x, u, p) is given by (2.6) and (2.7). In particular, M(w) is
elliptic and on any bounded domain is uniformly elliptic with el-
lipticity constant

ic = l/max(T70

3, Wϊ)

where W0\x) = 1 + \Fu\2 and W&x) - 1 + \Vv\2.
These remarks lead to the following conclusions.

Application 1. Let u(x) and v(x) be two C2 solutions to the
same differential equation of prescribed mean-curvature, (2.5), on a
region GaRn where H(x,u) is continuously differentiable on GxR.
Suppose that u(x) ^ v(x) on G and u(x0) — v(x0) for some x0 e G.
Then u(x) = v(x) on G.

Application 2. Let G, x0 be as in Lemma 2.2. Suppose that
u{x) and v(x) eC\G)f]C2(G) are both solutions to the same prescrib-
ed mean-curvature differential equation, (2.5), where H(x, u) is conti-
nuously differentiable on GxR. If u(xQ) = v(xQ), u(x)<Zv(x) for
xeG, and the inward normal derivatives du/dv = dvjdv at x0, then

= v(x) on G.

Application 3. Let G, G+, Γ and x0 be as in Lemma 2.3. Sup-
pose that u(x) and v(x) 6 C\G+) are both solutions to the same pre-
scribed mean-curvature differential equation, (2.5), on G+ where
H(x,u) is continuously differentiable on G+xR. If u(x0) = v(xo)9

u(x) ^ v(x) for x 6 G+, and if for any nontangential direction point-
ing into G+ at the corner xQ we have du/ds — dv/ds and d2u/ds2 =
d2v/ds2, then u(x) = v(x) on G+.

Ill* Proofs of the main theorems*

Proof of Theorem 1.1. Following the procedure of Alexandrov
and Serrin we let To be a vertical hyperplane in Rn+1 which lies
outside of X. We move To through a one-parameter family of
parallel hyperplanes, T, towards and into X. Once T has cut into
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X, let Ω\T) be the reflection about T of that part of Ω through
which T has passed. We adopt the convention that Ω\T) is closed
so that ΩΓ[TCLΩ\T). Similarly, we let Ω(T) be that part of Ω
through which T has not passed. Again Ω(T) is assumed closed so
that Ω f) TaΩ(T).

When T first cuts into X, the interior of Ω\T) will be contain-
ed in X. For 0 <; a <Ξ π, this will continue to be true until at least
one of the following possibilities occur for some T — 2\.

1. Ω\TX) will be internally tangent to Ω{T^) at a point, P, off
of Σ and away from ΓΊ.

2. At some point, P, on Ω Π Tx but off of Σ the normal, n(P),
to 0 at P will be parallel to Tx.

3. i2'(2\) will touch Ω(Tλ) internally at a point, P, on J but
away from 2\.

4. At some point, P, on i2 n 2\ lying on I' the exterior normal,
m(P), to dΩ Ξ Γ in ί will be parallel to ϊ\.

We first show that there is a first time, T = Tlf where at least
one of these possibilities occur.

For each QeT0 let /(Q) be the normal half line to To from Q
directed towards X. Let Px be the initial contact point of s(Q)
with Ω if such exists. Now set α(Q) to be the distance from Q to
P± if Pi exists, otherwise set α(Q) = + °°. α(Q) is a lower semi-conti-
nuous function on Γo.

Next let Q e Γo be a point off of 2? such that /(Q) meets 42. If
s(Q) cuts through i2 transversally at P19 let P2 be the second time
that s(Q) meets Ω and set b(Q) to be the distance from Q to P2.
If the normal, n(Pύ, to i2 at Px is parallel to To then set P2 = Px

and 6(Q) = α(Q). Again, if /{Q) fails to meet Ω, set 6(Q)= + oo.
Now suppose Q e To Π Σ with /(Q) meeting β for the first time

at Pλ. Suppose that the normal, m(P^), to dΩ in J? is not parallel
to Γo If 0 < a < π then the normal vector, n(P^, to 42 at Px also
is not parallel to To. It follows that /(Q) will cut through Ω and
there will be a second point, P2, where s{Q) meets Ω. Observe that
this will remain true for points Q' e To near Q for which /(Q) meets
Ω. As above we set b(Q) to be the distance from Q to P2.

Now suppose that a = 0 or a = π. In this case we observe
that the prescribed mean-curvature function, H(u), for Ω must
satisfy iϊ(0) ^ 0 . If H(0) = 0, it would follow that in a neigh-
bornood of P1 both Ω and Σ could be expressed nonparametrically
in the form u = ι̂ (x) as solutions to the same prescribed mean-cur-
vature equation (2.5). It follows from Application 2 that Ω = Σ, a
contradiction. Since a = 0 or π a nd the mean curvature of Ω at P1

is not zero it follows that the normal curvature, k(Px) of Ω Π N
where N is the normal 2-plane to dΩ at Plf is different from zero.
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This implies that for points P ' near Px on Ω but off of Σ, the
normal vector, n(P')9 to Ω at P' is not parallel to To. Once again
this means that for all points Q' near Q on To any directed normal
line, s(ff), which meets Ω will cut through Ω and thus will meet
a second time at a point, P2. As above we let b(Q) to be the dis-
tance from Q to P2. Finally, if m ^ ) is parallel to To then set
P2 = Px and α(Q) - 6(Q).

Our discussion allows us to conclude that b(Q) is a lower semi-
continuous function on TQ. Now let c(Q) = [α(Q) + 6(Q)]/2. c(ζ>) is
also lower semi-continuous and so there is a point Q* eT0 where
c(Q) takes on a positive minimum. This minimum value is precisely
the distance through which we must move To to reach the hyper-
plane, Tl9 where at least one of the conditions (l)-(4) first apply.

We now consider each of the four possibilities.

Possibility 1. Choose a Euclidean coordinate system (xu-',
xny u) with the origin at P such that the tangent space to Ω at P
is u = 0 and so that the w-axis is directed into X. In a neigh-
borhood of x = 0 both Ω(Tλ) and Ω\T^) may be represented non-
par ametrically in the form u(x) and v(x) respectively where both
functions satisfy the same prescribed mean-curvature equation, (2.5),
for some C'-function H(x, u). We also have u(O) = v(O), u(x) ^ v{x)
and so by Application 1 u(x) = v(x) and Ω(Tj) = Ω'{T^.

Possibility 2. Choose a Euclidean coordinate system to that P
is the origin, u = 0 is the tangent space to i2 at P, the hyperplane,
Tl9 is given by xx = 0, with the positive u-axis pointing into X,
and the positive α -̂axis pointing towards Ω'(Tλ). There is a neigh-
borhood, U, of the origin in (xl9 •••,»„) space such that on the
domain G = !7n{Xi^0} both ^ Γ J and fl^ΓJ may be represented
nonparametrically by C2-functions u(x) and v(x) both satisfying the
same prescribed mean-curvature equation, (2.5), on G. By construc-
tion we have u(O) = v(O), w(a?) ^ v(ί») for cc 6 G, and dujdxj. —
dv\dxx = 0 at a? = 0. By Application 2 it follows that %(a?) = t?(a?) on
G and so ^(ΓJ = Ω\TX).

Possibility 3. The argument is similar to Possibility 2. Choose
a Euclidean coordinate system (xl9 - —, xn, u) centered at P so that
u — 0 is the tangent space to Ω at P, with u = xx — 0 the tangent
space to 342 at P lying in J?, so that the positive α -̂axis is directed
towards Ω, and the positive u-axis heads into X.

Since the angle of contact, a, is constant along BΩ it follows
that the hyperplane u = 0 is the common tangent space to Ω(TX)
and β'(TΊ) at P. Since Ω is of class C2 with boundary, it follows
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that in a neighborhood of P, Ω(TX) and Ω\TX) are represented non-
parametrically by C2-functions u(x) and v(x) respectively where u(x)
and v{x) are defined on domains Gu G2aRn where dGt is a C2-surface
in Rn containing the origin with the α -̂axis normal to dG* at x — 0
and pointing into G*. From our construction we have GλZ)G2 if
0 <,a< π/2, Gλ = G2 = {x1 > 0} if a - π/2, and Gx c G2 if a > π/2.
We let G = Gx Π G2 and use Application 2 again. On G, w(αθ and
^(x) are solutions to the same prescribed mean-curvature equation,
(2.5), with u(O) = v(O), u(x) ^ v(x) for xeG, and du/dxL = dv/dx1 = 0
at x = 0. By Application 2 we conclude that u(x) = v(x) and hence

Possibility 4. Choose a Euclidean coordinate system (xlf - -, xnt x)
with the origin at P, so that to = 0 is the tangent space to Ω at P
with the positive u-axis directed into X, so that xx = 0 is the re-
flecting plane, T19 with the positive ^-axis pointing towards Ω{T±),
and so that xn — u = 0 is the tangent space to dΩ at P in Σ with
the positive αvaxis directed towards Ω.

Relative to this coordinate system the surface, Ω, in a neigh-
borhood of P, is represented nonparametrically by a function u(x)
of class C2 on a domain GaRn where OedG and 3G is the graph
of a C2-function, ccΛ = φ(xu , ^-x) satisfying ό(O) = 0, ό5 (O) = 0
for j = 1, - —, n — 1, and G lies above the graph of φ(x). Ω(T^) is
represented by this function, u(x), on Gί" = G ΓΊ {Xi >0} while the
reflected surface, Ωr{T^), is represented by the function v(x) on Gt
where v(xly x2- , ccj = u( — xlf x2, , xΛ) for ^ ^ 0 and G^ is the re-
flection of G- about ^ = 0. Observe that Gi aGi if 0 ^ α < π/2,
GΓ ^ G2

f if α = π/2, and Gϊ a Gt if π/2 < α ^ π.
If we let G+ = GίnG2

+, then ^(ίr) and v(x) are both C2(G+) solu-
tions to the same precribed mean-curvature equation (2.5). Fur-
thermore, u(O) = v(O), u(x) <Ξ v(x) for xeG{~, and du/ds = dv/ds = 0
at xQ — 0 in any nontangential direction entering G+.

We now show that d2u/ds2 = d2v/ds2 at ίc0 = 0 in any nontang-
ential direction entering G+. It suffices to show that ui3-(O) =• vίό(ό)
for 1 ^ ΐ, j ^ n. From the definition of v(cc) it follows at once that
z6ti(O) = Vij(p) for 2 <^ i, j <^ n or if ΐ = j" = 1. Since u(xu x2, ,
ίcj ^ ?ύ(~x1? x2, , xn) when xx ^ 0, it follows that %x(0, x2, , xn) ^ 0
and so uιά(Q) = vιά(O) — 0 for j = 2, , ^ — 1. Since xw ^ 0 for
a eG we must argue differently for uln{0).

However, Ω intersects the hyperplane, Σ, at a constant angle,
a. The unit normal to Ω is given by N = (Fw, — 1)/Wand the unit
normal to J may be written ζ = (0, , 0, b, a) where a2 + b2 = 1.
It follows that cos a = (6%Λ — α)/W. Substitute ccΛ = 9(̂ 1, φ , Λ?Λ-I)
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into this equation and differentiate with respect to xx. We find
0 = b[uln(O) + uΛn(O)φ1(p)]. Since φ1(O) = 0 we conclude that uln(O) = 0
if 6 Φ 0. However, if 6 = 0 then a — 0 or a = π. In this case we
have un(xlf , xn-u Φ(xl9 , α^-i)) Ξ 0. Again differentiate this ex-
pression with respect to x19 set x = 0 and we find that ttln(O) =
vlf£O) = 0 in this case also.

We have verified all the conditions of Application 3. We con-
clude that u(x) = v(x) for cceG and hence Ω{Tλ) =

Proof of Theorem 1.2. Let Γo c i?"+1 be a vertical hyperplane
which is exterior X and parallel to Γ . As in the proof of Theorem
1.1 we consider the possibility of moving To through the one-para-
meter of hyperplanes, T, parallel to To into X. For QeT0 we de-
fine the functions a(Q) and b(Q) as previously if Q is off of Σ. Let
Q e To D Σ and suppose the normal half line, s(Q), intersects Ω. If
/{Q) first meets dΩ at a point, Pu off of Π then, since 3Ω is repre-
sented by a graph at Plf the normal, m{P^), to 3i2 in 21 is not par-
allel to To and so /(Q) will meet Ω a second time at a point, P2.
We set a(Q) = d{Q, Px) and b(Q) = d(Q, P2). If /(Q) first meets i?
at a point P,, on i7 then we set b{Q) = α(Q) = d(Q, PJ. As before,
it follows that both a(Q) and b(Q) are lower semi-continuous func-
tions which implies that [a(Q) + b(Q)]/2 takes on a positive minimum.

Let ϊ7! be the corresponding hyperplane. If Tt is not Γ/y then
it follows that either Possibility 1 or 2 occurs at a point PeΩ and
PgΣ. By the appropriate touching principle, Application 1 or 2,
we conclude that Ω(TX) = 42'(2\), an impossibility unless 2\ = JΓ/7.
Therefore Tt = Tπ.

The same conclusion must hold if we had initially chosen To to
lie on the other side of Tπ. The only way for this to be true is if
X itself is symmetric about Tπ and such that any nonempty inter-
section of X with a normal line through Tπ is a segment whose
center lies on Tπ.
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