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ON THE EXISTENCE OF CAPILLARY FREE SURFACES
IN THE ABSENCE OF GRAVITY

JIN-TZU CHEN

If we were to put water into a glass cylindrical container
of circular cross section and transport it to outer space, the
surface of the water would be uniquely determined as a lower
hemisphere. Concus and Finn [1] have shown that if the
circular cross section is replaced by a square section then no
such surface can exist as a graph of a function. The question
then arises, for what kind of cross section can we expect the
existence of a surface in the form of a graph?

Mathematically, this question can be formulated as follows: Let
Ω be the cross section of the cylinder and u be a capillary free surface
defined over Ω. By the least action principle of physics, u would
minimize the energy functional

(1.1) E[u\ = σ \[ Vl + \Fu\2 dxdy - σX [ uds

subject to the volume constraint

(1.2) II udxdy — constant

where Σ is the boundary of Ωy ds is the arc length measure on Σ
and Fu is the gradient of u. The physical interpretation of (1.1) is
as follows: The first term gives the potential energy in the free
surfaces; the constant σ is referred to as the surface tension. The
second term gives the wetting energy due to the boundary adhesion.
The dimensionless constant λ satisfies |λ| <; 1 and depends on the
material of the wall and the fluid. For glass and water, λ is close
to 1, and for glass and mercury, λ is negative. We mention that
the case λ > 1 corresponds physically to a situation in which adhesion
dominate, so that the fluid would spread out along the walls and no
equilibrium surface would exist. This phenomenon is observed, e.g.,
with liquid helium and glass.

The equilibrium condition δE[u] = 0 under the constraint (1.2) is
expressed by the Euler equations:

(1.3) div Tu - H in Ω

(1.4) Tu-v = X on Σ

where Tu(uJVΊ + \Fu\2, uy\Vl + \Vuf), H is a constant which is
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twice the mean curvature of the capillary free surface, and v is the
unit outer normal of Σ.

If we introduce the angle 7 by letting 7 = cos 7, then (1.3) and
(1.4) imply that u is a surface of constant mean curvature which
makes constant contact angle 7 with the wall; the angle 7 is measured
inside the fluid, as shown in Figure 1.

It should be noted here that the constant H connot be prescribed;
it is implicity determined by the geometry of Ω and the contact
angle 7, as follows by applying the divergence theorem to (1.3) and
using (1.4):

(1.5) H = — cos 7 .
ύό

We use here the symbols Ω and Σ to denote both a set and its
measure. We may assume 0 ^ 7 ^ τu/2; for further physical and geo-
metrical background information, see [8].

The following necessary condition for the existence of solution
of (1.3) and (1.4) was first observed by Concus and Finn [3]:

Let Ω* be any subdomain in Ω bounded by a simple curve Γ and
a subboundary Σ* of Σ, as shown in Figure 2. Integrate (1.3) over
iQ*, using (1.4) and the divergence theorem we have

HΩ* = \\ άivTudxdy
JJΩ*

= ί Tu-vds
JΣ*+Γ

= \ Tu-v + \ Tu-vds
JΣ* JΓ

= 2'*cosΓ + [ Tu-vds
JΓ

substituing (1.5) and using the fact \Tu\ <J 1, we obtain:

- r < — Σ cos Γ - I7* cos Γ < Γ
~ Ω

or equivalently

(1.6)
Ω cos 7 ^ Σ

for any Γ.
For a solution of (1.3) and (1.4) to exist, it is necessary that

(1.5) hold for every choice of Γ. As was shown in [3], an arbitrary
Σ can be changed by an arbitrary small deformation into a boundary
for which (1.6) will fail for some Γ.
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Condition (1.6) was later shown by Giusti [13] to be not only-
necessary, but (almost) sufficient. For most purpose, Giusti required

(1.7)
Ω

cos 7 < (1 — ε)
Σ

for some ε > 0 and any JΓ.
Obviously (1.7) is implied by

lf-f!*ί
for every contact angle 0 < 7 ^ π/2. Thus if we could characterize
those domains for which (1.8) holds, then (1.3) and (1.4) will have
solution on them for any prescribed contact angle 7 > 0.

The difficulty of using (1.7) and (1.8) is that one must verify
them for every possible Γ. It is shown in [15] that if Ω is convex,
then (1.8) follows from the following curvature condition on Σ:

for every peΣ, where K(p) denotes the curvature of Σ at p. For
nonconvex domains there appears to be no analogous criterion, c.f.
the examples in Finn and Giusti [11].

Instead of thinking about the curvature conditions on Σ, Finn
[9] gave the following vector field condition on Ω which is equivalent
to (1.7):

THEOREM (Finn). The condition (1.7) holds for arbitrary Γ a Ω
whenever there is a vector field W(x, y) in Ω satisfying

Supl

- _ Σ
Ω

-j

w\ <

in

on

1

Ω

Σ

(1.9) p \\
o COS 7

By using this theorem, Finn proved the existence of solution over
triangles, tetrahedrons, parallelograms and some special polygons by
constructing the vector field directly. He required a + 7 ^ π/2, where
2a denotes the smallest angle of the vertices of the domain (In case
a + 7 < π/2, Concus and Finn [1] have proved that no solutions exist.)
For general domains a difficult point in connection with the use of
Finn's theorem.

In this paper, we shall use variational method to reduce the class
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of curves on which we need to test Concus-Finn-Giusti's condition
(1.7) to some special curves Γ, which have property that if (1.7)
holds for these special curves Γ, then it holds for all possible curves.
This enables us to state following existence theorem depending on
the geometric properties of Ω:

THEOREM 4.1. If a circle of radius R ~ Ω/Σ can be rotated along
Σ in the interior of Ω such that no antipodes of the circle lie on Σ,
then (1.8) holds and hence a solution of (1.3), (1.4) exists in Ω for
all y > 0.

Actually, we prove that (1.8) holds strictly for every i2* φ 0 , Ω;
by a theorem of Giusti (Theorem 1, [15]), this implies that a solution
exists for 7 = 0.

The sufficient condition of Theorem 4.1 is also necessary for exist-
ence of the solution for domains without a "neck" of radius R = Ω/Σ.
(Here what we mean by a neck domain of radius R is a domain which
has two large components with narrow connection through which one
cannot pass through a circle of radius R.) If such a "neck" appears,
the necessity can fail. For example, a domain which is the union of
two disks of equal radius will fail to satisfy the condition of Theorem
4.1 if the aperture is sufficiently small; however, as we shall show
in § 5, the solution nevertheless exists.

2* Isoperimetric inequalities* The purpose of this section is
to provide some basic isoperimetric inequalities which will be used
to prove theorems in the later sections.

A well known form of the classical isoperimetric inequality can
be stated as follows:

Among all plane curves of prescribed arc length which pass
through the two given P, Q; the circular arc bounds the maximum
area between it and the line segment through P and Q.

This result still holds if the line segment is replaced by a plane
curve which does not have intersections with the circular arc of
prescribed arc length.

The following lemma is a generalization of the classical isoperi-
metric inequality in a bounded domain.

LEMMA 2.1. Let Ω be a plane domain with piecewise smooth
boundary Σ, let P and Q be two points on Σ which divide Σ into
two parts Σlf Σ2 and let Γ be a curve in Ω joining P and Q with
prescribed arc length less then Σ1 and bounds with Σ2 an area Δ(Γ).
Then Δ(Γ) achieves its maximum in one of the following cases;
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( i ) Γ is a circular arc if one can draw a circular arc in Ω
with the prescribed arc length

(ii) Γ is a curve which coincides with some parts of Σ and
circular arcs of equal radii. Furthermore, if the end points of the
circular arcs are smooth points of Σ, then the circular arcs are tan-
gent to Σ there except possibly for the initial points P and Q. (Figure
3a, b, c.)

Proof. (Uniqueness). If one can draw a circular arc of the
prescribed arc length in Ω, A(Γ) achieve its maximum by the classical
isoperimetric inequality. Suppose that is not the case. Since fixing
any two points of Γ and deforming the subarc of Γ between these
two points into a circular arc always increases the enclosed area, Γ
will consist of some pieces of Σ and some circular arc in Ω. Let
Ci9 C3 be two circular arc with radii rif τ3- respectively. If rt Φ r3-
we can cut Ct and Cd a little bit by two chords l€ and 13 respectively
with ϊ, = lό (Figure 4). Let St and S, be the small regions cut out
from d and C3 respectively. Moving St to ls and S, to lt, one obtains
a new curve Γf which bounds a region with the same area as Γ, but
now the subarcs of Γ' are not circular. Hence we can deform it
into a circular arc and increase the area bounded. This proves that
r, = rά.

Next, we want to prove that any circular C< is tangent to Σ if
the end points of C4 are smooth points of Σ. Let E be an end point
of C< which is a smooth point of Σ and an interior point of Γ. Let
A and B be two points on Γ in a neighborhood of E such that AeΣ,
B 6 Cif and let A be the origin of the coordinate system with AB as
#-axis (Figure 5). By taking a small neighborhood we can assume
that Σ is expressed as y = g(x) in a neighborhood ΣAF. Now let I
be the arc length of ΓAB. We will use a variational method to show
that ΓAB should be tangent to Σ at E.

Let (6, 0) and (xOf g(x0)) be the coordinates of B and E respectively,
and y — f(x) be the equation of ΓEB with respect to this coordinate
system, then

(2.1) I = \X"VϊTψ{x)dx + Γ τ/1 + f\x)dx
JO JXQ

(2.2) Δ = area bounded by ΓAB and the x-axis

S XQ Γb

g(x) dx + \ f(x) dx .
0 JXQ

We are going to maximize (2.2) under the constraint (2.1).
Let η be a continuous differentiate function defined on [0, b] with

Ύ](b) = 0, and let
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η \" [f{x) + εη{x)}dx
O JίC 0

+ λ ("Vl + [g'(x) + sϊ]'(x)]2dx + λ Γ τ/1 + [f'(x) + sr]\x)fdx
JO Ja?0

then

(2.3) *L = [\(χ)dx + Γ V(x)dx + X F-
de o Jo J Jo V
L = [\(χ)dx + Γ V(x)dx + X F-U&

de c=o Jo J* o Jo Vl +

= \b7)(x)dx -
Jo Λ

o dx V l + (?'2(CB)

dxWl

VT+ gf\χ_

the extreme curve has the property that (cϋ//de)|β==0 = 0 and since rj(χd)
is arbitrary. (2.3) implies

+ g'(xof Vl + f'(xoγ

which is equivalent to

f\xα) - g'(xΛ) .

This proves that Γ is tangent to Σ at E.
The above arguments show that if the extreme curve does exist

then it is a curve of (i) or (ii) as described in the lemma. (We do
not prove there is a unique extreme curve, in general, this may not
be true.) We need to prove existence also.

[Existence]: Let α be the prescribed perimeter and let

S = {4(Γ)\Γ joint PQ in Ω, Γ = α)

T = {Δ{Γ)\Γ joint PQ in Ω, Γ = α and ΓeCm}

then T is dense in S, hence

sup S = sup T .

Let Jm = sup T, since T is bounded above by Ω, Δm is finite and there
exists a sequence {Λ(ΓJ} in T such that Δ(Γn) | Λ«, If we can show
that Δ^eS, i.e., Δ^ = Δ(ΓJ for some curve Γm join P, Q in Ω and
Γ*, = α then we are done.
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To this purpose, let each Γn be perimetrized by arc length:

Γn = {XM = fe(s), y(s))\0 t^s^a}

since xri{s) + y'n(s) = 1. {xn} and {yn} are bounded families of equi-
continuous functions, hence by Ascoli's theorem, there exist sub-
sequences {ccΛJfc} and {yn]e} such that

y«k = 2/00

uniformly on [0, α] for some x^ and ί/MeC[0, α]. Let X^s) =
(̂ oo(s), 2/oo(s)) and let Γ^ = X^s). Then for any regular partition
0 = s0 < sx < < sN = a of [0, α], we have

(2.4) Σ

N

^ Σ

Σ l-XUβ,) - X»(β4)| + Σ lX

Given ε > 0, we may choose nk large enough such that

then (2.4) implies

Hence Γ^ is rectiίiable and Γ^ ^ α. On the other hand, J ( Γ J ^ Δ(Γ)
for all J(Γ) 6 S. This implies Γ^^ a and hence Γ^ = a.

The following lemma is the main lemma which will be used to
prove theorems in the following sections.

LEMMA 2.2. Let P and Q be two points in the plane, Γ a simple
plane curve joining P and Q which encloses with the line segment
PQ an area Δ(Γ), and X be a constant such that 1/λ ^ PQ/2. Then
the functional

φ(Γ) - λZf(Γ) - Γ

achieves its maximum (local) at the smaller circular arc radius 1/λ.
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Note. There are two circular arcs of radius 1/λ passing through
P, Q (Figure 6). Call the smaller one Γ1 and the bigger one Γ2. As
we shall see from the following remarks, Γ2 is a stationary point,
not an extreme point of φ.

Proof. Let Γ(t) = (x(t), y(tj), 0 ^ t <̂  1 be a parametrization of
Γ with Γ(0) = P, Γ(l) = Q and x'\t) + l/'2(ί) ^ 0. Then

φ(Γ) = -M <&% - yds - Γ V^
2 J3^ JO2

A
2 Jo

where

(2.5) Fit, x, y, x\ y') = A (xyf - yx') - vV2 + yn .
Δ

By the calculus of variations, the extreme curve must satisfy the
Euler equations:

(2.6) F. - %-Fm. - 0
dt

and

(2.7) Fy - ^-Fr = 0 .

Computing directly from (2.5) we get

(2.8) F. = ±tf, F..= -±v- X'
2 2a Vxn + y

and

(2 Qλ F — —x' F , — — υ — #

Substituing (2.8) into (2.6) we have

,.., , d x'
a dtVxn

which is equivalent to

(xn + y'ψ*

= 0
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Similarly, by substituting (2.9) into (2.7) we have

(2.H) Γ g / y " %v' - λ ~ w = o .

Since xn + y'2 Φ 0, (2.10) and (2.11) together imply

(2-12) ξ4 Hπr = λ .

The left hand side of (2.12) represents the curvature of Γ. Thus Γ
is a curve of constant curvature λ and therefore a circular arc of
radius 1/λ. There are two such circular arcs (Figure 7), say /\ (the
smaller one) and Γ2 (the bigger one). To show that φ achieves its
maximum on Γu one can write down the second variation and show
it is negative at Γlf however it is a tedious task. The following
method seems much easier.

Fixing the arc length Γ, the classical isoperimetric inequality
implies that Δ(Γ)f and hence φ{Γ) = λ Δ{Γ) — Γ, will achieve its
maximum when Γ is a circular arc. Thus to maximize <p(Γ), it suf-
fices to consider the value of φ on the family of circular arcs passing
through P and Q. Now let Γ be a circular arc in a neighborhood
of Λ with radius r and center 0. Let θ = (1/2)Z_POQ and let a =
(1/2)PQ (Figure 7). Then we have

Γ = 2rθ

A = r2θ — ar cos θ

θ = sin-1—
r

and

(2.13) 9 = 9>(r)

•=• (λr 2 - 2r) sin —
r

(2.14) φ\r) = 2(λr - ^(sin" 1 ± a

γ

(2.15) φ"(r) = 2λ(sm-1 SL -
V r Vr2 — a

(2.16) )

= 2λf sin-1 αλ - . =
V Vl - (αλ)

= 2λf sisin-1 αλ - aX
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By assumption 1/λ > (1/2)ΨQ = a, so 0 < αλ < 1. If we introduce
the angle a = sin"1 αλ, then 0 < a < π/2 and αλ/l/l — (αλ)2 = tan a.
(2.16) becomes

) = 2λ(α - tan a)< 0 .

This proves that φ(Γ^ is a local maximum.

REMARK.

( i ) Equation (2.14) can be written as

(2.17) φ\r) = 2(λr - ΐ)(θ - tan θ) , 0 ^ θ ^ — .

Thus φ\r) = 0 if and only if r = 1/λ or θ = tan 0; the second case
can happen only if # = 0 and hence Γ would be the line segment
PQf which is not a candidate for an extremal, as we have seen from
the first part of the proof. Hence we obtain again that the circular
arcs of radius 1/λ are extremal curves of φ.

(ii) φ'(r) > 0 if a < r < 1/λ. This means that φ is strictly
increasing as r varies from α to 1/λ or geometrically, <p(/\) > φ(Γ)
for all smaller circular arcs Γ lying "above" Γx (Figure 8).

(iii) φ\r) < 0 if r > 1/λ. This means that φ is strictly decreasing
as r increases from 1/λ to oo, or geometrically, <p(Γx) > φ{Γ*) for all
circular arcs lying between Γx and PQ (r = ©o) (Figure 8).

(iv) Γ2 is a stationary curve but not an extreme curve.
For let C be any bigger circular arc which lies "inside of" Γ2,

that is r(radius of C) < 1/λ; and let Pf and Q' be any two points on
C such that the subarc CP>Q> of C between Pf and Qf is a smaller
circular arc (Figure 9). Now let C*'Q> be the small circular arc of
radius 1/λ passing through P' and Q'. Applying our lemma to GP,Q,
and C*/Q/ we have:

(2.18)
P.q.

Let S be the shaded area as shown in Figure 9. Adding the quantiy

XS — Cppr — Cρ/ρ to both sides of (2.18) we have

φ(C) - λ Δ(C) - C :g λ J(C*) - C* = φ(C*)

where C* = CPF, + C?/ρ/ + CQ / ρ .

Now if we let Cx be the circular arc t h r o u g h P and Q which has

t h e same length as C*, then by the classical isoperimetric inequality

we have

(2.19)



ON THE EXISTENCE OF CAPILLARY FREE SURFACES 333

By continuing this process, one will increase φ until d shrink to Γίu

On the other hand, since C can be chosen to be very close to Γ2

and C1 can be made very close to C (by taking P' close enough to
Q'), we have

<P(Γ2) < φ{Cx)

by the continuity of φ.
If C is a bigger circular arc lying "outside of" Γ2, by using the

same argument as above, we will obtain the same result as (2.19).
However this time C± is not a shrunken circular arc of C, but an
enlarged circular arc of C. As this process continues, Cί will grow
bigger and bigger and φ will go to oo, since λA — Γ ~ λ0(r2) —
0(r) —» oo f as r —+ °°.

The above arguments show that φ(Γ2) is a minimum among the
family of circular arcs. Obviously, it is not a minimum among all
curves, since φ(Γ) < φ(Γ2) for noncircular curves Γ which have the
same arc length as Γ2.

The following lemma is an immediate result of Lemma 2.2.

LEMMA 2.3. Let A be a plane curve joining P and Q, which
does not meet the smaller circular arc C of radius 1/λ. λ > (1/2)PQ,
and let Γ be any simple plane curve joining P and Q which encloses
an area Δ(Γ) with A. Then the functional

φ{Γ) = λ J ( Γ ) - Γ

achieves its maximum on C.

3* Some results of Concus, Finn and GiustL The following
theorem of maximal principle is proved by Concus and Finn [3].

THEOREM 3.1. (Maximal principle). Let Ω be a plane domain
with piecewise smooth boundary Σ, and let u, v be two functions in
C\Ω). Suppose that

div Tu <; div Tv in Ω

Tu v ^ Tv'V on Σ ~ Σo

where Σo denotes the set of points in Σ at which the normal is not
defined. Then u = v + constant in Ω.

Let Ω be as above and consider the following capillary free sur-
face equations

(3.1) div Tu = H in Ω , Tu v = cos Ύ on Σ - Σo ,



334 JIN-TZU CHEN

where H and 7 are constants, and v denotes the outer normal of Σ.
Theorem 3.1 implies that the solution of (3.1) is unique up to an
additive of constant if it exists.

The following theorems for existence is proved by Giusti [13]
and [15].

THEOREM 3.2. Suppose that there exists an ε > 0 such that

(3.2) p
cos 7 < (1 — ε)—

2

Σ Ω

for all curves Γ in Ω (Figure 2). Then (3.1) has a solution.

THEOREM 3.3. Let Ω be a convex domain in the plane and let
k(p) be the curvature of Σ at p. Suppose that

Kv) ̂  j

for all peΣ, then (3.1) has a solution for all 7.

THEOREM 3.4. Suppose that there holds

for all Ω* Φ 0 and Ω, then (3.1) has a solution for 7 = 0.

4* Geometric condition for the existence of solutions* In
this section we give a geometric condition on Ω, which guarantees
the existence of solutions of (3.1) for all contact angles 7.

DEFINITION 4.1. A plane domain Ω with piece wise smooth bounda-
ry has the interior rolling disk property of radius R if:

( i ) for any regular point P on Σ, one can contact a circle of
radius R inside Ω so that no antipodes of the circle lie on Σ.

(ii) for irregular points P on Σ, one can contact a circle of
radius R inside Ω in any direction between v(P-h) and v{P—) so that
no antipodes of the circle lie on Σ, where v(P-f-) and v(P-) denotes
the right hand and left hand normals of Σ at P.

Roughly speaking, a plane domain Ω has the interior rolling disk
property of radius R if one can rotate a disk of radius R along every
point of Σ so that no antipodes of the disk lie on Σ. Thus a triangle
does not have the interior rolling disk property for any R. A domain
with a narrow aperture fails to have the property if R is bigger
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than half of the aperture.
We now state our main results.

THEOREM 4.1. If Ω has the interior rolling disk property of
radius R = Ω/Σ, then (3.1) has a solution for any contact angle 7.

THEOREM 4.2. Let Γu Γ2, --,be all of the circular arcs of radius
R = ΩJΣ in Ω with end points on Σ which are tangent to Σ at regular
points of Σ and contact to Σ at singular points of Σ. If there
holds that

(4.2)
Σ Ω

for all i — 1, 2, , then (3.1) has a solution for all contact angle 7.

The proof of the above theorems is based on the following idea.
Suppose we can show that

(4.3) *— - —
Σ Ω Σ

for all possible curve Γ in Ω, then for any 7 with 0 < 7 ^ τr/2,
Concus-Finn-Giusti's condition (3.2) holds by taking e = 1 — cos (7/2)
and hence a solution exists.

However (4.3) is equivalent to

(4.4) - Γ + i - ώ * ^ Σ* ^ Γ + - iβ*
R R

where R = Ω/Σ.
Let Σ* be fixed and let P, Q be its end points on Σ, consider the

functionals

and

f(Γ) = Γ + ±-
it

g(Γ) = -Γ + ±
K

defined on all curves Γ in Ω which join P and Q. If we can show
that

(4.5) Max g(Γ) ^ Σ* ^ Min f(Γ)

for all P, Q e Σ, then we are done.
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On the other hand, let Ω' = Ω - Ω*, Σr = Σ - Σ* then

= Γ + —(IO - £?')
R

~ ~R " \ + Λ

in , X f\f

thus minimizing /(Γ) is equivalent to maximizing — Γ + (l/R).Qr,
which is just maximizing g(Γ) with Σ* replaced by Σ' and Ω* replaced
by Ω'. Therefore the only thing we need to do is to maximize g.

We need only consider the case Γ 5Ξ 2", for if Γ > Σ'

g(Γ) = -Γ + - iβ* < -Σ' + ±Ω = g(Σ') .
K K

Now let Γ be any curve with d(P, Q) ^ Γ ^ Σ' where d(P, Q) is
the distance between P and Q. By Lemma 2.1, among all curves of
arc length Γ9 i2* and thus g(Γ) would achieve its maximum in one
of the following cases:

( i ) a circular arc if one can draw a circular arc in Ω with arc
length Γ (3.8).

(ii) a curve which coincides with some subarcs of Σ and circular
arcs of equal radii with the property that if the end points of the
circular arcs are smooth points of Σ then the circular arcs are tan-
gent to Σ (3.9).

Let

^ = {Γ\d{P, Q) ^ Γ £ Σf, Γ is a curve satisfying (3.8) or (3.9)} .

Then we have

Max g(Γ) - Max g{Γ) .
any Γ Γ e jr

This reduces the maximization over a very complicated class of curves
to one over a much simpler class.

To prove Theorem 4.1, we shall show that g achieves its maximum
on the boundary Σf and since

g(Σr) = -Σ' + — Ω = -Σr + Σ = I 7 *
R

4̂.4) hold for Σf and hence will hold for all possible curve.
Before proving the theorems, let us define some notation: Let

C be a simple closed curve, the interior of which is divided by Σ
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into subregions Δly Δ2, -- ,z/fc, we will call At positive ( + ) if Δ% lies
inside Ω, negative ( —) if Δt lies outside Ω.

We need the following lemmas.

LEMMA 4.3. Let Ω be as in Theorem 4.1; then no circle of radius
less than R can have its interior divided by Σ into subregions con-
taining more than one negative region.

Proof. Suppose there exists a circle Sr(0) of radius r <, R cen-
tered at 0, which is divided by Σ into more than one negative regions,
let Δu Δ2, Δz be three adjacent regions of the type —, +, —, and let
ΣAB, %CD be two of the subarcs of Σ bounding Δ2 (Figure 10). Shrink
Sr(0) with respect to 0 until the first point of contact (with ΣAB U ΣCD)
happens, say at PeΣCDf i.e., there exists a circle St(0), t <>r <, R,
which contacts ΣCD at P and intersects ΣAB at some points, say A', B''.
Now take the circle SR of radius R containing St(Q) and tangent to
St(0) at P. SB contacts Σ at P but does not lie inside Ω, contra-
dicting the hypothesis that Ω has the interior rolling disk property
of radius R.

DEFINITION 4.2. A subregion Ω'cΩ is convex in Ω if for every
two points P, QeΩ\ the line segment PQdΩ implies PQaΩ'.

LEMMA 4.4. Let Ω be as in Theorem 4.1 and Γ be a circular
arc of radius R in Ω which is not contained in Σ, and let the sub-
region Ω* be convex in Ω. Then

g{Γ) < g(Γ') (strictly) .

Proof. Let Γf be the completing circular arc of Γ. Then by
Lemma 4.3, either Σ* or Σ' lies inside the circle Γ U Γ'.

If Σ* lies inside the circle Γ U Γ', then Ω* <; πR\ and there are
two possible cases Σ* > Γr or Σ* ̂  Γ\

( i ) If I7* > Γr (Figure l la), then

±-Ω* < —πR2 = πR < 2πR = Γ + Γ' < Γ + Σ*
R - R

hence we have

g(Γ) = - Γ + Aβ* < Σ* = g(Σf) .
K

(ii) If Σ* si Γ' (Figure lib), then by the isoperimetric inequality

— •<?* < — (
Σ
*
 + Γ
^ ̂

 Γ
'
 + Γ
 - (I

5
* + Γ) =

 2ιπR
(Σ^ + Γ) < Σ* + Γ .

R" R iπ AπR iπR
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We still have

g(Γ) = -Γ + 4^* < Σ
it

If Σ' lies inside the circle Γ \J Γ' (Figure lie), then by Lemma
2.3 Σ' ^ -Γ + (l/R)Ωr, hence we have

g(Γ) = -Γ + KQ* = -Γ + hΩ - Ω')
K K

= Σ - Γ - ±-Ω' < Σ + Γ - —Ω'
R R

- Γ + — Λ
R

= Σ*= g{Σ') .

This proves the lemma.

LEMMA 4.5. Let Γ be a curve in Ω whose end points P and Q
lie on Σ, let Ωr and Ω* be the two disjoint regions cut by Γ. Sup-
pose that one can draw a piecewise smooth curve Γι in Ωf which join
P and Q and with the property that a circle of radius R can be
rotated on it in such a way that the circular arc between Γ and Γί

is always a smaller circular arc of the circle (Figure 12). Then

g{Γ) < g{Γt) .

Proof, Let Ω[ and 42? be the corresponding subregions cut by
Γx such that Ω[CLΩ' and β?=>ί2*. Let A and B be two points on
Γx which are close enough such that the two circles of radius R
contact to Γ1 at A and B from the side of J2f have nonempty inter-
section in fl? — β*. Let C be the intersection of these two circles
and let D, E, F, G be the intersections of them with Γ as shown
in Figure 12. Let S, ΔM Δ be the regions enclosed by AB, BC, CA;
DAF, FD; FG, GBC, CF respectively, and consider the new curve
Γ(A), Γ(AB) defined as follows

Γ(A) =

Γ(AB) ^

Here we simplify the notation by writing PD == ΓPD (the restriction of
Γ between P and D)f DA = circular arc between D and A, AB = ΓιAB

(the restriction of Γx between A and B) • etc. Then

(4.8) g(Γ(A)) - g(Γ) - -DA-AF + DF + ±-ΔA

R
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= φ(DAF) - <p(DF) ^ 0

(Lemma 2.3 with A = DF)

g(Γ(AB)) - g(Γ(A))

= -AB - BG + AF + FG + hή + S)
R

= -AB - BG + (AC + CF) + FG + ±-(Δ + S)
R

= (AC + BC- AB) + 4 s + ( kΔ - BC- BG + CF +
R \R

- (AC + BC- AB) + - 4 s + Γ-ϊH - CBG ~(—Ό- CFG)]
R L.R \R / J

= AC + BC - AB + — S + [ψ(CBG) - φ(CFG)]
R

BC-AB,

since (1/R)S ̂  0 and φ{CBG) ̂  φ{CFG) (Lemma 2.3 with Λ = CFG).

Suppose that we can show that

(4.9) AC + BC> AB

provided A and B are sufficiently close, then

g(Γ(AB)) ^ g(Γ(A))

and using this together with (4.8) and the standard compactness
argument we obtain #(/\) > g(Γ).

Let k(A) be the curvature of Γx at A, since Γλ can be rotated
on it form the side of Ω* a circle of radius R, we have k(A) ^ 1/R
provided that A is a regular point of Γx. If A is not a regular point
of Γu then by hypothesis, we may consider k(A+) and k(A~), the
curvatures of the two smooth curves meeting at A, we still have
k(A+) <; 1/R and k(A~) ̂  1/R. We shall prove (4.9) under these cur-
vature conditions. We consider here only the case where A is a
regular point of Λ; for nonregular points, essentially the same argu-
ments work.

Case ( i ) . \k{A)\ < 1/R.

There exists a neighborhood N(A) of A on /\ on which | k{B) \ <
1/R for all B e N(A). Pick a point B e N(A) such that the two circles



340 JIN-TZU CHEN

of radius R contact to Γ1 at A and B from the side of flf have
nonempty intersection, and let C be as above. Let (0, X, Y) be a
local coordinate system centered at 0 e Γ1 with 0 between A and B
in which OX and OY coincide with the tangent and normal directions
of Γx at O respectively. As O moves from A to B, C will first lie
on one side of OF and then on the other side. Since Γx is smooth
between A and B there exists a point 0 between A and B at which
OY passes through C (Figure 13). Let AO and AC be expressed in
this coordinate system as y(x) and z(x) respectively, and let α, b be
the ίc-axis components of A, B respectively. Then we have

(4.10) y{a) = z{a) , y\a) = z\a) , y\0) = 0

the curvature condition gives

dx i/l + zn dx V\ + yn dx i/l + z'2 '

Integrate (4.11) from a to x and use the initial condition y\a) — z\a)
we get

z'(x) < y\x) < z\x)
Vl + z'\x) ~ VI + 2/'2(̂ ) - Vl + 2J'2(CC)

for all α ^ x ^ 0; this is equivalent to

and hence

AC = Γ Vl + ^r2(x) dx ^ Γ l/l + y'\x) dx = AO .

Similarly, 5C ^ BO and we get

AC + BC ^ AS .

Case (ii). &(A) <̂  — 1/k (this case may happen on Σ).

There exists a neighborhood N(A) of A on Γx on which ft(J5) < 0
for all BeN(A). Pick a point BeN(A) and set up the coordinate
system (O, X, Y) as in Case (i) (Figure 14), and let y(x), z(x), α, b
be defined in this coordinate system as in Case (i). Then we have

τ/'(α) = z\a) , y'(0) = 0 .

Since y has negative curvature for all a ^ x ^ 0, ?/"(#) < 0 for all
a ^ x tί 0. That is, /̂' is strictly decreasing on [a, 0]. Similarly, z has
positive curvature for all a ^ x :g 0, 3' is strictly increasing on [α, 0].
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Thus for x 6 [a, 0] we have

z\x) > z\a) = y'(a) > y\x) > y'(0) = 0

which implies that z'\x) > yn(x) and we have

AC = ί° Vl + z'\x) dx > [° Vl -f y'\x) dx = AO .

Similarly BC > BO and we obtain

AC + BC> AB .

This completes the proof.

REMARK. The lemma still is true if we replace "always a smaller
circular arc" by "not a bigger circular arc" i.e., we allow semi-circles
to happen between Γ and Γx. As we can take a sequence of curves
{Γun} satisfies the hypothesis of the lemma, such that

Γ1}% > Γ1 (in arc length)

Ω*n > Ω*

then

LEMMA 4.6. Let Ω be as in Theorem 4.1 and Γ be a circular
arc of radius > JR. Then

g(Γ) < g(Σ')

still holds.

Proof. Let P, Q e Σ be the end points of Γ. There are two
cases to consider:

( i ) d{P, Q) ^ 2R and Γ is not a bigger circular arc. In this
case, one can draw a nonbigger circular arc Γx of radius R passing
through P, Q and lying "outside" Γ (i.e., Λ c Ω' = Ω - Ω*). By the
remark of Lemma 4.5 and Lemma 4.4 we have

g(Π < gin < g{Σ') .

(ii) d(P, Q) > 2R or Γ is a bigger circular arc. Let Ωf = Ω - Ω*,
let Γt be any curve joining P, Q in Ώ' with the property that a circle
of radius R can be rotated on it such that the circular arc of the
circle which lies between Γt and Γ is not a bigger circular arc. Let
Ωt be the region bounded by Γt and Σ*, and let Ω[ = Ω - Ωt.
Consider the set Sx = {Ωf}, partially order Sx by set inclusion. It is
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easy to see that St is closed in every linear ordered subset, i.e., every
linear ordered subset is bounded above by an element in St. Hence,
by Zorn's lemma, there exists a maximal element 42? in S^ Since
Γ is a curve of curvature < R, St is nonempty, and we have 42* 3 β*
strictly. (Actually, Ωf = 42* if and only if Γ is a circular arc of
radius R or Γ = Σ'.) Let Γx = 542? Π 42, by the remark of Lemma
4.5, we have

g(Π < ff(Λ).

In other words, g can be increased by "moving Γ towerd 2"" to
a new curve Γx in a certain distance which depends on the situation
of Γ and the geometry of Σ.

Now repeat the argument on /\. (The argument can be repeated
if a circle of radius R can be rotated on it from the side of Ω*. It
is clear that Γx has this property from the construction of Γlm) We
obtain a curve Γ2 and a subregion Ω% ID 42? such that

flr(Λ) ^ g(Γ2) .

Continue this process we get a monotone sequence of curves Γn

and an increasing sequence of regions Ω* such that

g(Γn) ^ g(Γn+1) .

Since Ω* c 42*+1 c Ω and i2 is bounded we have lim^^ Ω* =
42* Π β. Let ΓTO = 342ί Π 42'; by our construction of Γn, we have
lirn,^ Γn = Γ^ uniformly in pointwise convergence and also converges
in the corresponding arc length. Hence

We claim that ΓM = Σr.
Let E = Γ^ — (Γ.. Π Σ') = UΓ=i ̂ , where each ^ is a connected

component of E. Since Γ^ is the monotone limit of Γn and each Γn

has the property that a circle of radius i? can be contacted at each
point of it from the side of Ω*f Γn inherits the property too, and so
does Ei for each i.

If Ei Φ 0 and is not a circular arc of radius R, then there exists
a point x e Ei with the property that a circle B{R) of radius R can
be contacted on it from the side of 42* such that Et π B(R) — {x}~
Thus, it is possible to move B(R) across Et slightly so that B(R) f] ΩL
is a smaller circular arc of B(R), (Figure 15). Since Γn-^ΓOO uni-
formly, there exists Γn_x such that B(R) Π ΛLi is also a smaller
circular arc of β(Λ). Let {A, 5} - 5(i2) n A , Aβ = 5(12) n Ω'n,
ΓnΛ = Γn — Γn\AB + AB, and Ω*tt be the region bounded by Γ%Λ and
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I7*. We have Ω*tΊ)Ωi and Γn%t has the property that a circle of
radius R can be contacted at each point of it such that the circular
arc between Γn and Γn_x is always a smaller circular arc of the circle.
This contradicts the maximality of Ω*.

Thus, each 2?t should be a circular arc of radius R or an empty
set. The first case is impossible since Ω has the interior rolling disk
property of radius R. We conclude that Et — 0 for all i, and hence

LEMMA 4.7. Let Γ be a curve consisting of subcurves Γu Γ2, ,
and coinciding with Σ* on Γ — f]t=i Γt. Let Γi9 Σf and Ω* be the
corresponding connected components of Γ — (Γ f) Σ*), Σ* — (Γ Π Σ*)
and Ω*. Then g(Γ) ̂  I7* if g(Γt) ̂  Σf for all i = 1, 2, - .

Proof. (Figure 16)

(4.12) f Σΐ > Σflr(Λ) = - Σ Λ + ^ Σ ^
t = J £-=1 ΐ - = l j f ί ΐ = l

= -Γ + ±Ω + (Γ n Σ*) .
R

On the other hand, J* = ΣΓ=i-Σ? + (Γ Π 21*). This and (4.12) imply
the lemma.

LEMMA 4.8. Let Ω be as in Theorem 4.1, Γ a circular arc of
radius r < R, then g(Γ) < g{Σr) still holds.

Proof. Let P and Q be the end points of Γ on Σ.
( i ) Suppose we can draw in Ω a smaller circular arc l\R) of

radius jβ with P and Q as its end points (Figure 17 a). Then by
Lemma 2.2 and Lemma 2.3 we have

g{Γ) < g{Γ{R)) < g(Σ') .

(ii) Suppose Γ(R) does not lie inside Ω. Then we can "shrink
Γ toward Σ*" until the first point of contact happens, i.e., consider
all circular arcs joining P and Q, which lie between Γ and 2"*. Let
Γ(Q be the circular arc which has the first point of contact with
Σ*9 at Px (Figure 17b). Then by the remarks of Lemma 2.2 we have

g{Γ) < gVXtJ) .

If Case (i) holds on each piece of TPPl(t) and ΓPlQ(t), then by Lemma
4.7, we will have

g(n<g(Σ').
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If Case (i) does hold on both of ΓPPl(Q and ΓPlQ(t^, say it fails on
ΓPPι(t)\ then repeat the argument on ΓPPl(t), we get a second point
of contact and increase g on the new circular arc. Since Σ* is of
finite arc length, after at most countable process, we will get a
sequence of circular arcs Γlf Γ2, , with each Γi satisfying the situ-
ation in (i). Let Γt(R) and Σ* be the circular arc of radius R and
boundary curves respectively corresponding to Γi9 then Case (i) and
Lemma 4.7 imply the lemma.

Lemmas 4.4, 4.5, 4.6 and 4.7 together imply the following lemma.

LEMMA 4.9. Let Ω be as in Theorem 4.1. Then g(Γ) always
achieves its maximum on 2". More precisely, if Γ Φ 0 or Σr (i.e.,
β* Φ 0 or Ω), then g(Γ) < Σ* strictly.

Proof of Theorem 4.1. By Lemma 4.9

(4.13) g(Γ) ^ g(Σ') = Σ* .

On the other hand,

f(Γ) = Γ + ±Ω*
K

- Σ ~ f - Γ + —Ω') , Ω' = Ω - Ω* .
V R I

Again by Lemma 4.9, —Γ + (1/R)Ω' achieves its maximum on Σ*,
hence

(4.14) f(Γ) ^ Σ - (~Σ* + —Ω'(Σ
>> R

Σ)

Σ* £ f(Γ)

for all possible Γ. If β* Φ 0 or Ω (4.15) holds strictly and hence
by Theorem (3.4), Equation 3.1 has a solution for all contact angle 7.

LEMMA 4.10. Let Γ be a circular arc of radius R in Ω which
contacts to Σ at P and Q (Figure 18). Suppose that no points of Σf

(4.

(4.

13)

15)

and (4 14) imply

y _

— Σ

9(Π

-(

VII
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can be contacted by a circle of radius R = Ω/Σ in the interior of Ω.
Then g(Γ) > Σ*.

Proof We will prove that g increases strictly as Σ' shrinks to
Γ, and hence g(Γ) > g{Σf) - Σ*.

Let Cu C2, - , Cn be a sequence of circular arc of radius R in Ω
which meet Σr at Pu Qx; P2, Q2; Pn, Qn respectively, and let Γt =
ΣPp. + C, + ΣQiQf Ai be the region between Ct and Ci+1 (write Co = Σ'PlQl).
(Figure 18). Then

g(Σ') - flr(Λ) ^ x + i
K

0
(Lemma 2.3 with A = Q

if Cx is properly chosen (all we require here is that ΣPιQl < bigger
circular arc passing through Px and Qx).

Similarly

d - g(Γ2) - -ΣPlP2 ~CX- ΣQlQ2 + \AX + C2

it/

0

(Lemma 3.2 with Λ = C2)

if Γ2 is properly chosen.
Repeat the argument we have

g(Γt) < g{Γi+1)

provided Γί+1 is properly chosen. For these sequence of Γt, we then
have

g{Σr) < flr(Λ) < < g(Γn) < g{Γ) .

Proof of Theorem 4.2. We are not going to prove this theorem
in detail since much of the proof is essentially that of Theorem 4.1.
We give here a sketch of the proof.

Let ΓeJF*, i.e., Γ is a circular arc or a curve composed of cir-
cular arcs of equal radii which are tangent to Σ at regular points
of Σ, and Γ coincides with Σ on the rest parts of Γ. By Lemma
4.7 it suffices to consider g on each circular arc.

Let C be one of the circular arc and let r be its radius.
( i ) If r > R, then repeat the argument as in the proof of
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Lemma 4.6. We can increase g by moving C towards Σ'. We may
not, however, reach Σf since we do not know whether Σf satisfies
the interior rolling disk property of radius. If it does, then we will
reach Σf and hence g(C) < g(Σ') — Σ*. If it does not, then as we
have seen from the proof of Lemm 4.6, we shall stop at a curve
which is the trajectory from rotating a circle of radius R on Σ\
i.e., a curve consisting of circular arcs of radius R, all of which
contact to Σf (tangent to Σ' on regular points) and coinciding with
Σr on the complement of those circular arcs. By the hypothesis and
Lemma 4.7 again, we still have g(C) < Σ*.

(ii) If r <; R, then by Lemma 4.9, we can always increase g by
moving C toward Σ* until it consists of circular arcs of radius R
which contact Σ*. Again by the hypothesis and Lemma 4.7, we have
g(C) < Σ*. This completes the proof.

5* Existence and nonexistence of solutions on neck domains
and tail domains* In § 4 we proved the existence of solutions of
(3.1) for all 7 on domains having the interior rolling disk property
of radius R = Ω/Σ. We will show in this section that this condition
is also necessary for domains with no tail of radius R but not neces-
sary for some neck domains.

Let Ω be a plane domain with piecewise smooth boundary Σ and
ΩQ be any subregion of Ω with the interior rolling disk property of
radius R. Consider the set

S(Ω, ΩQ) = {Ωt\ΩoaΩtc:Ω, Ωt has the interior rolling

disk property of radius R) .

Partially order S by set inclusion and by Zorn's lemma, there
exists a maximal element Ωx in S(Ω, Ωo). If Ω has interior rolling
disk property of radius R, then Ωx = Ω for every choice of ΩQ. If Ω
does not have the property, then Ωx c Ω strictly, and different choices
of ΩQ may result in different Ωx. More precisely, Σ± (the boundary
of Ωλ) consists of circular arcs of radius R and coincides with some
subarc of Σ on which a circle of radius R can be contacted (rotated)
in the interior of Ω.

DEFINITION 5.1. A plane domain Ω is called a neck domain of
radius R if it contains more than one maximal subregion with the
interior rolling disk property of radius R (Figure 19).

DEFINITION 5.2. A plane domain Ω is said to have a tail of radius
R if there exists a subarc ΣPQ of Σ, such that

( i ) P and Q can be contacted simultaneously by a circle of
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radius R in the interior of Ω.
(ii) No points of ΣPQ other than P and Q can be contacted by

a circle of radius R in the interior of Ω (Figure 19). With these
definitions, we can now state our theorems.

LEMMA 5.1. For tail domains of radius R = Ω/Σ, there exists
an To > 0 such that (3.1) has no solution for any 7 with 0 ^ 7 < To

Proof. Lemma 4.10.

Theorem 4.1 and Lemma 5.1 together imply the following theorem.

THEOREM 5.2. Let Ω be a piecewise smooth domain with no necks
of radius R — ΩjΣ, then (3.1) has solutions for all 7 2̂  0 if and only
if Ω satisfies the interior rolling disk condition of radius R.

For neck domains the interior rolling disk property is not a
necessary condition for existence. A counterexample can be construct-
ed as follows:

EXAMPLE 5.3. Let Ωx and Ω2 be two unit disks with nonempty
intersection, let Ω == Ω1 U Ω2, {P, Q} = Σx Π Σ2, and 2Θ be the angle
made by P, Q with respect to the center of the disk (Figure 20).
Then we have

Ω = 2π ~2θ + sin 2Θ

(5.1) Σ = 4(τr - θ)

2(ττ -Θ)A~ 2

Thus if the aperture PQ is less than 1, Ω will be a neck domain of
radius R, However, as we will see from the following proof, the
solution surface always exists.

Let Γ be the circular arc of radius R passing through the points
P and Q and call the angle subtended by the arc 2ψ (Figure 20).
Let S(R) be the region enclosed by Γ and PQ.

We have:

S(R) = —{2φ - sin 2φ)

Γ = 2Rφ

Ω* = JLQ + S(R)
Δ

Σ* = —
2
l v
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Thus

(5.2)

(5.3)

JIN-TZU CHEN

Ω
Σ^_ _ SQR) _ 2
Σ

-(2φ — sin 2φ)

Ω 2π -2Θ + sin 20

Γ _ Rφ
Σ 2(π - θ)

(5.1), (5.2) and (5.3) imply:

V

Ω*
Ω

21*
y

RΓ cp 2ι<ρ — sin 2ψΛ

~ ~2Lτr - Θ ~ 4(ττ - θ ) \4(τr - θ)

+ sin 2φ] > 0

hence by Theorem 4.2, the solution exists.
In the case that Ω is the union of two disks of different radii,

it was shown by Finn and Giusti [11] that the solution of (3.1) will
fail to exist if the aperture is small enough. The following theorem
is a generalization of this result.

THEOREM 5.4. Let Ωu Ω2 be two plane domains with one region
of overlap such that (3.1) has solutions on each domain for all 7 ^ 0 .
Suppose that Rλ Φ R2(Ri = ΩJΣt). There exists a positive number
To such that (3.1) fails to have solutions on Ω = Ω± U Ω2 for all
0 ^ 7 < 70 when the aperture is sufficiently smalL

Proof. Let P, Q be the points of intersection of Σ1 and Σ2, let
Γ be the line segment joining P and Q, and let Σ* = Σ f] Σt (Figure
21), then we have

Hence

Σ,

and therefore

y *

> ' and

1 r > *
R

ΣΊ + Σ,
Qt + Ωz

-Σ2ΩX

+ Ω2

as

\Ωt

+ β

r

1 1

= positive constant.

- JLβ* > r if Γ is small enough.
R
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This shows that solutions cannot exist for all 7 ^ 0 and the proof
is completed.

With the results of Theorem 5.4 and Example 5.3, it seems natural
to ask the following question: Can we expect the existence of solu-
tions if R1 = JS2? The answer is still negative. Before giving a
counterexample, we need the following lemma.

LEMMA 5.5. Let Ωx and Ω2 be as is Theorem 5.4 except that Rx — R2

and let Ω — Ωλ U Ω2. If R — Ω/Σ, then R ^ Rlf equality holds only
if Ω1f]Ω2= 0 or Ωx = Ω2.

Proof Let Δi9 i = 1, , n be the components of Ωx Π Ω2 such that
each Δi is bounded by α,c ̂  and bidΣ2 (Figure 22). Then we have

Ω = Ω2 -

bt)

hence

Since Rx = R2, we have Ω2Σλ - ΩXΣ2 = 0. Thus

t + bj A,

* 1"" Σ έl \2\

By hypothesis, a solution exists in i2x for each 7, hence (1.5) holds
with Σ* = αi? i3* = J€ and Γ = bt. Therefore we have

(5.4)
A*.

and hence R — Rx ^ 0.
If £?! Π i22 ̂  0 and ̂  ^ ώ2 then (5.4) holds strictly for some i

and hence R — R1 > 0 strictly.
From Lemma 4.5, it is not difficult to construct a counterexample

to our equation. The idea is as follows: Suppose we can construct
a noncircular domain Ωt which satisfies the interior rolling disk con-
dition of radius 1 but does not satisfy the condition for any radius
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> 1. Let Ω2 be the disk of radius 2. We then have Rx — R2 — 1
and R > 1, thus Ω = Ωx U Ω2 would be a tail domain of radius R if
the locations of Ωx and Ω2 are properly chosen. Hence, by Theorem
5.2 no solution exists for 7 = 0.

EXAMPLE 5.6. Let Ωx be the figure shown in (Figure 23), whose
boundary consists of two circular arcs of radius 1 and a > 1 and the
two line segments tangent to the circular arcs. Let 2Θ be the angle
formed by the extension of these two line segments. We then have:

2Ί = π(a + 1) + 2(α - 1)(0 + cottf)

Ω2 = — ττ(α2 + 1) + (α2 - 1)(0 + cot (9) .

We want to choose α and 0 so that Rλ — ΩJΣ1 = 1, or equivalently,
we want a and θ to satisfy the following equation:

(5.5) f(θ) = θ + colθ = j + 2 α ~ a"
2 (1 - α2)

Picking α = 3/2 in (5.5), equation becomes:

θ + cot θ = — .

Since /(0) > 7π/2, /(π/4) < 7ττ/2, there exists θ e (0, π/4) satisfying
the above relation, more precisely, θ lies between 5° and 6°.

Now let Ω2 be the disk of radius 2, and let Ω = i2x U i22 with β2

overlapping Ωx over the circular arc of radius a (Figure 24). Then
R > 1, and J2 is a tail domain of radius R. Hence no solution exists
for τ = 0.

6. Two applications. In this section we shall derive two simple
applications of our results. The first one is a purely geometrical
property of plane figures. There may be a direct proof, however it
can be derived easily from Theorem 4.1. The proof here is originally
from Finn's proof for Bernstein's problem for constant mean curva-
ture H Φ 0. The second one is an extension of the result of Concus
and Finn [1], who proved that the solution of the capillary surface
equation exists near a wedge of angle 2α, (0 < a < π/2) if and only
if a + 7 ^ τr/2. We extend this result to the case a > π.

THEOREM 6.1. If Ω is a piecewise smooth domain which satisfies
the interior rolling disk condition of radius R = Ω/Σ, then Ω cannot
contain a disk of radius 2R unless Ω is itself a disk of radius 2R.
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Proof. By Theorem 4.1, the equation

(6.1) div Tu = H in Ω

(6.2) Tu-v^l on J

has a solution, where i ϊ is implicitly determined by (6.1) and (6.2)
and is equal to Σ/Ω — 1/R.

Suppose Ω ID B2R, the disk of radius 2R, and Ω Φ B2R. Then
dB2R Π Ω has positive one dimensional measure. Integrating (6.1) over
B2R and applying the divergence theorem, we get

(6.3) H-B<,R = [ Tu'V + \ Twv
JdB2Rf)Σ Jdβ2R[)Ω

< dB2R n Σ + dB2R Π Ω

= 3 5 2 β .

Or

which is impossible.
Equality can hold in (6.3) only if dB2R Π Ω has one dimensional

measure zero. The hypothesis that Σ is piece wise smooth then implies
Ω = B2R.

REMARK. It is natural to generalize this result to n dimensions.
Suppose an ^-dimensional set Ω has the property that a ball of radius
R = Ω/Σ can be rotated along every point of its boundary Σ in the
interior of Ω, then Ω cannot contain a ball of radius nR, unless Ω
is itself a ball of radius nR. In this case our proof is no longer
valid, since we only proved Theorem 4.1 in the 2 dimensional case.

THEOREM 6.2. In a wedge of angle 2a > π, the equation

div Tu = H inside the wedge

Tu v — cos 7 on the boundary

has solutions for all contact angles 7.

Proof. Let O be the vertex of the wedge and let A and B be
two points on the boundary such that OA = OB = 1. Consider the
region

Ω — {(x, y) I (χf y) lie inside the wedge and the distance from

(x, y) to OA or OB is less than a}

(Figure 25), then
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Σ - 4 + 4αα

Ω = 4α + 4αα 2 — πα 2

J 4 + 4αα

thus i2 satisfies the interior rolling disk condition of radius R, and
hence by Theorem 4.1 solutions exists for all T ί> 0.
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n —

= {Tu,
rul + ul)

n - v — Twv — cos ΐ

FIGURE 1

- 1

FIGURE 2
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Γ takes circular arc to bound the maximum area.

FIGURE 3a

Γ coincides with Σ and circular arcs of equal radius, the circular arcs are
tangent to Σ at smooth points of Σ except possibly for the two end points
P and Q.

FIGURE 3b

At singular points of Σ, Γ may not be tangent to Σ.

FIGURE 3C
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FIGURE 4

o, o) (b, o)

FIGURE 5
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, y(t))

,' Q

ό
φ achieves its local maximum on Γx.

FIGURE 7

r=α=-ίpQ

r • x

ψ(Γ) < φ(Γύ. Ψ(Γ*) < φ(Γύ
FIGURE 8
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FIGURE 10
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FIGURE 12

Ά oj

FIGURE 13

FIGURE 14
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FIGURE 15

FIGURE 16
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FIGURE 18

A neck domain with 2 tails.

FIGURE 19

FIGURE 20

FIGURE 21
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FIGURE 22

FIGURE 23

FIGURE 24

FIGURE 25






