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GENERALIZED SOLUTIONS FOR THE MEAN
CURVATURE EQUATION

ENRICO GIUSTI*

The purpose of this paper is to discuss general boundary valve
problems for the mean curvature equation

(0.1) div Tu = H(x, u); Tu = Du/Vl + \Du\2

in a bounded domain Ω c Rn. More precisely, we shall consider the
problem of minimizing the functional

(0.2) ^{u) = \ Vl + \Du\2 + ί X(x, u)dx + [ κ(x,
JΩ JΩ JdΩ

where

(0.3) λ(α?, u) = \UH(x, t)dt .
Jo

It is easily seen that (0.1) is the Euler equation of the functional
The third integral in (0.2) describes the boundary conditions:

if u 6 C\Ω) and tc is of class C1 we have

(0.4) Tu v = j(x, u) on dΩ

where v denotes the interior normal to dΩ, and

(0.5) φ , u) = \UΎ(X, t)dt .
Jo

When K is not differentiate, as it is the case for the Dirichlet
problem, condition 0.4 does not hold any longer, and we have instead
the weaker condition

(0.6) y-(x, u)^Tu-v ^ y+(x, u)

on dΩ, where

7±(α, n) = lim y(x, t) .

For example, for the Dirichlet problem with boundary datum
f(x) we have

κ(x, u) = \u- f(x)\ - \f(x)\

and

y(x, t) = 1 - 2φF(x9 t)

where φF is the characteristic function of the subgraph F of /:
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1 if t<f(x)

0 if t^

In this case we get the boundary conditions

' 1 if u{x) > f(x)

- 1 if u(x)<f(x)

arbitrary if u(x) = f{x) .

Two standard methods have been developed for the study of
boundary value problems. The first one consists in looking for a
classical solution, i.e., a smooth function u(x) satisfying equation (0.1)
and the boundary conditions (0.4), or more generally (0.6). Alterna-
tively, one may try to minimize directly the functional (0.2) in BV(Ω,)
the space of functions with bounded variation in Ω.

Both such approaches suffer serious limitations; in particular the
variational method is not adequate when dealing with problems
whose solutions may have infinite area, as it is the case for the
Dirichlet problem with infinite data or in unbounded domains.

Recently, M. Miranda [10] has introduced the notion of genera-
lized solutions for the minimal surface equation, and has used it
successfully in the Dirichlet problem in infinite domains [10], and
in the problem of removable singularities [11], two questions in
which the area of the solution is not finite, at least in principle.
The same notion of generalized solution has been used by U. Massari
[8] in his paper on Dirichlet's problem with infinite data, and by
the author [7] in the problem of maximal domains for the mean
curvature equation.

The idea of generalized solutions originates from the observa-
tion that a function ueBV(Ω) is a variational solution of JF' if
and only if its subgraph

U = {(x, t) eΩxRit < nix)}

minimizes the functional

F(U) = \ \DφL
ίJXli

The subgraph of u has the property that the intersection of any
vertical straight line with U, if it is not empty, is either the whole
line or a lower half-line. Conversely, every set U with the above
property is the subgraph of a function u(x), taking possibly the
values + co or -co. Such a function is called a generalized solution
if U is a local minimum of F.

The interest in the above definition comes mainly from the fact
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that under extremely mild hypotheses on H and 7, the set of
generalized solutions is compact. More precisely, from every sequ-
ence uό of generalized solutions it is possible to extract a convergent
subsequence, in the sense that the subgraphs U5 converge locally in
ΩxR to a subgraph U (Lemma 1.2). Of course, the same is not
true for variational solutions, for which one needs at least a uni-
form estimate in L\0C(Ω).

This paper deals with generalized solutions for the functional
(0.2). In the first place we show the existence of such solutions,
under very general assumptions for H and 7. Of course, general-
ized solutions may take the values ± <χ> in other words the sets

P = {xeΩ: u(x)= + oo}

and

N = {x 6 Ω: u(x) = — 00}

may be nonempty. In § 2 we study the properties of these singular
sets, showing that they must minimize two functionals related to F.

In § 3 we discuss more closely the relations between generalized
and variational solutions and we prove that under suitable assump-
tions the sets P and JV are empty and therefore the generalized
solutions are variational. In the same section we show how a
number of problems treated by various authors may find their na-
tural place in this general setting.

As an application, we discuss in § 4 Lagrange multipliers. This
problem has been studied by C. Gerhardt [4] in the case of capil-
larity, and by G. Williams for Dirichlet's boundary conditions [12],
in the framework of variational solutions. The existence of varia-
tional solutions being not guarateed in principle by the hypotheses,
both authors introduce a perturbed functional (for which existence
is granted) and then let t̂he perturbation vanish. The use of the
notion of generalized solutions, avoiding this complication and deal-
ing directly with the original functional, permits a considerable
simplification of the proof, and a generalization of the results.

l Existence of generalized solutions. Throughout this paper
we shall be concerned with the functional

(1.1) J^iu) = [ l/l + \Du\2 + ( X(x, u)dx + ( fc(x,
JΩ JΩ JdQ

where Ω is a bounded domain in Rn with smooth boundary dΩ, and
λ, K are convex functions of u. We may suppose that X(x, 0) =
fc(xf 0) = 0, and therefore
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X(x, u) - Γ H(x, t)dt /c(x, u) = [\(x, t)dt
Jo Jo

for some functions H, y, nondecreasing in t for almost every x.
Related to (1.1) we define a second functional, operating on sub-

sets of the cylinder Q = ΩxR.
For T > 0 let us set

Qτ = Ωx[-T, T]

dQτ = dΩx[-T, T] ,

and for U(zQ:

(1.2) FT(JJ) = ( \Dφu\ + ί H(x, t)φodxdt + \ Ί(X, t)φσdHn .

DEFINITION 1.1. A set A c Q is a supersolution in Qτ for the
functional F if for every set S czQτ we have

FT(A) ^ FT(A U S ) .

The set A is a subsolution in Qτ if for every set S c Qτ:

FT(A) £ FT(A - S) .

Finally, A is a solution in Qτ if it is both a super- and a subsolu-
tion.

DEFINITION 1.2. A set AczQ is a local solution for F [super-
solution, subsolution] in Q if it is a solution [supersolution, subsolu-
tion] in Qτ for every T > 0.

The connection between the functionals (1.1) and (1.2) is ap-
parent from the following theorem.

THEOREM 1.1. (M. Miranda [9]) A function ueBV(Ω) is a
variational solution \swpersolution, subsolution] for if and only if
its subgraph

U = {{x, t)eQ:t < u(x)}

is a local solution [supersolution, subsolution] for F in Q.

The above result is the starting point for the definition of gen-
eralized solutions for the functional (1.1). Suppose we have a local
solution U of the functional F, and that almost every vertical line
crosses the boundary of U at most once. Then U will be the sub-
graph of some function u(x) in Ω, taking possibly the values -j- ̂
or — 00. We call such function u a generalized solution for the
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functional

DEFINITION 1.3. (M. Miranda [10]) A function u: Ω -> [— oo, + oo]
is a generalized solution [supersolution, subsolution] for the func-
tional Jf if its subgraph U is a local solution [supersolution, sub-
solution] of the related functional F.

We shall devote the rest of this section to the proof of the ex-
istence of a generalized solution of

LEMMA 1.1. Let dΩ be a C2 manifold. For each ε > 0 there
exists a constant c^e) such that for every w e BV(Ω) we have

(1.3) ί \w\dH*-! < [ \Dw\ + cS \w\dx
)ZΩ )Σ, }Σe

where

Σ£ = {x 6 Ω: dist(α, dΩ) ̂  ε} .

Proof. Suppose first that w ̂  0, and let η be a C°°-function,
0 £ η <̂  1, η = 1 on dΩ and η = 0 in i2 — 2"β. Since 3i2 is of class
C2 the distance function (Z(ίc) = dist(aj, dΩ) is of class C2 in a neigh-
borhood of dΩ. We may suppose of course that ε is so small that
deC2(Σε). We have

I wάiγ(rjDd)dx=~\ ηDdDw + ί wηv-DddHn-1
JΩ JQ J 3 ?

and since v-Dd—— 1 and η — 1 on 3i2:

\ wdHn-x— —\ ηDdDw — 1 w άiv(ηDd)dx ^ I |Z>^| + ^(e)! wdα;
J3i2 JΩ JΩ jΣε )l£

where cx(ε) — sup^ \div(ηDd)\ depends only on ε and Ω. This proves
(1.3) when w ̂  0. The general case follows from the inequality

\jD\w\\^o\Dw\.

We may now prove

PROPOSITION 1.1. Let the function κ(x, u) satisfy

(1.4) \tc(x, u) — κ(x, v)\ ̂  \u — v

for Hn-X almost every xβdΩ. Then the functional

= \ Vl + \Du\2 + \ ιc(x, u)dHn-x
JΩ jδΩ
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is lower semi-continuous with respect to & convergence.

Proof. Let uό—>u in L\Ω). We have from (1.4):

57 (u) - 57(us) £ \ Vl + \Du\" - ( VTTjDΰJf + ( \u-u3 \dHn^
JΩ JΩ JdΩ

and from Lemma 1.1 with w ~ u — uό\

:c (u) - 27 (u/) ̂  ( i/l + \Du\2 - ( l / l + \DUjl2 + ί \Du\
}Ω }Ω }Σ£

\ \Dud\ + cA \u ~ uΛdx<L\ l/l + \Du\2

where

Ωε = fl - J β - {x e i2: dist(a?,

Let now j" —> &o taking into account the lower semi-continuity of
the area with respect to U convergence we get:

57(u) - liminf 57(Uj) ̂  2( l/ l + \Du[2

and the result follows letting ε —> 0.

REMARK 1.1. An assumption equivalent to (1.4) is obviously

(1.5) \y(x, t)\ ^ 1 Hn - a.e. on dQ .

We have proved the lower semi-continuity of part of the func-
tional gf (u). For what concerns the curvature term we refer to
[5] where we have proved its lower semi-continuity with respect to
strong convergence in Lι and weak convergence in Ln/n~\ under the
hypothesis that H(x, t) is increasing in t, and belongs to Ln(Ω) for
every t e R.

We have in conclusion the following theorem:

THEOREM 1.2. Let Ω be a bounded domain with C2 boundary
dΩ, and let H(x, t) and y(x, t) be two functions defined in Q and
dQ respectively, and satisfying the following assumptions:
(Hx) H(x, •) is nondecreasing for almost every xeΩ.
(H2) H( ,t) belongs to Ln(Ω) for every t.
(Ti) Ύ(X, -) is nondecreasing for Hn-Γalmost every xeΩ.
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(72) \7(x,t)\ ^ 1 Hn- a.e. in dQ .

Then for every sequence ujf bounded in Jj1'71-1 and convergent in Lι

to a function u we have:

^(u) ^ lim inf J^~(u3-) .

In order to get a generalized solution for j^{u) we begin by
minimizing this functional in the class

It is easily seen that jβ~ is bounded from below in V3 , and that
every minimizing sequence is bounded in BV(Ω). From well-known
compacteness theorems we may extract a subsequence converging in
L\Ω)\ on the other hand it is obvious that sequence will be bounded
in Ln/n~\ so that we may apply Theorem 1.2 to conclude the exi-
stence of a minimum for J^" in V3 .

Let us denote by uά a minimizing function. The subgraph U3

is a solution for F in Qά. We shall now let j —» oo to show the
existence of a local solution to F in Q, and whence of a generalized
solution for J^. For that we need the following lemma:

LEMMA 1.2. Let A be a subsolution for F in Qτ. Then

(1.6)

Proof We have

FT(A) = \ \DφA\ + ( HφAdxdt + ( ΊψAdHn ^ FT(A ~ Qτ)
JQT JQr J°QT

\ Q l \ \ \

•JQT

and therefore

( I DφA I ̂  2 [ Ω \ + \ (H\dxdt + Hn(δQτ) - c2(Γ) .
JQT JQT

In a similar way, comparing with A (J QΓ> we prove (1.6) for
super solutions. In particular, (1.6) holds for solutions in Qτ.

The inequality (1.6) is the only estimate we need in order to
pass to the limit as j —> oo. For, let T > 0 and let j > T. Since
Uβ is a solution in Qτ, we have

QT
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and therefore it is possible to extract a subsequence, which we shall
denote again by U3 , converging to some set U in every Qτ. It is
clear that U, being limit of subgraphs, is itself a subgraph of some
function u(x), assuming possibly the values ±co. It follows from
the next proposition that U is a local minimum for F and hence
that u is a generalized solution for ^ ,

PROPOSITION 1.2. Let Hd and yd be two nondecreasing sequences
converging to H and y respectively, and let Ud minimize the func-
tional

Fί(A) = ( \DΨA\ + \ H&Λdxdt + \ Ίό
JQT JQT JδQr

\ \ \
JQT JQT

Suppose that Uό —> U in Qτ and that

(1.7) ί \ φ ϋ j \
JdQτ

Then U minimizes Fτ in Qτ.

Proof. Let VcQ, V == U outside Qτ, and let

Ύ in Qτ
V =

{U3 outside Qτ .

We have F}(Ud) ^ F}(Vd) and therefore

\Dφσ.\ + \ H/p0Ίdxdt \
QT JQT J*QT

^ \ \DφVj\ + \ H&ydxdt + \ Ύ,φvdHn .
JQT JQT J»QT

On the other hand

( I DφVό \<,\ I Dφv I + ί \<Pϋ~ Ψrό \dHn
JQT JQT JaQτ

( I ό \
JQT JQT

and in conclusion, if j > s:

\ \Dφσj\ + ( H,φσ.dxdt + \ yφσίdHn + \ (7y - Ύ)φσ
JQT JQT J3QT ^ΰQτ

l φϋ-φlΊ\dHn.
)dQτ

Passing to the limit as j —> co:

\ \Dφσ\ + \ Hsφσdxdt + ( yφσdHn ^ FT{V)
JQT JQT JδQτ



THE MEAN CURVATURE EQUATION 305

and the conclusion follows letting s —> °o.

We may now apply the preceding proposition with H3 = H and
Ίj = 7; the condition (1.7) being satisfied for almost every Γ. In
conclusion, we have proved the following existence theorem:

THEOREM 1.3. Let Ω, 7 and H satisfy the hypotheses of
Theorem 1.2. Then there exists a generalized solution for the func-
tional J^{u).

REMARK 1.2. Though proved for free solutions, the above
theorem remains valid if some additional conditions are imposed on
u. In particular, the same proof works for the obstacle problem,
i.e., when u is restricted by the conditions

with ψλ{x) bounded from above, and ψ2{x) from below; as well as
for the "soft obstacle" problem, namely when

α ^ I ζ(x)u(x)dx ^ b
JΩ

for a given positive function ζ(x). The above includes the problem
with fixed volume, when ζ = 1 and a — 6.

Combinations of these and other conditions may also be imposed,
as long as they are compatible with \u\ ^ T for large T.

2+ The structure of the sets P and N. The generalized solu-
tion u may well take the values + °o and — oo. We set

P = {xe
N = {xe Ω: u(x) = — 00} .

The purpose of this section is to study the properties of the above
sets.

Since we want to treat the obstacle problem, and even other
situations such as the soft obstacles, we begin by observing that
Proposition 1.2 remains valid, with the same proof, if TJ5 are sub-
solutions, provided we add to the hypotheses the assumption that
Us form a monotone decreasing sequence: Uό z> Uί+ι. In this case
the limit U will be a subsolution itself.

We shall concentrate on the set P; we remark however that if
u is a supersolution for ^ and if we set Hf(x, t)——H{x, — t) and
y'(%,t) — — y(χf —{), the function — u is a subsolution for <_^r', and
hence every result concerning the set P can be translated at once
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into a similar result concerning the set N for supersolutions.

PROPOSITION 2.1. Let u be a subsolution for J*~, and let

HJp) = lim H(x, t) : Tco(x) = lim Ύ(X, t) .
ί-»oo ί->oo

Then P is a subsolution for the functional

G(P) = ί \DφP\ + \ H^φPdx + \ ΊJPrdH^ .

Proof. For j e N, let

Us - {(x, ί ) e Q : K %(a) - i} .

The set £7,- is obviously a subsolution for

F*(A) = \ \DφΛ\ + \ H/pΛdxdt + { ΊjφAdHn
JQ JQ JdQ

with

Hj{x, t) = £Γ(a?, ί + i) τ, (̂ , ί) - Ύ(X, t + j) .

We have UjZ)Uj+1z^ - --Z)W = Γ\jeχUjt and hence by Proposition 1.2
and the remark above the set W is a subsolution for the functional

\Dφw\ + ( Hjpwdxdt + \

Since TF is a vertical cylinder, W = PxR, and since iί^ and 7M are
independent of t, it follows easily that P is a subsolution for G.

Before proceeding further in the discussion of the set P, we
recall that if E is a set and x0 e dE, we say that x0 belongs to the
reduced boundary of E if for every R > 0 we have:

(2.1) 0<\Eΐ\BR{xQ)\<\BR{xQ)\

where BB(x0) is the ball of radius R centred at x0. It is well known
that after changing E in a set of measure zero we may suppose
that dE coincides with the essential boundary of E.

THEOREM 1.1. Let U be a local subsolution for the functional
F, and suppose that the boundary of U, dU, coincides with the es-
sential boundary. Then the same is true for P.

Proof. It is clearly sufficient to show that the boundary of
W •=• PxR is essential. Moreover we have only to show the first
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of inequalities (21), since the second follows at one from the remark

that W^ΠieKU,.
Actually, we shall prove a stronger result, namely that if

z0 = (χOf t0) is a point in Q and if for all r > 0 we have | Ur(z0) | > 0,
then for r small enough | Ur(zQ) | ^ c3r

w+ι, where we have set

Ur(z0) = U Γ \ Cr(z0) Cr(z0) = {z = ( x , t ) : \ z - z o \ < r , \ t - ί o | < r } .

Let z0 e Q and let 0 < r < R < dist(20, dQ). Since U is a sub-
solution we have, for large Γ, FT{U) S FT(U — Cr), and therefore:

(2.2) ( | D ^ | + ( Hψudxdt ^ \ φvdHn .
jGr JGr JdCr
jGr

On the other hand we have for almost every r < R:

(2.3) \\Dφ ϋr\ = \ \Dφ

and whence

(2.4) \\DφUr I + ^Hφσrdxd

Suppose now that we have t > 0 in Cr (or in other words that
to> R). Then

\HφUrdxdt

where Hό(x) = min(ΐί(α;, 0), 0). From Lemma 2.1 below we get

(2.5) \Hφσrdxdt^-k(n)\\H0-\\UtBs \\Dφϋr\

and hence

(2.6) (1 - Jc(n)\\HΛ-\\.,BB) \\DφUr\ S U φvdHn ,

where we have denoted by k{n) the isoperimetric constant in Rn.
The right-hand side of (2.6) represents the derivative of |Z7r|, so
that we have:

jL\U\ = \ ΨdH ^ 1Ur\ = \ ΨadHn ^ 1 ( 1 - ft(w)||#,-||,,BB) \\DφUr\
CUT

Let now R be so small that ||iJo~1LβΛ < l/2&(w); then for almost
every r < R we get
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dr (

and in conclusion, if | Ur \ > 0 for every r, we obtain

(2.7) \Ur\ ̂  rn+1/4(n + l)k(n + 1) .

The estimate (2.7) holds obviously for each of the sets Uά defined
in Proposition 2.1, with R independent of j . We may then pass to
the limit as j —> oo 9 getting the same estimate for W.

Finally, if xoeΩ is such that \Pτ(xΌ)\ = \PΓ\Br(x0)\ > 0 for every
v > 0, we conclude that

(2.8) |Pr(a?0)| ^ rn/8(n + l)k(n + 1) .

We note that the above estimate (2.8) does not hold for super-
solutions, and the Theorem 2.1 is in general false. For example the
function j^l" 1 is a supersolution for small \x\(H — 0), and P = {0}.

To conclude the proof of the theorem it remains to prove the
estimate (2.5). This is done in the next lemma.

LEMMA 2.1. Let h(x)eLn(Ω) and let EczCB = BRxIB. Then

Proof. We have from Holder's inequality

\jh\dxdt ^\\h\\n,Bp^\Et\^^dt

where

Et = {xeΩ: {x,t)eE} .

On the other hand from the isoperimetric inequality we get

and therefore

\\h\dxdt^k{n)\\h\\n,BR

3. Variational solutions* In general the sets P and N are not
empty, and sometimes they may cover the whole of Ω. The pur-
pose of this section is to investigate under what conditions we may
conclude the absence of these singular sets.
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We begin with two simple remarks concerning subsolutions;
similar results hold for supersolutions.

(A) If A is an open set in 42, and if the measure of P Π A is
zero, then P Π A is empty. Actually we may say more, namely if
A<cΩ and if |PΓI A| is small enough (depending on A and H) then
PDA = 0.

(B) If Pfi A = 0 , then u is locally bounded from above in A.
Assertion (B) follows from estimate (2.7), whereas (A) is a con-
sequence of (2.8).

EXAMPLE 3.1. (Emmer [3]) Let u{x) be a generalized solution for
J^~ with obstacles, i.e., satisfying the conditions

ψx(x) ^ u(x) ^ ψ2(x) .

Suppose that ψλ(x) S Mu and ψ2{x) ^ M2. It is clear that u(x) is a
generalized subsolution in Ωx(Mlf + °°), and a generalized super-
solution in Ωx(— oo, j|f2).

It follows from remarks (A) and (B) above that if the obstacle
ΨΛ.Ψ2] is finite almost everywhere in Ω, then u will be locally
bounded from below [from above].

When no obstacle is present we need some assumptions on H
and 7. Let us begin with some necessary conditions.

Suppose u(x) is a smooth solution for ά^ in Ω. If A c Ω, and
we compare ^~(u) with ^{u + tφΛ), t > 0, we get easily

ί Tu-DφA + ί HφAdx + ί 7+φAdHn^ ^ 0

where 7+(#, ί) = limβ_»t+7(a?, s).
Taking into account that \Tu\ < 1 in Ω, and arguing as in [7],

§ 1, we get the inequality

(3.1)

and therefore

(3.2)

\

L

HφAdx
Q

+

+

\ 7+φΛdH
JdΩ

JdΩ °°

JΩ

for every set A Φ 0 , Ω. In a similar way:

(3.3) ί R-jpAdx + ( Ύ-^φAH^ <\ \DφA
JΩ JdΩ JΩ

for AΦ 0, Ω.

THEOREM 3.1. Let the strict inequality (3.2) hold for every
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nonempty set A, and let u be a generalized subsolutίon for J^.
Then P = 0.

Proof. By Proposition 2.1, P is a subsolution for the functional

G{P) = ί \DφP\ + ( iOPptfx + ί Ί^ψpdH^ .

On the other hand we have from (3.1), G(A) ^ 0, the equality hold-
ing only for A — 0. This implies immediately that P is empty.

The same argument shows that if (3.3) holds, with strict ine-
quality for Ω, and if u is a supersolution, then N — 0.

EXAMPLE 3.2. Discontinuous obstacles (De Acutis [2]).
Suppose that the obstacles ψλ and ψ2 of Example 3.1 are finite

only in some regular subsets A and D2 of Ω. Arguing as before we
may conclude that the generalized solution is locally bounded in the
interior of these sets, from above in D2 and from below in D{. If
in addition condition (3.2) is satisfied in Ω — D29 and (3.3) in Ω — Dl9

we may conclude that P = N = 0 and therefore that u is locally
bounded in Ω.

In general, even when P = N= 0, the solution u can go to
±oo when x approaches dΩ (see e.g., [8]).

However this possibility can be excluded if we make some ad-
ditional assumptions on the boundary function 7. In the folllowing
we shall suppose that there exist constants θ0 > 0 and a, 0 ̂  a < 1,
such that

(3.4) y(x,t)^-a VxedΩ, Vt>θQ

(3.5) y(x,t)<^a VxedΩ, Vt<-Θo.

We note that (3.4), (3.5) correspond to a bounded boundary datum
in the case of Dirichlet's boundary conditions (y(x, t) = 1 — 2φF(x, t)),
whereas in the case of capillarity boundary conditions they are
equivalent to |cos#| ^ a < 1.

With the help of (3.4) and (3.5) we can prove the following
generalization of Theorem 2.1.

THEOREM 3.2. Let U be a local subsolution for the functional
F, and let z0 = (xQ, ί0), tQ > ΘQ + 1, be a point of Q such that for
every positive r:

(3.6) \Ur\ = | £ / n C r ( z 0 ) i > 0 .

Suppose further that (3.4) is satisfied. Then there exist constants
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Ro > 0 and c4 such that for every r <^ Ro we have:

(3.7) lUrl^cr^1.

Proof. As in Theorem 2.1 we compare U with U — Cr, getting

( \Dφϋ\ + \ HφLdxdt + ί T^dfl . ^ ί
JQΠ(7?. JQΠC,. JoQ(]Cr Jd

and therefore for almost every r:

\ \DφUr\ + ( Hφσdxdt + ( j

We have from (3.4):

\ ΊψUrdHn ^ -

for every ?ι < 1, and from Lemma 1.1:

\ φσdHn £ \ \DφUr\ +c1\Ur\^\ \DφUr\
JdQ r JQ r JQ 1

ΐ)\Ur\
1/n+L\\DφUr\ .

If R < 1 is so small that cjφi + l)\CR\1/n+ι < 1/2, we get for every
r <R:

and

l)\CR\L/n

Finally, we may estimate the curvature term as in (2.5):

and in conclusion

Hφσ dxdt
- cjc(n

Since α < 1, we may choose Ro small enough that the right-hand
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side is bounded from below by J — (1 + α) \ \Dφσ |. We remark

that the constant Ro depends only on H through \\H^\\n>BR and the-

refore it is uniform for Ho~ in compact sets of Ln(Ω).

In conclusion we get

d ]Ur\ = [ φϋdHn^±rεo[\DφL \^±eo\\D<pUr\ (e0 = (1 -
<Zr hcr 2 h 8

and arguing as in Theorem 2.1 we conclude for r < i?0:

ιUr\^c4r*+1, c4 = εQ/8(n + 1) .

REMARK 3.1. It follows from (3.7) that for r < i?0:

(3.10) I P r I = IP Π £r(x0) I ̂  e0r /16(w + 1)

uniformly for x0 e Ω.
In particular, there exists a constant pQ, depending only on a

and on iίo~ (p0 is uniform for Ho~ in compact sets of Ln{Ω)) such that
P\ < Po implies that P is empty and u is bounded from above in

the whole of Ω. This makes possible to improve the results of Ex-
amples 3.1 and 3.2.

EXAMPLE 3.3. In Theorem 3.1 and in the above examples we
have always made the assumption that the strict inequality (3.2)
holds for Ω itself. It is easily seen that if the equality holds for
Ω, we cannot expect in general to have a bounded solution. For
example, let Ω — {xeR2: \x\ < 1}, and let

o
H(x, u) = — a r c t g %ι — 3

π

ιc(x, u) — I u I .

(Dirichlet problem with zero boundary data.) We have Hoo——2 and
(3.2) is satisfied but the equality holds for Ω. In this case we have
P = Ω, and u= + ©o.

REMARK 3.2. It is clear that a bounded solution is a variational
solution, namely it has finite area and minimizes the functional ^
in BV(Ω). Moreover, if H is Lipschitz-continuous the function u(x)
is of class C2+a in Ω and is a classical solution of the equation

div Tu = H(x, u) .

REMARK 3.3. It follows from Theorem 3.2 that every generaliz-
ed solution which is almost everywhere finite is bounded. In parti-
cular this is true for every L1 generalized solution. It is easily
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seen that it is possible to give an estimate of sup u in terms of the

L1 norm of u, or better in terms of 1 u+dx, u+ = max(%, 0O).
JΩ

For, let θ0 and Ro be as in Theorem 3.2, and let xoeΩ be such
that

sup u < u(xQ) + 1 .
Ω

For j eN let zά = (x0, θ0 + 2jR0); we have sy 6 U for j £ k =
[u(x0) - ΘO/2RO]. From Theorem 3.2 we get

and therefore

In conclusion

(3.11) sup u ^ 1 + u(x0) ^ -

We remark that estimate (3.11) holds for minima with obstacle
u ^ ψ, provided ψ ^ M ^ θ0. Moreover, the bound for sup u depends

only on \ u+dx and on RQ and θo; it is therefore uniform for H^ in
}Ω

compact subset of Ln(Ω).

4* An application: Lagrange multipliers* We apply now the
results of the previous sections to the discussion of the existence of
Lagrange multipliers for minima with obstacle and constant volume.

Let ψ(x) be a function bounded from above, and let V be a
real number, with

V > [ ψdx ^ - oo .
JΩ

We have seen in § 1 that the functional

( X(x, u)dx + ί κ(x,
JΩ }dΩ

(4.1)

with the

JΩ

constraints

Du

\

2 + I X(x,
JΩ

u ^ ^

udx —
Q

V

has a generalized solution; i.e., that there exists a function
u:Ω->[~oo9 +oo] such that its subgraph U minimizes locally in Q
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the functional

(4.2) F(U) = \ \Dφσ\ + \ Hψcdxdt + ( yφσdHr

among all subsets EaQ such that Ez)Ψ and \E+\ - \E~\ = F

(E± = {z = (x,t)eQ:zeE,t^ 0}) .

Our goal is to show that there exists a variational solution to
the above problem, and moreover that such solution may be obtain-
ed as a minimum for the functional

(4.3) JK{n) = J^(u) — q\ udx
Ω

for a suitable value of the constant q (the Lagrange multiplier).
Our hypotheses will be those of Theorem 3.2, namely:
( i ) λ(cc, u) and /c(x, u) are convex functions in u, or, what is

the same, H(x, u) and y(x, u) are nondecreasing functions of u.
(ii) H(x, t) is in Ln(Ω) for every t e R.
(iii) There exist constants θ0 and a, 0 ^ a < 1, such that

(4.4) τ(#, ί ) ^ - α VxeΩ, Vt>θ0

(4.5) τ(ίc, ί ) ^ α VxeΩ, Vt<-ΘQ.

Of course we may assume that ΘQ ^ M = sup φ.
For what concerns the obstacle ψ we shall assume that it is an

upper bounded measurable function, almost everywhere finite. In
this way every solution uq for the functional ^\ is bounded from
below (see Remark 3.1).

To prove our result we have to show that there exist a value

q0 and a variational solution u0 to J% such that I uodx = V.
JΩ

LEMMA 4.1. Let h(x) be in L%(Ω) and let y(x) ^ — a. Then for
every set A c Ω, satisfying

cMn)\A\u* < 1

we have

(4.6) [ hdx + ( ΊφAdH%-x ^ - fa 1 + cMn)\A^
JA )BΩ I l — cMn)\A1 -cJc{n)\A\u*

2k{n)\\h\\n,A

1 -cMn)\A\ι<

Proof. We proceed as in Theorem 3.2. We have
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I ΊψA&ΐln-i ^ - α φAdHn-ι .
}dΩ JdΩ

From Lemma 1.1

\ φAdHn^ £ \ \DφA\ + C l | A| ^ ( \DφA\ + cMn
}dΩ JΩ JΩ

315

' \\DφA

and therefore, if cMn)\A\1/n < 1,

Jw 1

\\DφA\ £ -
J 1 — d

M t
Moreover

from which (4.6) follows at once.

A consequence of Lemma 4.1 is that, at least for q negative and
big enough, the functional ^\ has a variational solution. For that
it is sufficient to show that condition (3.2) holds (with strict inequ-
ality even for Ω) when H^ is replaced by H^ — q. We distinguish
two cases, desending on the size of A. If A is small, we have us-
ing Lemma 4.1:

- q)dx + ί ΊJPAdH«-^ \
)OΩ )

provided \A\ is smaller than some constant σQ depending only on a
and Ho~.

On t h e other hand, if \A\> σ0 we have:

(iL - q)dx + \ Ί^φAdHn-ί^~a\ \DφA\ - cJ
JdΩ )Ω

+ \QHΐdx~ q\A\>-\\DφA\

whenever — (q + ac^)σ0 + \ H^dx ^ 0.
JΩ

Let us denote by S the set of all the values of q for which the
necessary condition

(4.7) t {H^ - q)dx + \ \DφA\
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is satisfied for all Acfi, and let q0 = sup S.
It is clear from the above that S Φ @ and therefore qo> — oo.

It is easily seen that (4.7) holds for q0 itself, and that for q < qQ we
have the strict inequality for every nonempty set, including Ω itself.
It follows that ^\ has bounded (variational) solutions for all q < q0

(and possibly for g0), but not for any q > q09 so that S = (— <χ>, go]
For 0 < tf0 we define V(q) as the set described by the integral

I udx
JΩ

when u varies among all solutions to J?~q% Since j^*q is convex (but
not strictly convex), the set V(q) is a closed interval, which may of
course reduce to a point.

LEMMA 4.2. Let p < q and let u, v be solutions of ,J%, J\ re-
spectively. Then u ^ v.

Proof, It is well known (see [1] and [6], Theorem 1.17) that
for every weBV(Ω) there exists a sequence ws eC°° Π BV(Ω) such
that w, -+w in L\Ω) and ι/l + \Dwά\

2~> l/l + I D ^ ] 2 . Moreover

w3- = n; on 3.0, and if |w | ^ M we may choose the wά satisfying
I Wj\ ^ M.

It is now a simple matter of computation to show that for any
r, JK(Wj) -* JK(w). In conclusion, for every ε > 0 there exist
C°°-functions uε and vε such that

<ε

Let A = {x G Ω: uε(x) > ^ε(x)}; we have

, vε)) - J^(uε) + ( {/TTjDvJ - ( ι/ϊ
J J

?, ve) - λ(x, %β)]dα5 + 1 [/c(x, vε) - /c(«, ttβ
JdΩΠA

-p \ (vε - uε)dx ^ J^p(u) ^ ^ ( w . ) - ε .

Similarly:

j^(minK, v.)) - jrt(Vt) - \ l/l + \Dvε\
2 + ( l/l + \Du.

JA 3A

- \ [\(x, vε) - X(x, uε)]dx - \ [tc(x, vε) - κ(x,
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+ q\ (vε— uε)dx ^ J^iv) Ξ> J^q(vc) ~ ε .
JA

In conclusion, we have

(Q — P)\ ( ^ — vs)dx = (q ~ p) I (max(% :, vε) — vε)dx < 2ε

and passing to the limit as ε—>0:

(Q ~ V) \ (max(u, i;) — v)dα; <̂  0

which implies max(%, v) = t> and therefore u ^ v.

A trivial consequence of the above lemma is that if qx < q2 and
ul9 u2 are solutions of j ^ χ , ^ ^ 2 respectively, we have

\ ^^α^ ̂  \ u2dx .
J.(? J.Q

In other words, the mapping q --» F(^) is nondecreasing.

LEMMA 4.3. For every V, infg<ff0F(ϊ) < F < sup,<,0 y(g),
exists a q' < q0 such that Ve V{qf).

Proof. Let Sv denote the set of all q such that V(q) < V; and
let q' = sup Sv. Let q5 / q! and for each j let % be a solution for
^ ^ i I* i s easily seen that the functions u5 are uniformly bounded
from below, and therefore from above because the integrals \ u3-dx

are uniformly bounded. Since j^qά{uό) <^ ^7/0) = \Ω\, we conclude
that Uj is a bounded sequence in BV and hence, passing possibly to
a subsequence, it converges (strongly in L1 and weakly in Ln/n~ι) to
some function uf. From Theorem 1.2 we deduce that u' is a solu-
tion for J^,, and i i6'd# <; F.

In a similar way, starting with a sequence pά decreasing to q',

we arrive to a solution %" for Jfl, with \ ^"da; ^ F. From the
J Ω

convexity of J^y it follows that V{q') is an interval, and hence
Ve

To conclude our proof we have only to show that every value

V>\ ψdx is reached.

LEMMA 4.4. Let η(%) be a smooth function in Ω, such that
Ύ] ^ ψ. Let qά —> •— co and let uά be a solution of ,yr

qj. Then
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lim max(%, V) — V -

Proof. Let qx < q0 and let q < qλ. Let % be a solution of
and let wε be as in Lemma 4.2. We may compare uε with vε =
min(uε, η), getting

q\ (vε — uε)dx g 1 l / l + \Dv\2 — \
JΩ JA J

+ I [X(x, vε) — λ($, ttβ)]eZ& + I [tc(x, vε) — κ(x, uε)
jΩ JdΩ

We have

S Γ Cuε C

[X(x, vε) — X(x, uε)]dx= — I dx\ H(x, t)dt ^ — \ H(x, V)(uε — vε)dx
Ω JA Jη JΩ

and

[tc(x, vε) — κ(x, u^dHn-i ^ a \ \vε — uε\dΉ.n-x S \ \D(vε — uε)\

3Ω JdΩ J

+ c\ \vε — uε\dx ^ I \Dη\ + \ \Duε\ + cΛ \uε — v£\dx .

In conclusion:

^ 2Ϊ l/l + \Dr]\2 - ί JET(a;, η)(uε - ve)d^

and letting ε -> 0:

(4.8) -(c1 + q) \ (max(w, 57) - η)dx ^ 2ί l/l + \Dη\2

JΩ JΩ

+ \ H(x, η)(u -

On the other hand, it follows from Lemma 4.2 that u = uq ^ uqι,
and therefore the right-hand side of (4.8) is bounded independently
of q. Letting q —> — 00 we get the conclusion of the theorem.

The above result shows that inf V(q) = \ ψdx. The existence
JΩ

of the Lagrange multiplier will follow if we show that sup V(q) =
- j - CO .

This is easy if qo= + 00? i.e., if the functional ^ has variational
solutions for every real q (this happens for instance if fl00= + co).
In this case we have only to repeat the above argument to show
that the volume V(q) tends to infinity as q —» + 00. More complicate
is the case when q0 < + 00. Let #.,• be an increasing sequence, q3* -> g0,
and let % be the corresponding sequence of solutions. We distin-
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guish two cases.

(I) 11% I k — > + ° ° .

In this case, since % is increasing, we ha\e]Vj = \ u^dx-^-+oo)
J Ω

and therefore sup V(q) = + co.

(II) Wusll^M.

By Remark 3.3 the functions uά are uniformly bounded:

u, (x) I ̂  Mx

and therefore it is possible to extract from u5 a subsequence which
converges to a function u(x), a variational solution for ^ 0 . It is
then satisfied the necessary condition:

(4.9) - q01AI + ( H(x, u{x))dx + ί 7+(x, u(x))φAdHn^ ^Λ \DφA\
JA JdΩ JΩ

for every set A c β.
On the other hand from the true definition of q0 we have:

(4.10) -qo\A\ + [ H^dx + [ Ί^φβH^^Λ \DφA\ .
JA JdΩ JΩ

LEMMA 4.5. Let the strict inequality hold in (4.10) for every
nonempty set A. Then there exists q> q0 such that

S f f

HjLx + \ ΊJPAdΉn-L ^ — \ I DφA I ,
4 JdΩ JΩ

for every AaΩ.

Proof. Let q5 = g0 + 1/i, and suppose that for every '̂ there
exists a set Ay such that

(4.11) -qs\As\ + ( HΛx + ( ΊJPAidH%^<- \ \DφAj\ .
JA3 JdΩ Q JΩ 3

From (4.11) we get

\Q \DφA.\ ^\q,\\Q\

and therefore, passing to a subsequence we may conclude that
A3 —> A. From (4.6) with h = H~ — qi9 we conclude that the meas-
ure of Aj is bounded away from zero, and whence A has positive
measure. Passing to the limit as j —> + co we get:

-qo\A\ + \ H^dx + \ ΊjpAdH%^ ^ - \ \DφA\
JA JdΩ JΩ
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contradicting the assumption of the lemma.

It follows from the above lemma and the definition of q0 that
the equality sign must hold in (4.10) for some nonempty set A.
From the monotonicity of H and 7 and from (4.9) we get then:

-qo\A\ + ( H(x, u(x))dx + \ 7+(x, uitfbφJLH*-^- [ \DφA\

and therefore for almost every xeA and for every t>u(x):

H(x, t) = H^x)

Ί{X, t) = yjp) .

In particular we may conclude that J^^u + cφΛ) = ^Qo(u) for every
positive constant c, and hence

V(q0) = \ udx, +00 \ .

In any case we have then

V(S) = Qoψdx, +00Ί

thus proving the existence of a Lagrange multiplier.
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