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GENERALIZED SOLUTIONS FOR THE MEAN
CURVATURE EQUATION

ENRICO GIUSTI*

The purpose of this paper is to discuss general boundary valve
problems for the mean curvature equation

(0.1) div Tu = H(x, w) ; Tu = Du/V'1 + [Dup

in a bounded domain £ c R*. More precisely, we shall consider the
problem of minimizing the functional

02 ()= 591/1‘ TTDuF + ng(x, wda + Smfc(w, wiH,_,
where

(0.3) Mz, w) = SH(x 1)dt .

It is easily seen that (0.1) is the Euler equation of the functional
% . The third integral in (0.2) describes the boundary conditions:
if weCYQ) and k is of class C* we have

(0.4) Tu-y = v(x, ) on 02

where v denotes the interior normal to 02, and
(0.5) K@, u) = S“A/(x, £)dt .
0

When £ is not differentiable, as it is the case for the Dirichlet
problem, condition 0.4 does not hold any longer, and we have instead
the weaker condition

(0.6) v (2, u) & Tu-v < v (x, u)
on 02, where

YE(x, u) = tlin}: v(x, t) .

For example, for the Dirichlet problem with boundary datum
f(x) we have

k@, w) = lu — f(@)|] — [f(@)
and
(@, ¢) =1 — 20(z, t)
where @, is the characteristic function of the subgraph F' of f:
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1 if ¢t < flo)

Pr(@, t) = {0 if ¢tz fle).

In this case we get the boundary conditions

1 if w@) > f(x)
Tu-y=| -1 if wul) < fl(x)
| arbitrary if w(x) = f(») .

Two standard methods have been developed for the study of
boundary value problems. The first one consists in looking for a
classical solution, i.e., a smooth function u(x) satisfying equation (0.1)
and the boundary conditions (0.4), or more generally (0.6). Alterna-
tively, one may try to minimize directly the functional (0.2) in BV(2,)
the space of functions with bounded variation in 2.

Both such approaches suffer serious limitations; in particular the
variational method is not adequate when dealing with problems
whose solutions may have infinite area, as it is the case for the
Dirichlet problem with infinite data or in unbounded domains.

Recently, M. Miranda [10] has introduced the notion of genera-
lized solutions for the minimal surface equation, and has used it
successfully in the Dirichlet problem in infinite domains [10], and
in the problem of removable singularities [11], two questions in
which the area of the solution is not finite, at least in principle.
The same notion of generalized solution has been used by U. Massari
[8] in his paper on Dirichlet’s problem with infinite data, and by
the author [7] in the problem of maximal domains for the mean
curvature equation.

The idea of generalized solutions originates from the observa-
tion that a function uwe BV(Q) is a variational solution of & if
and only if its subgraph

U={,t)c2xR:t < ux)}

minimizes the functional

F(U) = S“VRID@J + S Hop, dudt + Sa v dH, .

The subgraph of w has the property that the intersection of any
vertical straight line with U, if it is not empty, is either the whole
line or a lower half-line. Conversely, every set U with the above
property is the subgraph of a function u(x), taking possibly the
values +co or —eo. Such a function is called a generalized solution
if U is a local minimum of F.

The interest in the above definition comes mainly from the fact
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that under extremely mild hypotheses on H and 7, the set of
generalized solutions is compact. More precisely, from every sequ-
ence u; of generalized solutions it is possible to extract a convergent
subsequence, in the sense that the subgraphs U; converge locally in
2% R to a subgraph U (Lemma 1.2). Of course, the same is not
true for variational solutions, for which one needs at least a uni-
form estimate in Li . (2).

This paper deals with generalized solutions for the functional
(0.2). In the first place we show the existence of such solutions,
under very general assumptions for H and v. Of course, general-
ized solutions may take the values + oo; in other words the sets

P ={xel:ulx)=+c}
and
N = {reQ: u(r)=— oo}

may be nonempty. In §2 we study the properties of these singular
sets, showing that they must minimize two functionals related to F.

In §3 we discuss more closely the relations between generalized
and variational solutions and we prove that under suitable assump-
tions the sets P and N are empty and therefore the generalized
solutions are variational. In the same section we show how a
number of problems treated by various authors may find their na-
tural place in this general setting.

As an application, we discuss in §4 Lagrange multipliers. This
problem has been studied by C. Gerhardt [4] in the case of capil-
larity, and by G. Williams for Dirichlet’s boundary conditions [12],
in the framework of variational solutions. The existence of varia-
tional solutions being not guarateed in principle by the hypotheses,
both authors introduce a perturbed functional (for which existence
is granted) and then let ;the perturbation vanish. The use of the
notion of generalized solutions, avoiding this complication and deal-
ing directly with the original functional, permits a considerable
simplification of the proof, and a generalization of the results.

1. Existence of generalized solutions. Throughout this paper
we shall be concerned with the funectional

L1 T = 891/1 FTDul + ggk,(x, wyde + SM r(e, w)dH,_,

where 2 is a bounded domain in R* with smooth boundary 42, and
N, £ are convex functions of w. We may suppose that Az, 0) =
£(z, 0) = 0, and therefore
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Mz, ) = S Hiw, Odt ;  #x, u) = S“v(x, t)dt

for some functions H, v, nondecreasing in ¢ for almost every =.
Related to (1.1) we define a second functional, operating on sub-
sets of the cylinder @ = 2x R.
For T > 0 let us set

Qr = Qx[~T, T]
0Q, = 02x[~T, T],

and for UC@:

(12) FU) = | Doij + SQ H(z, o, dudt +S @, Op,dH, .
T r T

Qg

DeErFINITION 1.1. A set A @ is a supersolution in @, for the
functional F' if for every set Sc @, we have

Fr(A) = F,(AUS) .
The set A iz a subsolution in @, if for every set S @,
Fr(A) = Fr(A—S).

Finally, A is a solution in @, if it is both a super- and a subsolu-
tion.

DEFINITION 1.2. A set AcC @ is a local solution for F [super-
solution, subsolution] in @ if it is a solution [supersolution, subsolu-
tion] in Q, for every 7 > 0.

The connection between the functionals (1.1) and (1.2) is ap-
parent from the following theorem.

THEOREM 1.1. (M. Miranda [9]) A function ucBV(Q) is «a
variational solution [supersolution, subsolution] for if and only if
its subgraph

U={xt)e@:t <ulx)

is a local solution [supersolution, subsolution] for F in Q.

The above result is the starting point for the definition of gen-
eralized solutions for the functional (1.1). Suppose we have a local
solution U of the funectional F, and that almost every vertical line
crosses the boundary of U at most once. Then U will be the sub-
graph of some function u(x) in 2, taking possibly the values <=
or —co. We call such function u# a generalized solution for the
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funectional & .

DErFINITION 1.3. (M. Miranda [10]) A function u: 2 — [— o, + o]
is a generalized solution [supersolution, subsolution] for the func-
tional & if its subgraph U is a local solution [supersolution, sub-
solution] of the related functional F.

We shall devote the rest of this section to the proof of the ex-
istence of a generalized solution of & .

LEmMA 1.1. Let 02 be a C* manifold. For each ¢ >0 there
exists a constant c¢,(e) such that for every we BV(Q) we have

(1.3) g \wl|dH, , < S:EID“" + clgfslw[dm

where
Y., = {xec: dist(z, 02) < ¢} .

Proof. Suppose first that w = 0, and let » be a C”-function,
0<7=1l,7=1o0n 02 and » =0 in £ — .. Since 02 is of class
C* the distance function d(x) = dist(x, 02) is of class C* in a neigh-
borhood of 02. We may suppose of course that ¢ is so small that
deC*Y,). We have

Sgwdiv(de)dx: . §077DdDw + S wny-Dd dH,_,
and since v-Dd=—1 and 7 =1 on 92:
g wdH,_, = —S 7DdDw — S w div(pDd)ds < j | Dw| + cl(s)g wda
a2 2 Q2 Se ¥

-€

where ¢,(¢) = sup, |div(nDd)| depends only on ¢ and 2. This proves
(1.8) when w = 0. The general case follows from the inequality

|, 1wl = 1Dw! .
We may now prove

PROPOSITION 1.1. Let the function £(x, u) satisfy
1.9) le(@, u) — &(@, V)| = lu — v]

for H, ., almost every x€ofl. Then the functional

@ =\ VITDuF + | @ i,
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1s lower semi-continuous with respect to L' convergence.
Proof. Let u; —u in L'(2). We have from (1.4):
7w - 2w s | vVITDul - | vITDwr+ | ju—ulan.
and from Lemma 1.1 with w = u — u;:
7w~ zw) s | vIFDul - SI)Vl—HFu_jF + |, 1Dul
+ SSEIDujI + ¢, Szeiu — ujlde < S:sl/m
~ | vTFTDuF 2| vITTDur

+ e, S{u — u;ldx,

where
Q.=0— Y ={xec:dist(z, 02) > ¢} .

Let now j— oo; taking into account the lower semi-continuity of
the area with respect to L’ convergence we get:

7 (u) — lim inf % (u,) < 2S VI Dul
g ¥
and the result follows letting ¢ — 0.

REMARK 1.1. An assumption equivalent to (1.4) is obviously

(1.5) vz, &)l =1 H, — a.e. on 0Q .

We have proved the lower semi-continuity of part of the func-
tional <(u). For what concerns the curvature term we refer to
[5] where we have proved its lower semi-continuity with respect to
strong convergence in L' and weak convergence in L™"~!, under the
hypothesis that H(x, t) is increasing in ¢, and belongs to L*(2) for
every t € R.

We have in conclusion the following theorem:

THEOREM 1.2. Let 2 be a bounded domain with C* boundary
082, and let H(x,t) and v(x,t) be two functions defined in @ and
0Q respectively, and satisfying the following assumptions:

(H) H(z, -) is nondecreasing for almost every xe€ Q.
(Hy) H(-,t) belongs to L™(Q2) for every t.
(v v, -) is nondecreasing for H, -almost every xe Q.
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(72) Iv(x, 8)| <1 H,— a.e. in 0Q .

Then for every sequence w;, bounded in L"' and convergent in L'
to a function u we have:

7 (uw) = lim inf 7 (u;) .
J—oo

In order to get a generalized solution for . (u) we begin by
minimizing this functional in the class

V;={veBV(@):|v| = j}.

It is easily seen that .& is bounded from below in V;, and that
every minimizing sequence is bounded in BV(2). From well-known
compacteness theorems we may extract a subsequence converging in
L'YQ); on the other hand it is obvious that sequence will be bounded
in L**', so that we may apply Theorem 1.2 to conclude the exi-
stence of a minimum for & in V.

Let us denote by u; a minimizing function. The subgraph U;
is a solution for F' in @;. We shall now let j— « to show the
existence of a local solution to F' in @, and whence of a generalized
solution for & . For that we need the following lemma:

LeEMMA 1.2. Let A be a subsolution for F in Qp. Then

(L.6) |, |D@al = o).

Proof. We have

Frd) = D + | Hodedt + vp.aH, < Fi4- Q)
Qr Qr T

iQ
=| 1Dpiol=2(2]
and therefore

XQ Dol =219+ |Hidedt + H0Q) = e(T).

In a similar way, comparing with A U @,, we prove (1.6) for
supersolutions. In particular, (1.6) holds for solutions in Q.

The inequality (1.6) is the only estimate we need in order to
pass to the limit as 7 — . For, let 77> 0 and let 7> T. Since
U; is a solution in Q,, we have

|, 1D7e,] = @)
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and therefore it is possible to extract a subsequence, which we shall
denote again by U;, converging to some set U in every Q,. It is
clear that U, being limit of subgraphs, is itself a subgraph of some
function u(x), assuming possibly the values 4co. It follows from
the next proposition that U is a local minimum for F and hence
that u is a generalized solution for & .

ProprosITION 1.2. Let H; and v; be two nondecreasing sequences
converging to H and v respectively, and let U; minimize the fumnc-
tional

Fita) =\ 1Dpl+ | Hpdedt + | vpam,.

Qr Qr Qy

Suppose that U; — U in Qr and that

an | e = edH ——0, 3@, = 0@, — Qs .
T

Then U minimizes Fp in Q.

Proof. Let V@,V = U outside Q,, and let

V. = {V in @,
*|U; outside Q, .
We have Fi(U;) £ Fi(V,) and therefore

S ID@Ujl + S H]-@,-jd.’)cdt + S YiPrH,
Qy Qr r

)

é S 1D¢IJ| + S Hj¢pdxdt -+ S ’)’JSDIdHn .
Qr Qr r

iQ

On the other hand

|, 1Dei =\ 1Del + | 90— o0 laH,
Qr Qr °Qr

and in conclusion, if 7 > s:

iQ

SQ | Dpy;| + SQ Hp, dadt + S YPr; AH, + S vy — NPy, dH,
T T T

Qr

gﬁwvw+§ \Py — @y | dH, .

9Qr

Passing to the limit as 7 — co:

| 10+ | Hpdwdr + | seat, = Fu(v)
Qr Q Qr

T g
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and the conclusion follows letting s — oo.

We may now apply the preceding proposition with H; = H and
v; = 7v; the condition (1.7) being satisfied for almost every 7. In
conclusion, we have proved the following existence theorem:

THEOREM 1.3. Let 2, v and H satisfy the hypotheses of
Theorem 1.2. Then there exists a generalized solution for the fumc-
tional 7 (u).

REMARK 1.2. Though proved for free solutions, the above
theorem remains valid if some additional conditions are imposed on
#. In particular, the same proof works for the obstacle problem,
i.e., when % is restricted by the conditions

Pi(®) = (@) = (@) ,

with +r,(2) bounded from above, and +,(x) from below; as well as
for the “soft obstacle” problem, namely when

@< Soaoo)u(ac)dx <b

for a given positive function {(x). The above includes the problem
with fixed volume, when { =1 and a = b.

Combinations of these and other conditions may also be imposed,
as long as they are compatible with |u| < T for large T.

2. The structure of the sets P and N. The generalized solu-
tion v may well take the values + o and —«. We set

P ={xec:ulx)=+ o}
N={re:ulx)=—oc}.

The purpose of this section is to study the properties of the above
sets.

Since we want to treat the obstacle problem, and even other
situations such as the soft obstacles, we begin by observing that
Proposition 1.2 remains valid, with the same proof, if U; are sub-
solutions, provided we add to the hypotheses the assumption that
U; form a monotone decreasing sequence: U;D U,:,. In this case
the limit U will be a subsolution itself.

We shall concentrate on the set P; we remark however that if
u is a supersolution for & and if we set H'(x, t)=—H(x, —t) and
¥'(x, t)= —~(x, —t), the funetion —u is a subsolution for .#”’, and
hence every result concerning the set P can be translated at once
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into a similar result concerning the set IV for supersolutions.

PROPOSITION 2.1. Let u be a subsolution for 7, and let

H (x) = lim H(x, t) : 7.(x) = lim¥(x, t) .
t—0co t—co
Then P 1s a subsolution for the functional

6P =\ (Dol + | Hopedo + | vpudh,..

2 o

Proof. For je N, let
U, ={(x, t) e @:t <ulx) — j}.

The set U; is obviously a subsolution for

Fia) = | 1Dp. + | Hpdadt + |

7]’@AdHn
aQ
with
Hi(x, t) = H®, t + 5); 7z, t) =@, t+ 7).
We have U;DU;;,D---DW = ;cU;, and hence by Proposition 1.2
and the remark above the set W is a subsolution for the functional
[, 1powl + | Hopydedt + | r.pdm.
) ) 20

Since W is a vertical cylinder, W = PX R, and since H, and 7, are
independent of ¢, it follows easily that P is a subsolution for G.

Before proceeding further in the discussion of the set P, we
recall that if F is a set and x,€0F, we say that =z, belongs to the
reduced boundary of E if for every R >0 we have:

2.1 0 <|E N Bg(xy)| < |Br(xo)

where Bj(xz,) is the ball of radius R centred at x,. It is well known
that after changing £ in a set of measure zero we may suppose
that 0F coincides with the essential boundary of E.

THEOREM 1.1. Let U be a local subsolution for the functional
F, and suppose that the boundary of U, oU, coincides with the es-
sential boundary. Then the same is true for P.

Proof. It is clearly sufficient to show that the boundary of
W = PX R is essential. Moreover we have only to show the first
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of inequalities (21), since the second follows at one from the remark
that W = njeN Uj.

Actually, we shall prove a stronger result, namely that if

2, = (&0, t,) is a point in @ and if for all » > 0 we have |U.(z,)| >0,
then for » small enough | U,(2,)| = ¢,r**', where we have set

Ufz)) = UNCz); Cz) ={z=(,t):]z— 2| [t—>t]<r}.

Let z,¢@Q and let 0 < r < R < dist(z, 0Q). Since U is a sub-
solution we have, for large T, F(U) < F(U — C,), and therefore:

(2.2) So,. | Doy | + SCT Hop,dxdt < Sac,%dH” .
On the other hand we have for almost every » < R:
@.3) D20 = | 10901+ puam,
and whence

@.4) (D20, + Hp, dudt < 2 Swr%dﬂn .

Suppose now that we have ¢ >0 in C, (or in other words that
t, > R). Then

|Hp., dodt = SH;%wadt

where H;(x) = min(H(z, 0), 0). From Lemma 2.1 below we get

(2.5) |Epv,dedt z— k)| Hillys, | Do, |
and hence
(2.6) A = k)| Hi s, || Doe | < 2 poam,,

where we have denoted by #k(n) the isoperimetric constant in R".
The right-hand side of (2.6) represents the derivative of |U,|, so
that we have:

a _ 1 -
v = pdl, z 20— k)| Hrlsy) || Do,

> 1
= Zk(n + 1)

Let now R be so small that |[H |, 5, < 1/2k(n); then for almost
every r» < R we get

1 = k()| Hy |ln, o LU, "4



308 ENRICO GIUSTI

d 1 )
W U 2________ Ur n/n4-1
o ”[—4k(n+1)l |

and in coneclusion, if |U,| > 0 for every », we obtain
2.7 [U,| = " 4(n + Dk(n + 1) .

The estimate (2.7) holds obviously for each of the sets U; defined
in Proposition 2.1, with R independent of j. We may then pass to
the limit as j — <o, getting the same estimate for W.

Finally, if x,€ 2 is such that | P.(x,)| = | PN B,(x,)] > 0 for every
r >0, we conclude that

(2.8) | P, ()] = »*[8(m + Lk(n + 1) .

We note that the above estimate (2.8) does not hold for super-
solutions, and the Theorem 2.1 is in general false. For example the
function |z|™ is a supersolution for small |z|(H = 0), and P = {0}.

To conclude the proof of the theorem it remains to prove the
estimate (2.5). This is done in the next lemma.

LemMA 2.1. Let h(x)e L*(2) and let ECCy, = B, xI,. Then

[, /1l dedt < k)2, {| D5 -

Proof. We have from Holder’s inequality
|, Ihldadt < Rl || B edt
E
where
B, ={xcQ: (x,t)c i} .
On the other hand from the isoperimetric inequality we get
E, 7 < k(n) SID@1:Z|

and therefore

|, | nldadt < k) [[11]..s, (2t \|DPs,| = B A]Ls, || DSl

3. Variational solutions. In general the sets P and N are not
empty, and sometimes they may cover the whole of 2. The pur-
pose of this section is to investigate under what conditions we may
conclude the absence of these singular sets.
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We begin with two simple remarks concerning subsolutions;
similar results hold for supersolutions.

(A) If A is an open set in £, and if the measure of PN A4 is
zero, then PN A is empty. Actually we may say more, namely if
Ac® and if |PN A]| is small enough (depending on A and H) then
PNnA=0.

(B) If PN A = @, then w is locally bounded from above in A.
Assertion (B) follows from estimate (2.7), whereas (A) is a con-
sequence of (2.8).

ExampLE 3.1. (Emmer [3]) Let u(x) be a generalized solution for
& with obstacles, i.e., satisfying the conditions

Pu() = w(@) = o)

Suppose that 4 (x) < M, and r(x) = M,. It is clear that u(z) is a
generalized subsolution in QX (M, + ), and a generalized super-
solution in 2 X (—co, M,).

It follows from remarks (A) and (B) above that if the obstacle
Jr[y.] is finite almost everywhere in 2, then # will be locally
bounded from below [from above].

When no obstacle is present we need some assumptions on H
and v. Let us begin with some necessary conditions.

Suppose u(x) is a smooth solution for & in 2. If Ac, and
we compare & (u) with & (u + tp,), t >0, we get easily

[, 7u-Dp, + | Hpdo + | rodd, ., =0
where v*(z, t) = lim,_,+¥(x, s).

Taking into account that [Tw| <1 in 2, and arguing as in [7],
§1, we get the inequality

(3.1) | Houdo + | v9.dH, . >-| Do,

and therefore

(3.2) | Hopads + | vpudH, > Do,
Q o2 2

for every set A+ @, 2. In a similar way:

(3.9) |, Hoopuds + | vpidb, . <| Do,

for A+ @, Q.

THEOREM 3.1. Let the strict inequality (3.2) hold for every
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nonempty set A, and let uw be a generalized subsolution for .57 .
Then P = Q.

Proof. By Proposition 2.1, P is a subsolution for the functional
ap) =\ Do, + | Hoppds + | vprat,,.

On the other hand we have from (3.1), G(4) = 0, the equality hold-
ing only for A = ¢g. This implies immediately that P is empty.

The same argument shows that if (3.3) holds, with strict ine-
quality for 2, and if w is a supersolution, then N = .

ExamPLE 3.2. Discontinuous obstacles (De Acutis [2]).

Suppose that the obstacles 4, and +, of Example 3.1 are finite
only in some regular subsets D, and D, of 2. Arguing as before we
may conclude that the generalized solution is locally bounded in the
interior of these sets, from above in D, and from below in D,. If
in addition condition (3.2) is satisfied in @ — D,, and (3.3) in 2 — D,,
we may conclude that P = N = ¢ and therefore that u is locally
bounded in Q.

In general, even when P = N = ¢, the solution w ecan go to
+co when « approaches 02 (see e.g., [8]).

However this possibility can be excluded if we make some ad-
ditional assumptions on the boundary function v. In the folllowing
we shall suppose that there exist constants 6, >0 and a, 0 < a < 1,

such that
(3.4) Y, t)=—a Vreol, Vi>6,
(3.5) Y, t) Sa Veedl, vi<—60,.

We note that (3.4), (3.5) correspond to a bounded boundary datum
in the case of Dirichlet’s boundary conditions (v(x, t) = 1 — 2p.(w, 1)),
whereas in the case of capillarity boundary conditions they are

equivalent to |cosf| =< a < 1.
With the help of (3.4) and (3.5) we can prove the following

generalization of Theorem 2.1.

THEOREM 3.2. Let U be a local subsolution Sor the funmctional
F, and let z, = (2, ty), t, >0, + 1, be a point of Q such that for
every positive 7r:

(3.6) Ul =1UNCAz)] > 0.

Suppose further that (3.4) is satisfied. Then there exist constants
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Ry >0 and ¢, such that for every » < R, we hawve:
3.7 |U,| = et
Proof. As in Theorem 2.1 we compare U with U — C,, getting

S | Dp| + S Hop, dxdt + X YPudH, = g
Qne, QNeC, c,

QN i

(pL'dHn
and therefore for almost every 7.

SQID%J + SQH%I_dxdt + S 27¢)b',,dHn < ZS . P.dH, .
aq ”

We have from (3.4):
S YPy, dH, = —ag Py, dH,
aQ 0
for every » <1, and from Lemma 1.1:
|\, #oam, =\ |Doy) + el = | Do,
Q Q Q

+ efe(n + D)|U, [+ S‘D%Tl .

If R<1is so small that ¢k(n + 1)|C,lY"* < 1/2, we get for every
r < R:

1+ ckn + 1)|CR]””+1§ |
(3.8 S dH = :
3-8) ) o, 1 — ¢ l(n + 1)|Cp|/m+ Je s
and
2
(3.9 S Do, | < S Do, | .
3.9) | @(/q.‘ 1— cle(n + 1)|Cnll/n+l QI P .,.]

Finally, we may estimate the curvature term as in (2.5):
| Hoo dudt = =k || Hi L0, | D2, |

and in conclusion

1 + e.i(n + 1)|Cr|m*+
Ho, dodt + S dH, =—
SQ P, 4 aQ TP, {a 1 — ek(n + 1)|Cr|/m+

1 — 2 1
O H i s CRI,/,M}SJD@,,-,; .

Since « < 1, we may choose R, small enough that the right-hand
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side is bounded from below by 2—(1 +a)§ |[Dp. |. We remark
Q
that the constant R, depends only on H through || H; ||, ,, and the-
refore it is uniform for H;, in compact sets of L*(Q).
In conclusion we get

L= edl,z 2| Do 2+ aiDpe] =1 - w2
r 5, 2 Je 8

and arguing as in Theorem 2.1 we conclude for » < R,:

U,z e, e = &/8(n + 1) .

REMARK 3.1. It follows from (3.7) that for » < R:
(3.10) |P,| =|PN B,(x,)| = er"/16(n + 1)

uniformly for x,¢ 2.

In particular, there exists a constant p, depending only on a
and on H; (p, is uniform for H; in compact sets of L"(2)) such that
|P| < p, implies that P is empty and u is bounded from above in
the whole of 2. This makes possible to improve the results of Ex-
amples 3.1 and 3.2.

ExamPLE 3.3. In Theorem 3.1 and in the above examples we
have always made the assumption that the strict inequality (3.2)
holds for 2 itself. It is easily seen that if the equality holds for
2, we cannot expect in general to have a bounded solution. For
example, let Q2 = {xe R |x| < 1}, and let

H(x, u) = —Z—arctg u— 3
T

(e, w) = |u) .

(Dirichlet problem with zero boundary data.) We have H,=—2 and
(3.2) is satisfied but the equality holds for 2. In this case we have
P =2, and u=+ 0.

REMARK 3.2. It is clear that a bounded solution is a variational
solution, namely it has finite area and minimizes the functional &
in BV(2). Moreover, if H is Lipschitz-continuous the function w(x)
is of class C** in Q and is a classical solution of the equation

div Tu = H(z, u) .

REMARK 8.8. It follows from Theorem 3.2 that every generaliz-
ed solution which is almost everywhere finite is bounded. In parti-
cular this is true for every L' generalized solution. It is easily
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seen that it is possible to give an estimate of sup # in terms of the
L' norm of u, or better in terms of Sou+dx, ut = max(u, 6,).

For, let 6, and R, be as in Theorem 3.2, and let z,€ 2 be such
that

supu < u(x,) + 1.
2

For jeN let z;= (%, 06, +2jR,); we have z;eU for j=Fk=
[u(x,) — 6,/2R,]. From Theorem 3.2 we get

|Ury(25)] = e, B3
and therefore

k
|, wdo 2 3 1Un(2)] 2 ke .
J=1

In coneclusion

G1)  swpu=1+u) = angzﬁdx 10, + 2R, +1.

(¥

We remark that estimate (8.11) holds for minima with obstacle
% = 4, provided 4+ < M < 6,. Moreover, the bound for sup » depends

only on \ utdx and on R, and 6,; it is therefore uniform for H; in

2
compact subset of L"(2).

4., An application: Lagrange multipliers. We apply now the
results of the previous sections to the discussion of the existence of
Lagrange multipliers for minima with obstacle and constant volume.

Let +(x) be a function bounded from above, and let V be a
real number, with

V> Squrdm = —oo
We have seen in §1 that the functional
wl T w) = 801/'1‘+ DuF + Sn)n(x, wda + SAQ K, wH,_,

with the constraints
U =

Suda::V
Q2

has a generalized solution; i.e., that there exists a function
u: 2 — [—oo, + o] such that its subgraph U minimizes locally in @
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the functional
(4.2) F(U):S Do, | + g HqDdedtJrg o, dH.
Q Q Q

among all subsets F C @ such that E>¥ and |E+| — |E-| =V
(Bt={z=(x,t)eQ:ze K, t=0}).

Our goal is to show that there exists a variational solution to
the above problem, and moreover that such solution may be obtain-
ed as a minimum for the functional

(4.3) i) = .7 (u) — quudx

for a suitable value of the constant ¢ (the Lagrange multiplier).
Our hypotheses will be those of Theorem 3.2, namely:
(i) Nz, u) and k(x, u) are convex functions in u, or, what is
the same, H(x, u) and v(x, u) are nondecreasing functions of u.
(ii) H(z, t) is in L™(2) for every te R.
(iii) There exist constants 4, and a, 0 < a < 1, such that

(4.4) v, )=—a Veel, Vi>46,
(4.5) vy, ) fa Veel, Vvi<—6,.

Of course we may assume that 6, = M = sup .

For what concerns the obstacle 4 we shall assume that it is an
upper bounded measurable function, almost everywhere finite. In
this way every solution u, for the functional .7, is bounded from
below (see Remark 3.1).

To prove our result we have to show that there exist a value

¢, and a variational solution %, to ., such that S ude = V.
LeEmMmA 4.1, Let h(x) be in L"(2) and let v(x) =—a. Then for
every set A C 2, satisfying
elk(n) Al < 1

we have

~ _{, L+ k) A
(4.6) |, hdw + | vpudH, =~ {a 1 A

2k(00)[[ 7 ||,
1o c1k<n>|A|“%H-o'D%' ‘

Proof. We proceed as in Theorem 3.2. We have
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|,, 7PudH, . z—ag P, dH, .
aQ aQ
From Lemma 1.1

| e, =\ Dol + cjal 2| Dol + ek ar (Do,

and therefore, if ¢ k(n) A" < 1,

1+ ch(n) A"
dH, , < D
Sag Pa 1= 1= chm)| A" S.@l Pal

2
109l = T, | Dol

Moreover

Lhdw Z—lhlla4 1= 02;:((:;))‘14]1/” §91D¢Al

from which (4.6) follows at once.

A consequence of Lemma 4.1 is that, at least for ¢ negative and
big enough, the functional .&, has a variational solution. For that
it is sufficient to show that condition (3.2) holds (with strict inequ-
ality even for Q) when H_ is replaced by H_— ¢q. We distinguish
two cases, desending on the size of A. If A is small, we have us-
ing Lemma 4.1:

| H—do + | vpdh, 2| Hido + | v.paH,,

00 G8
< -| 1Da.|
2

provided |A/| is smaller than some constant ¢, depending only on «
and H; .
On the other hand, if |A| > o, we have:

|, @~ o + | rpdl, . z—a| |Dp.l —cla]

a2

+ SQHO"dx — qlA] >—§QID¢AI

whenever —(q + ac,)o, + SgHo'dx = 0.

Let us denote by S the set of all the values of ¢ for which the
necessary condition

(4.7) SA (Ho — @)dz + Sm VPslH, ;= —SQiD%l
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is satisfied for all Ac®, and let ¢, = sup S.
It is clear from the above that S # ¢ and therefore ¢,> —o.
It is easily seen that (4.7) holds for g, itself, and that for ¢ < ¢, we
have the strict inequality for every nonempty set, including 2 itself.
It follows that ., has bounded (variational) solutions for all ¢ < ¢,
(and possibly for ¢,), but not for any q > q,, so that S = (—oo, ¢,
For q < ¢, we define V(q) as the set described by the integral

Sgudm

when u varies among all solutions to .&#,. Since .&, is convex (but
not strictly convex), the set V(q) is a closed interval, which may of
course reduce to a point.

LEMMA 4.2. Let p <q and let u, v be solutions of #, ¥, re-
spectively. Then u < v.

Proof. 1t is well known (see [1] and [6], Theorem 1.17) that
for every we BV(2) there exists a sequence w;c€C” N BV(2) such
that w; —»w in LX) and V1 + |Dw;?— V1 + |[Dw|*. Moreover
w; =w on 02, and if |w| < M we may choose the w; satisfying
lw;| = M.

It is now a simple matter of computation to show that for any
r, F,(w;)— F,(w). In conclusion, for every &> 0 there exist
C=-functions ., and v. such that

e — wll, + [lv. — 0], <e
F(u) < o ,um) + ¢
Fw) < 7)) +e.

Let A = {xe Q: u(x) > v.(x)}; we have
min(u, v)) = 75w + | vIF D0 - | VIF D0l
+ L[m, ) — Mz, w)lds + Sam[m(x, ) — K@, wdH,
—p| (0.~ wide = W) = ) — .
Similarly:
Fmin(u, v)) =.F0) — | VIFTDF + | VIFTDuF

— SA[W, ) — Ma, u)lde — Swm[x(x, ) — K, wldH,
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+q§A(v5 ez ) = ) — €.

In coneclusion, we have

(g —p) g (. — v)de = (¢ — D) Sg(maXW:, v) — v)de < 2

4

and passing to the limit as ¢ —0:
(@ —») | (maxu, v) — v)dz = 0
which implies max(u, v) = v and therefore u < v.

A trivial consequence of the above lemma is that if ¢, < ¢, and
u,, U, are solutions of &, & respectively, we have

S wder < S w A .
Q 2
In other words, the mapping q-- V(q) is nondecreasing.

LEMMA 4.3. For every V, inf ., V(g) <V < sup,., V(Q), there
exists a ¢ < q, such that Ve V(¢).

Proof. Let S, denote the set of all ¢ such that V(q) <V; and
let ¢ =supS,. Let q; 7¢ and for each j let u; be a solution for
Fq;o It is easily seen that the functions u; are uniformly bounded
from below, and therefore from above because the integrals 0u,-elac
are uniformly bounded. Since .7, (u;) = .7,,(0) = |2, we conclude
that u; is a bounded sequence in BV and hence, passing possibly to
a subsequence, it converges (strongly in L' and weakly in L™"") to
some function #’. From Theorem 1.2 we deduce that «’ is a solu-

tion for .7, and S w'de < V.

In a similar Wagr, starting with a sequence p; decreasing to ¢/,
we arrive to a solution w” for &7, with Sou”dxg V. From the
convexity of .7, it follows that V(q') is an interval, and hence
Ve V().

To conclude our proof we have only to show that every value
V>§ Jrde is reached.

LEMMA 4.4. Let n(x) be a smooth function in 2, such that
7 =q+. Let ¢g;— —co and let u; be a solution of .o#,,.. Then
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lim max(u;, 7)) =7 .

il

Proof. Let ¢, < q, and let ¢ < ¢q,. Let w be a solution of .7,
and let . be as in Lemma 4.2. We may compare u. with », =
min(u., 1), getting

of, 0. — wyde = | VIFTDYF — | VIFTDuF.

e, 00— A, wldz + | (6w, v) — #, wldH,
We have
S M@, 2) — Ma, wl)]de= ~§ da S“H(x, Hdt < —SOH(x, . — v)de

2

and

Sm[fc(w, vo) — K@, w)dH,, = « gm v, — w|dH,-, = g | D(v. — )|
+ (:IS 10 — w.|dw < L Dy + SAlnuel Y S . — v.|dz -
In conclusion:
—(+ @ | Ju.— vilds =~ (e, + @) (max(u,, 7) - P
< 2§A VIF D7 — SQH(x, e — v)de
and letting ¢ — 0:
48  —+q| maxwn -nde 2| vIFIDTF

+ SQH(m, N — v)de .

On the other hand, it follows from Lemma 4.2 that uw = %, =< u,,
and therefore the right-hand side of (4.8) is bounded independently
of q. Letting ¢ > —~ we get the conclusion of the theorem.

The above result shows that inf V(q) = ggqudx. The existence

of the Lagrange multiplier will follow if we show that sup V(q) =
+ oo,

This is easy if ¢,=+ o, i.e., if the functional &, has variational
solutions for every real ¢ (this happens for instance if H.= + o).
In this case we have only to repeat the above argument to show
that the volume V(q) tends to infinity as ¢ — + . More complicate
is the case when ¢, < +c. Let g; be an increasing sequence, q; — q,,
and let u; be the corresponding sequence of solutions. We distin-
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guish two cases.
ey sl — 4o .

In this case, since u; is increasing, we havelV; = S U;dx— + oo,
Q
and therefore sup V(g) = + .

I Nu;ll, = M.
By Remark 3.3 the functions u; are uniformly bounded:
lu;(@)| = M,

and therefore it is possible to extract from u; a subsequence which
converges to a function u(x), a variational solution for .&#,. It is
then satisfied the necessary condition:

@9 —q 4]+ | He@ u@ds + | 7@, wo)p.dH, =~ Do,

for every set A cC Q.
On the other hand from the true definition of ¢, we have:

@10 —glal+ | Hao + | vpan, = Do,

0

LemMA 4.5. Let the strict inequality hold in (4.10) for every
nonempty set A. Then there exists q > q, such that

~q 4l + | Hado + | v.pai, .=\ |De.l,

Jor every AC L.

Proof. Let q; = q, + 1/j, and suppose that for every j there
exists a set A; such that

(@11 g4 + | Hodo + | v.pidH,, <—| Dol
From (4.11) we get

|, 1D2ul S lasl12] + | Hedo + H,.09)

and therefore, passing to a subsequence we may conclude that
A;— A. From (4.6) with » = H; — q;, we conclude that the meas-
ure of A; is bounded away from zero, and whence A has positive
measure. Passing to the limit as 7 — 4+« we get:

—qlA| + S H. dx + S YePadH, , = —S [Dp,|
4 a2 Q2
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contradicting the assumption of the lemma.

It follows from the above lemma and the definition of ¢, that
the equality sign must hold in (4.10) for some nonempty set A.
From the monotonicity of H and v and from (4.9) we get then:

~al 4] + | He, u@)is + | 76, u@)pdH, .=~ | Dl

and therefore for almost every xz€ A and for every t > u(x):

H(zx, t) = H,(x)
Y(x, t) = 7.(x) .

In particular we may conclude that &, (u +c@,) = F4(u) for every
positive constant ¢, and hence

V(qy) = H:) udx, + oo> .
In any case we have then
ves) = (| waz, +oo]

thus proving the existence of a Lagrange multiplier.
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