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A FREE BOUNDARY VALUED PROBLEM FOR
CAPILLARY SURFACES

CLAUS GERHARDT

We consider the usual capillary variational problem with
an obstacle condition given on the boundary and prove exis-
tence and regularity of the solution to this problem.

0* Introduction* The equilibrium surface in a capillary tube
separating liquid and gas is represented mathematically as the
graph of a function u solving the variational problem

(0.1) J(v): = [ (1 + \Dv\Y2 + — ( \v\2 + ( β v > min VveBV(Ω).
JΩ 2 J# hΩ

Here, Ω is the cross-section of the tube, K a positive constant, and
β a prescribed function satisfying

(0.2) l / 3 | ^ l .

BV(Ω) is the space of functions of bounded variation, the largest
function class for which the variational problem can be formulated
analytically.

A regular solution of the variational problem is also a solution
of the corresponding Euler-Lagrange equation

(0.3) Au + KU = 0 in Ω

satisfying the natural boundary condition

(0.4) -a'-vt = β on dΩ ,

where

Au = -Dla\Du)), a*(p) = p'(l + |p|2)~1 / 2

is the minimal surface operator in divergence form and v the
exterior unit normal to dΩ. We note that we use throughout the
text the usual summation convention to sum over repeated indices.

The formulation of the variational problem (0.1) contains impli-
citly the assumption that the capillary tube has an infinite length:
the rise of the liquid is not constrained by the upper end of tube.
Physically, and mathematically as well, it is sufficient to assume
the tube to be large enough, so that the liquid is always strictly
below the upper aperture of the tube. But in certain circumstances
it could happen that the liquid would like to rise higher than is
permitted by the configuration of the tube.
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In those cases the variational problem (0.1) is no longer correct;
the correct formulation is

(0.5) J(v) > min Vv 6 BV(Ω) Π {v \dΩ ^ φ) ,

where φ is a given function defined on dΩ representing the con-
straint.

However, it is well-known that the variational problem (0.5)
cannot be solved directly since the class of competing functions is
not closed with respect to weak convergence in BV(Ω). To over-
come this difficulty, let us write the side-condition

(0.6) v ^ ψ

as an isoperimetric constraint, namely, in the form

(0.7) ί max (v - φ, 0) = 0 .
jdΩ

Then, applying Lagrange's multiplier rule formally, we are led to

(0.8) J(v) + λ [ max (v - <p, 0) > min Vv e BV(Ω) ,
}dΩ

where X e R is an unknown multiplier to be determined: one has to
show that there exists XeR, and a solution uλ of (0.8) satisfying
(0.7). Then, uλ would also be a solution of (0.5).

In the next sections we shall prove this under certain natural
restrictions of the data and of the boundary of Ω. One of those
restrictions is what we call the compatibility of β and X: β e L°°(dΩ)
and X e [0, 2) are said to be compatible if there exists a > 0, s.t.

(0.9) sup |/3 + t\ ^ (1 - a) VO ^ t ^ X .

In § 1 we prove that the variational problem (0.8) has a solution
uλ e C\Ω) Π LΓ(Ω) (the solution is actually real analytic in Ω) for
any pair of compatible β and λ. In § 2 it is proved that uλ is of
class Hh°°(Ω) n H2>\Ω), and that the side-condition (0.6) is satisfied
if, e.g., the mean curvature of dΩ is positive, which means in the
physical case that Ω is convex, and if in addition the oscillation of
β is small, where the "smallness" depends on dΩ and φ. Finally,
in § 3 we consider the corresponding capillary problem with the
further side-condition of prescribed volume which in fact incorperates
two side-conditions, namely the volume constraint and an obstacle
condition: the liquid is bounded from below by the bottom of the
vessel.

No detailed proofs are given, since everything has already been
proved in previous papers (cf. [2, 3, 4, 6]) in a rather general sett-
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ing. We only apply those results to the present problem, which
has been drawn to our attention by Willi Jager to whom we are
therefore very much indebted.

1* Weak solutions of the variational problem* We consider
the variational problem (0.8) in a slightly more general fashion,
namely, in a bounded, open set ΩaRn, n ^ 2, with Lipschitz
boundary dΩ, we consider the variational problem

Λ(«): = (1 + \Dv\')'" + I \mx,t)
α.i) J" ! Λ

+ I β-v + λ \ max (v - <p, 0) > min VΊ? 6 ΰF(i2) ,
)oΩ }dΩ

where H = H(x, t) is Lipschitz continuous satisfying

(1.2) -|r- = κ > ° '

where <£> and /3 are given measurable functions on dΩ with

(1.3) φeL\dΩ)

and λ 6 [0, 2) is a fixed multiplier, such that β and λ are compatible.
We may write the boundary integrals in abbreviated form as

(1-4) Jar/^' V " ^ '

where

^(^, ί): = /3 ί + λmax(ί, 0) + β-φ .

jx is measurable in x, and convex and Lipschitz continuous in t
with

(1.5) I jλ(x, s) - jλ(x, t) I ^ (1 - α) 11 - s | ,

and

(1.6) J X , -φ)eL\dΩ) .

This can most easily be seen by looking at the [subdifFerential djλ

of i; with respect to t

where

(1.8)
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hence the result in view of the compatibility of β and λ.
If we assume that Ω satisfies a so-called internal sphere con-

dition (ISC), i.e., if we assume t h a t every point xeΩ is contained
in a ball B of fixed radius R lying entirely in Ω, t h e n t h e follow-
ing theorem has been proved in [4; Theorems 2.1 and 2.2],* see also
[2]:

THEOREM 1.1. Under the assumptions stated above the varia-
tional problem

Jλ(v): -
(1.9)

+ \ jχ(p, v — φ) > min Vv e BV{Ω)
J d.Q

has a unique solution uλ satisfying moreover

(1.10) uλeC-a(Ω)Γ\L~(Ω)

for any a e (0, 1).

The proof is based on the following inequality (cf. [2; Remark

2])

(1.11) [ \v\£.[ \Dv\+o.[ \v\ VveBV(Ω),
JdΩ J.Qε J.Q

where

Ωt\ = {xeΩ:άist(x, dΩ) < ε} ,

from which one can immediately deduce that a minimizing sequence
of the variational problem (1.9) is uniformly bounded in BV(β), and
that the functional Jλ is lower semicontinuous with respect to weak
convergence in BV(Ω) (cf. [2; Appendix II] and [4; Theorem 2.1]).
The regularity result then follows from the minimizing property
of the solution and from the interior gradient estimates for non-
parametric surfaces of prescribed mean curvature (see e.g., [5]).

We note that, using the a priori estimates of Concus and Finn
[1], we may conclude that the results of Theorem 1.1 are still valid
in the limiting case where a = 0 (cf. [4; Theorem 4.1]).

2* Global regularity and boundary behavior of a solution*
Besides the conditions of the preceding section we assume now that
dΩeC3, φeC\dΩ) (for simplicity), and βeC°>\dΩ). Let us consider
the corresponding boundary value problem to the variational problem
(1.9)

1 In that paper we only treat the case φ = 0, but the results and proofs are also
valid in the general case.
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(2.1) Auλ + H(x, uλ) = 0

The following theorem has been proved in [6; Theorem 3.1].

THEOREM 2.1. The boundary value problem (2.1) has for com-
patible β and λ a unique solution uλeHhco{Ω) Π H2>2(Ω).

The proof is based on the tangential gradient estimate of Simon
and Spruck [8] for capillary surfaces, which can be applied to the
present situation in view of the monotonicity of βQ.

Evidently, the solution of the boundary value problem is also a
solution of the variational problem, and vice versa. To conclude
that v,χ is a solution of the original constrained problem for a
suitable λ, we have to show

(2.2) ux^φ on dΩ .

To prove this boundary estimate we assume moreover that

(2.3) -H(x, φ)^(n~ l)-H^(x) Vx edΩ ,

where Hn_γ is the mean curvature of dΩ, and that

(2.4) osc β ^ δ ,
dΩ

where δ is a small positive constant depending on dΩ and φ.
With these assumptions we can prove

THEOREM 2.2. The solution uλ of the boundary value problem
(2.1) satisfies (2.2). The inequality also holds only locally, if the
conditions (2.3) and (2.4) are only locally fulfilled.

The proof of the theorem can be found in [6; §§4 and 5]; it is
based on the construction of an appropriate barrier function δ+ e
C2(Ωε) satisfying

(2.5)

(2.6)

(2.7)

and

(2.8)

where Ωε

Aδ+

u ^

Ψ ^

-α<

+ H(x, δ+) ^ 0

δ+

(Dδ+) vt ^ β +

= {x e Ω: dist (a, 542) < ε} and

{xeΩ: dist (x, 5

in i2£ ,

on Γ.,

on 3̂ 2 ,

λ on dΩ ,

Ώ) = ε} .
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The construction of δ+ satisfying (2.5)-(2.7) is possible in view
of the assumption (2.3) (cf. [7]), while the estimate (2.8) is valid if
β satisfies (2.4) and λ is chosen appropriately, since

(2.9) sup!α*(jDS+) ^ | < 1 -

Evidently, the solution of the constrained problem should be
less than the solution of the unconstrained capillary problem. This
is indeed the case

LEMMA 2.3. Let uλ be the solution in Theorem 2.1, and let u
be the solution of the free capillary problem

(2.10) Au + H(x, u) = 0 in Ω ,

-~ai'Vi — β on dΩ ,

then

(2.11) uλ^u .

The proof is the same as that of Theorem 2.2, since in view of

(2.10)

i ^ β 4- Xβo(uλ - φ)

on dΩ; remember that βQ is a nonnegative maximal monotone graph.

3* Solutions with prescribed volume* Let us consider liquid
in a cylindrical vessel the bottom and the walls of which are made
from different materials: the bottom should be such, that the liquid
will not form drops on the bottom even if the volume is small, but
will creep to the walls to form a usual capillary surface there.

If we look at the free boundary value problem of the previous
sections in this new configuration, then the variational problem
(1.9) e.g., now takes the form

(3.1) J>(v) > min Vv eBV(Ω) Π {v ^ ^} Π \[ (v - ψ) = v\ ,

where the volume V > 0 is prescribed, and the obstacle ψ represents
the bottom.

Let us furthermore assume in this section, that H — H(x, t) is
sublinear in the second variable, i.e.,

(3.2) sup H(x, t) ^ c (l + t) Vt > 0 ,
Ω

then we deduce from the general results in [4].
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THEOREM 3.1. Let the conditions of Theorem 1.1 be satisfied
and assume moreover ψ eC0Λ(Ω). Then, for any V > 0, the varia-
tional problem (3.1) has a unique solution uλ 6 C0Λ(Ω) Π L°°(Ω).
Moreover, there exists a Lagrange multiplier μ, such that uλ also
solves the variational problem

(3.3) Jλ(v) + μ[ v > min Vv 6 BV(Ω) Π {v ^ ψ} .
J.Q

Uχ is of class i?Ί2

oc?(β), n < p ^ oof if ψ belongs to that function
class.

We note that this result remains valid even if we only assume
H to satisfy the weak monotonicity condition dH/dt ^ 0, i.e., even
in the absence of a gravitational field. This is due to the fact,
that 1̂ 1 can be bounded independent of K only in terms of Fand a.

If we assume

(3.4) ψeC\Ω), ψ\dΩ<φ

and

(3.5) β S -a'iDifi'Vi on 3Ω

then we obtain for coercive H and for φ eC2(dΩ).

THEOREM 3.2. Suppose that the assumptions of Theorem 2.1,
and (3.4), (3.5) are valid. Then the solution uλ of the boundary
value problem (3.3) is of class HU°°{Ω) Π H2'\Ω) and satisfies

(3.6) Aux + H(x, uλ) + μ = ( °* Uλ > Ψ

and

(3.7) -al'Vx 6 β + Xβo(uλ - φ) on dΩ .

Proof. For the proof one has to apply the ideas of [3; § 3] to
the estimates in [6]. Let Θ be the maximal monotone graph

(3.8) θ(t) =

- 1 , ί < 0

[-1,0], ί = 0

0, ί > 0 ,

and let θe be a sequence of smooth monotone graphs tending to θ
such that
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Furthermore let μ be a positive constant such that

(3.10) Air + H(x, ψ) ^ μ in Ω .

Then, we consider the approximating boundary value problems

/ Q 1 1 λ Aux,c + iϊ(α, u?j + μθ^u^-ir) = 0

The estimates in [6] yield the existence of a unique solution
uλfεeHu°°(Ω) n H2'\Ω) of (3.11) with uniformly bounded norm in
that function space.

From (3.4) and (3.5) we then conclude

(3.12) uλ,ε ̂ ir -ε ,

hence the result.
Indeed, let ψε: = φ — e and 57: = max (irε — u, 0). Then, combin-

ing the inequality

A^β + H(x, ir.) + μ θε(ψε - V)
^ ^ + £Γ(«, ψ) - μ^ 0

with (3.11) we obtain

( 3 Λ 4 ) + ( {H(x, u?j - H(x,
Ω

The boundary integral is nonpositive on account of (3.5), since in
{η > 0} we have βo(uλ,e - φ) = 0 in view of (3.4). The strict mono-
tonicity of H and the monotonicity of the vector-field {a1) then
yield η = 0.

The question, whether

(3.15) ux £φ on 3β ,

is not so easy to solve in the present case as in the former situa-
tion. For small volume V, say,

(3.16) V ^ Vo ,

the inequality (3.15) is immediately verified under exactly the same
conditions as in § 2, where the bound Vo depends on the given data;
for large volumes the estimate (3.15) may not be valid, as is evident
in the physical case.

To prove the existence of a bound Vo, let us look at the varia-
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tional problem analogous to (3.1), but without any volume constraint,

(3.17) Jλ(y) • min Vv 6 BV(Ω) Π {v ^ ψ} ,

where we shall always assume that H is strictly monotone in the
sense of condition (1.2). Let ΰλ be a solution to (3.17). We know
that ΰλ e H^φ) Π H^\Ω) if the assumptions of Theorem 3.2 are
valid. Now, if we assume further that the conditions (2.3) and
(2.4) hold, we can construct upper barriers d+ in exactly the same
way as in § 2, where in the present case the barriers also satisfy
Ψ <̂  3+, and thus we conclude

(3.18) ΰxSφ on 3Ω

for appropriate Lagrange multipliers λ.
We then take

(3.19) Vo = ( ( « , - ψ) .

The result now follows from the observation that uλ is a solution
to the variational problem (3.1) with volume V = Vo, and that the
relation V-+Uχ, where uλ is the corresponding solution of (3.1)
with volume V, is nondecreasing (cf. [4; formula (3.6)]).

At the end of this section we shall prove the existence of a
volume F*, depending on the obstacle φ, such that the solutions
of the corresponding variational problems with volume V > F* lie
strictly above the obstacle.

To prove the existence of V*, we need the following lemma

LEMMA 3.3. Let u e C°'\Ω) be a solution of the equation

(3.20) Au + H(x, u) + μ = 0 in Ω ,

where Ω is an open set in Rn satisfying an ISC of radius R, and
where H is monotone and sublinear. Then, if

(3.21) μ^min(~2-c-R - 2 -2L , - 2 c ) ,

where c is the constant in (3.2), we can conclude

(3.22) u ^ - - £ - - 1 .
2 c

Proof. Let xoeΩ be arbitrary, and let BR{x0)(zΩ. For simpli-
city assume that xQ = 0, and let δ0 be the upper hemisphere

do(x): = (R2 - | α | 2 ) 1 / 2 , \ x \ ^ R .
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Let

Then

(3.23) AS- + H(x, δ~) + μ ^ — + c Λ - -£- + ;« ^ 0
i? 2

in view of (3.21).
From a simple maximum principle (cf. [4; proof of Lemma 4.1])

we deduce

(3.24) δ~ £ u ,

hence the result, since Ω can be covered by such balls.
We note that Concus and Finn [1] where the first to use hemis-

pheres as comparison surfaces for capillary surfaces.
To apply Lemma 3.3, let u* be a solution of the free capillary

problem

(3.25) Jλ{v) + μ[y > m i n Vv 6 BV(Ω) ,

where μ is sufficiently less than zero. Then, u* is very large, cf.
(3.22), so that u* is strictly larger than a given obstacle ^ . More-
over, u* is also a solution to the variational problem (3.1) with
volume

(3.26) F* - ( (u* - ψ) .

This volume will be appropriate, since the relation V—>uλ, where
nλ is a solution of (3.1) with volume V, is nondecreasing, as we
mentioned earlier.

4* Final remark on the physical problem* In order to prove
that the solutions uλ of the new boundary value problems actually
satisfy the condition

(4.1) uλ <; φ on 3fi

we had to suppose in § 2 that the boundary of Ω satisfies the
specific assumption

(4.2) -H(x, φ)£(n-ϊ)> Hn^{x) VxedΩ .

This is certainly necessary in the general case, for the con-
struction of appropriate barrier functions. But in some special
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cases, including the physically interesting ones, barrier functions
can be constructed under much weaker assumptions. In the physical
problem the boundary obstacle φ is always assumed to be strictly
positive (the liquid surface of the large reservoir is supposed to
represent the zero level), so that we may tentatively choose φ
itself as an upper barrier function, after having extended it as a
positive function to the whole domain Ω. Thus, the inequality

(4.3) Aφ + H(x, φ)^0 in Ω

is to be satisfied. In the physical case, H(x, t) — tc-t, K > 0, so
that we have to satisfy

(4.4) Aφ + fc φ ^ 0 in Ω .

Knowing that φ is strictly positive, this inequality will always be
fulfilled when \Aφ\ is small compared to κ φ, e.g., for φ == const.
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