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NONEXISTENCE OF F-MINIMIZING EMBEDDED DISKS

JEAN E. TAYLOR

There has been considerable interest recently in the ques-
tion of when, given a smooth simple closed extreme curve in
Rz as boundary, there exists an embedding of a disk having
that boundary which is minimal or minimizing in some appro-
priate subclass of Lipschitz mappings of the disk. Almgren
and Simon [2] showed that an area minimizing embedding of a
disk exists in the class of all Lipschitz embeddings of disks.
(They also showed that there exists an area minimizing em-
bedding of a disk with k handles in the class of all such em-
beddings in case there exists some mapping of the disk with
k handles whose area is less than that of any mapping with
k — 1 handles.) Tomi and Tromba [6] showed that there exists
a minimal (not necessarily minimizing) embedding of a disk in
the class of all Lipschitz mappings of the disk. Meeks and
Yau [3] have shown that there exists an area minimizing em-
bedding of the disk in the class of all Lipschitz mappings of
the disk.

This paper shows that if one minimizes the integral of an
essentially oriented integrand, it is possible for an immersion
of the disk to have less integral than any embedding; such
integrands arbitrarily closely approximate area.

An integrand (also called a parametric functional) or R3 is a
continuous function

F: R3 x S2 > R+

here S2 denotes the unit sphere in R3 and JB+ the positive real
numbers. The integral F(S) over a surface S in R3 which is the
image of a Lipschitz mapping of an oriented disk and which is 1-1
for almost all points in the disk (sums of such surfaces are all we
need to consider in this paper) is defined by

F(S) = \ .
JxeS

F(x, v

here vs{x) is the oriented unit normal to S at x. The area integrand
F = 1 is one such integrand; others arise naturally, for example,
when one considers the surface tension function of anisotropic solids
(such as crystals) in contact with their melts or other substances.

An integrand F is defined to be unoriented if and only if
F(x, — v) — (x, v) for every veS2 and x in R\ An integrand is
defined to be essentially oriented if and only if there exists no triple
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(c, a, G), where c > 0, a: R3-+R3 has divergence 0 and G is an un-
oriented integrand such that F(x, v) — cG(x, v) + a(x) v for every
v eS2 and x in JB3. (Such integrands arise for example as surface
tension functions for crystals whose lattices do not have a center
of symmetry; the relevance of this condition is seen in the first
paragraph of the proof below.)

An integrand is defined to be constant coefficient if and only if
F(x, v) = F(p, v) for every x and p in R? and every v in S2; in this
case the integrand is usually written as a function of its second
variable only. The theorem below is proved for constant coefficient
integrands for the sake of simplicity; obvious modifications yield the
theorem (on a small enough sphere) for any variable coefficient
essentially oriented integrand.

THEOREM. // F: S2 —• R+ is an essentially oriented, constant
coefficient, elliptic integrand of class C\ then there exists an oriented
simple closed analytic curve C on the sphere and a Lipschitz im-
mersion {which is not an embedding) of the oriented disk having C
as boundary which has less F-integral than any Lipschitz em-
bedding of an oriented disk having C as boundary.

Proof Define F~: S2 -> R+ by F~(v) = F(-v) for each v e S2. By
[5], F and F~ do not have the same minimal surfaces, so (since the
ellipticity of F implies that F-minimal surfaces are regular [1], [4])
there exists a smooth F-minimal surface S and a point p in S such
that S is not F~-minimal in any neighborhood of pf with respect to
the boundary given by intersecting S with the boundary of the
neighborhood.

Let e be the ellipticity constant of F, and let

ε = min {(max {F(v): v e S2})'^, 10~4} .

Without loss of generality, assume that vQ = (0, 0, 1) is the upward
unit normal to S at p, that p v0 e ( — 1, — 1 + ε), and that Sx = S Π
2?(0, 1) is the graph of a function. By [4], we may further assume
that Sx is the unique F-minimal surface with boundary B =
dS^S^S2 and that there exists =S[ with boundary B and S[
is the graph of a function. Since S[ does not Slf it must lie above
it or below it somewhere; we may assume it lies above it somewhere
(making the obvious changes below if it only lies below SJ. Then
there exists an oriented simple closed curve Bf on S2 which is C2-
close and flat-close to B but which lies below it, and with respect
to which there is a unique F~-minimal surface S2 which is the graph
of a function ([4] again) and which crosses S somewhere in its
interior, Note that — S2 is uniquely F-minimal with respect to —B'.



NONEXISTENCE OF ^-MINIMIZING EMBEDDED DISKS 281

Using this uniqueness, one notes further that there exists c' > 0
such that if Wt is any embedding of an oriented disk with boundary
B, if W2 is any embedding of an oriented disk with boundary B\
and if Wx Π W2 is empty, then

( 1 ) ( - W2)

(without loss of generality one may assume that W± and W2 are the
graphs of Lipschitz functions with bounds on their slopes and then
use the compactness of that space of functions). The idea now is
to construct a curve which forces a mapping of an oriented disk
which has close to the least F integral to be approximately Sι — S2

near x3 — — 1.
For each 0 < δ < ε2, construct an oriented simple closed curve

Cδ as follows. Define
B1 — B'~ {x: \x2\ (d, #!>()}, oriented as a subset of JS'
B2 = B — {x: \x2\(2d, aOO}, oriented as a subset of B
B3 = S2 Π {x: %z = 0, and either xy ^ 0 and | x2 \ ̂  28 or xx < 0 and

I #21 > δ}, oriented as part of the boundary of a downward-oriented
disk.
For ie{ —2, —1,1,2}, define zt by (xiy id, zt) eBHl for some xλ > 0.
For ί = 1 or —1 let
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6. = S2 Γ) {(xi9 iδ, £c3): either xL > 0 and χ.ό ^ zt or α̂  <; 0 and #3 > 0} ,
oriented up at ((1 - δ2)ί/2, δ, 0) if i = 1 and down at ((1 - δψ\ -δ, 0)
if i = - 1 ,

and for i = 2 or —2, let
6z = Sf2 Π {(#i, ΐ<ϊ, #3): Xι > 0 and 0 ^ x3 ^ £,}, oriented up if ΐ = 2
and down if i — — 2.

Let Cδ = 6X + δ_! + 62 + δ_2 + Bd -\- B2 - Bλ (see the figure).
We define Γd as follows. For i = 1 and 2, let 2\ be the narrow

strip on S2 between bt and b_i9 oriented outward if i = 1 and in-
ward if i — 2.

Let Γ3 be the disk {x: \x\ = 1, £3 = 0}, oriented down. Let Γ3 =
ΓL + T2 + T3 + S, - S2. Then 3Γa - Cδ.

Suppose for each 0 < δ < ε2 there were an embedding Eδ of the
disk with boundary Cδ satisfying F(Eδ) < F(Tύ). For almost all de
( —1, 1), Eg Π {ίc: ίc8 = d} must consist of cycles and curves connecting
boundary components. We claim first that bx must be connected to
6_! and b2 to 6_2 for any such slice of Eδ by a horizontal plane.
Assume to the contrary that for some 0 > d > — 1 + ε, 2^ Π {x' x3 = d}
consists of curves connecting b1 to b2 and 6_i to 6_2 (and possible
cycles). Then, since Eδ is an embedding of a disk, all other
horizontal slices for 0 > d > —1 + ε also connect bι to 62 and 6_x to
6_2, and the components of Eδ which are bounded by those connect-
ing pieces in Eδ Π {x: xs = — 1 + ε} together with Cδ Π {̂ : x3 > —1 + ε}
consist of two topological oriented disks, Eλ and E2. If J5Ί is the
disk containing most of b19 then the projection of Eι onto the plane
with normal (0, 2~1/2, 2~1/2) must cover all but at most area 2ττε of
an ellipse with major axis 1 and minor axis 2~1/2; thus Eλ must have
area at least τ/27τ/2 — 2ττε. Similarly E, must have area at least
l/27r/2 ~ 2πε. By the ellipticity of ί7,

F(JS7X + £72- ΓJ + F ( - T 2 )-F(T 3 ) ̂  e{/)ίf\E, + E2-T1) + r9tr'2(T2)-^T2(T3))

so

+ E2)

- F(-T3) - F(Γ2) + eπθ/Y - 1 - 4ε)

+ eπ[λ/~2 - (1 + 4ε + e~ι max {F(v): v e S2}(4δ + 5ε))]

This contradicts the F-minimizing property Eδ is assumed to have;
therefore for each d e ( — 1 + ε, 0), the slice of Eδ by horizontal plane
at height d must connect bx to b_x and 62 to b_2.

We have then that for almost every de( — 1 + ε, 0), the part of
E bounded by CδL{x: x3 < d} together with the curves connecting
the 6's, consists of two oriented topological disks. Let Eld be the
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one having part of bί in its boundary. Using as comparison surfaces
the appropriate parts of the strips between bt and b_u together
with patches in horizontal slicing planes, we see that the length
of the curve in {x: xz = d} for most d between 0 and — 1 + ε, is less
than δm. Since — S2 is uniquely F-minimal as an integral current,
we see that the F-minimal currents with boundary equal to Eld

must be close in the flat norm and in F-integral to — S2 and F( — S2)
for small δ. Thus any embedding of a disk with boundary 3Eld

must have F integral at least F( — S2) — O(δ). The same is true for
the other topological disk E2d and Sλ. Now inequality (1) says that
if δ is small enough, Eld and E2d being disjoint implies F{T) < F{E),
contradicting our assumption on Eδ.

Thus if δ is small enough, there is no embedding of the oriented
disk with boundary Cδ whose F integral is less than that of Tδ.

The analytic results are obtained by approximation.
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