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THE TWO-DIMENSIONAL ANALOGUE
OF THE CATENARY

REINHOLD BOHME, STEFAN HILDEBRANDT,

AND ENGELBERT TAUSCH

In this paper we consider the following isoperimetric prob-
lem: let Γ be a prescribed Jordan curve in Rz. Determine a
surface of given area spanning Γ, which has minimal potential
energy under gravitational forces. This will be of importance
for the construction of "perfect domes."

1* Introduction* Ever since the derivation of the law of re-
fraction light by Pierre Fermat in 1662, the one-dimensional problem

(1.1) \ ω(x, y, z)Vdx2 + dy2 + dz2 > Extreme

has been of great interest. According to Fermat's principle, this
variational problem governs the propagation of light in an isotropic
but inhomogeneous medium where v = l/o) is the velocity of the light
particle. On the other hand, the motion of a mass particle in a
conservative force field grad U can also be described by an extremal
problem (1.1) where ω~\/2(U + h), according to Maupertuis' principle
of least action as it has been formulated by Jacobi.

As is well known, the modern history of calculus of variations
started with the brachystochrone, the problem of quickest descent,
proposed by John Bernoulli in 1696 [2]. It consists in minimizing
the integral

(1.2) S --jLl/cte2 + dz2

i v z
which is a special case of the integral

(1.3) \ ω(x, z)Vdx2 + dz2

treated by Leonhard Euler in his classical treatise "methodus
inveniendi lineas curvas •••" in 1744. In particular, he dealt with
t h e cases ω(x, z) = 1, l/l/~άΓ, xz, xn, (x2 + z2)n, znjzm, X + z.

An excellent discussion of these and of other important examples
can be found in the well known lectures by Bolza [5].

The integral

(1.4) ί z Vdx2 + dz2 , z > 0 ,

leads to the celebrated problem, to determine the surfaces of revolu-
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tion minimizing area. The regular extremals of (1.4) are the
catenaries

z — a cosh

They are closely related to the following isoperimetric problem:
What are the curves of given length connecting two points Pt and
P2 in the x, z-plane which have the lowest center of gravity?
Introducing a Lagrange multiplier μ, one is led to the problem

(1.5) ( (z + μ)Vdx2 + dz2 • min

which, clearly, can be reduced to the minimization of (1.4). Thus
the catenary describes also the equilibrium position of a heavy chain.

The two-dimensional analogue has only recently found some
interest although the nonparametric version

(1.6) I ω(x, y, z)Vl + z\ + z\ dxdy > min

had already been considered by Jellett [16] in 1850. To our know-
ledge, the first existence results for (1.6) with nonconstant ω are
due to Tausch [20]. Let us now consider the parametric problem

(1.7) I α)(χ) \ιu x & I dudv > min

for £ = %(u, v) — (x(u, v)f y(u, v), z(u, v)). Introducing conformal
parameters, u, v, we have

while in general,

Hence, we may replace (1.7) by the Plateau problem for the
generalized Dirichlet integral

(1.8)

belonging to the special metric

(1.9) ds2 - ft)(s)|ώϊ|2 - ω(${dx2 + dy2 + dz2} .

It is a special case of the Dirichlet integral
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(1.10) J &i(E){a&»ί + x\x{}dudv .

The Plateau problem for this functional has been solved by Morrey
[18] (cf. also [19] and [15]) for a fairly large class of positive definite
metrics

(1.11) ds2 - gίj(^dxίdxj .

The conformality relations associated with (1.10) are

(1.12) ga(ί)xixί = ΰi&ύxtei flrϋ(ϊ)«ίa?ί - 0 .

However, for important examples, the metric ds2 is only semidefinite,
or even indefinite. For instance, the two-dimensional analogue of
the catenary problem (1.4) leads to

(1.13) [ z\Vι\2dudv > min .

To get a regular problem we have to restrict the surfaces to
the upper half space {z > 0}. That is, we have to minimize (1.8) or
(1.10) under Plateau boundary conditions as well as under obstacle
conditions. A general approach to obstacle problems for (1.10) has
been given in [21], [15], [13], and [14]. In the present paper, we
shall treat obstacle problems for (1.8), and, in more detail, the
obstacle problem z > 0 for (1.13).

Professor Frei Otto suggested to us the following isoperimetric
problem: Let Γ be a prescribed Jordan curve in 22s. Determine a
surface of given area spanning Γ7, which has minimal potential
energy under gravitational forces, that is, a surface having the
lowest center of gravity.

Hence, we look for a mapping £: έ%f —> R3 of the closure of the
unit disc in a u, -y-plane into R\ which maps d& monotonicly onto
Γ, such that

\ z\ιu x ιv\dndv

assumes a minimum while the value of

Ku X ΐv\dudv

is a prescribed number.
Introducing a Lagrange multiplier μ, we can replace this problem

by the following simpler one:
Minimize
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(1.14) \ (z + μ)\iu x ϊjdudv

among all surfaces £: <£§ —> R3 spanning Γ, and such, that z + μ ^ 0.
Using the argument mentioned in connection with (1.7) we can

replace (1.14) by

(1.15) ( (z + μ)\Pτc\2dudv

which, by an obvious coordinate transformation, leads us to the
problem (1.13).

In the following, we shall concentrate on the discussion of this
variational problem which, according to a remark by Professor Frei
Otto, will be of importance for the construction of "perfect domes."
We wish to thank him for proposing this question to us. Further-
more, we are very grateful to Prof. Ernst Holder, who drew our
attention to the variational problem (1.7) and to the formula (2.13),
which had been derived for the nonparametric case by Jellet [16].
The analogue for the one-dimensional problem (1.3) is due to Gauβ
(cf. [4], pp. 84-85).

Outline of the paper. In §2, we discuss the Euler equations for
the variational integral

(1.16)

In §3, we list the existence and regularity results for the
solutions of the Plateau problem for (1.16) with an obstacle as addi-
tional side condition. A variant of the maximum principle due to
Chicco is presented.

In the following three sections, various inclusion theorems for
the solutions of obstacle problems for

(1.17)

are derived. These inclusion theorems yield conditions guaranteeing
that the solution surfaces do not touch the boundary of the obstacle,
and thus that they satisfy the Euler equations of (1.17) at all points.
Therefore, the solutions are the perfect two-dimensional analogues
of the catenaries. Combining the variational approach with a con-
structive method, say, with the finite element method, it should be
possible to compute the solutions. The inclusion theorems yield a
general impression of the shape of the solution surfaces. Most of
the inclusion results are derived from Chicco's maximum principle,
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except for the results of §6 which are based on a technique due to
Allard [1], and Michael and Simon [17].

We conclude our discussion with a remark on "perfect domes."

For useful suggestions and remarks, we wish to thank professors
E. Giusti, R. Finn, E. Holder, K. Steffen, and H. C. Wente.

2* The Euler equations for \ ω(jc)\F£\2dudv. The Euler equa-

tions for the integral (1.8) are

(2.1) d%{2ω(jcβjc] + dv{2ω(jcβvΐ] = ω\χ) \ Vι |2

where

dυ = — , ωf = ωι = grad, ω .
on ov

For the sake of simplicity, we write ω instead of α)Qc) or ω°;r,
similarly ωr instead of ω\ι) or ω'o£f etc., whenever no misunder-
standing can occur. Equation (2.1) is equivalent to

(2.2) 2ωAx = ω' | Vι |2 - 2ωΛ,{xiϊ% + xiιv) , j = 1, 2, 3 ,

or

(2.3) Δι= l « ! | F s | S

2 ω

Introducing the vector valued function

(2.4) k = — = grad£logω
ω

we can rewrite (2.3) as

(2.5) Δι = \k I Vι|2 - (k £ J S β - (k ΐv)ΐv .
Δ

The conformality relations (1.12) reduce to

(2.6) ιi = fv, r. s, = 0.

In virtue of (2.6), and of the identity

(2.7) 8 x (α x b) = (g - b)α - (5. α)b

which holds for arbitrary vectors 3, a, bei?3, we obtain

(2.8) [k • - j f ^ r } [S. X ϊ.] = Ί f ^ r X (Iϊ. X ϊ.] X k)
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and
Γv» v/ γ 1 \/ 7/. . ( Tr> γ \v« , / J» γ \γ»
Lc.u ^ c.v} ^ tv — v*̂ 1 c,uJc,v ' ' v*̂ 1 C.V/C.U f

whence

[£u X ϊ J X ([£« X ϊ J X k) = (k rΛϊu X ϊ j X ϊ ,

and therefore,

(2.9) S* x £ΐ7 x ([χtt x jrj xfc) = - ( i ; j j j ^ — (&«
x ....

By (2.8) and (2.9),

( 2 . 1 0 ) jfc ^ [ ϊ u x s j

Defining the surface normal 91 by

(2.11) Tc = lu X lv

lί« x lv\

the Euler equation (2.1) takes the form

(2.12)

On account of (2.6), equation (2.12) shows that the extremals
£ = %(u, v) of (1.8) are surfaces with mean curvature

(2.13) J%f(ι) = i-fcfe) 31 = i - A log α> .

Hence, we have the following interpretations of (2.1):
( i ) The extremals of (1.8) are minimal surfaces with respect

to the metric (1.9).
(ii) The extremals of (1.8) are surfaces having the mean curva-

ture (2.13) depending on the position vector £ as well as on the
surface normal 9ΐ.

According to these two interpretations, different maximum
principles can be derived.

3* Existence and regularity of solutions of the Plateau
problem for \ ω(£)\F%\2dudv. Let ,3ίΓ be a closed set in R\ which
is the closure of its interior, and suppose that ω = α>(χ) is a function
of class CXsΓ, R) with ω&) ̂  ε > 0 f or all jr e. ?,r. By Γ we denote
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a closed rectifiable Jordan curve contained in i n t , ^ Define the
class <£(Γ) by

: = fe e i ϊ 2 W, Λ3): Xfa, v) e 3ίΓ for almost all (u, v) e <&, and

> Γ is a weakly monotonic, continuous map of
onto Γ}.

For £€(£(/"), we can define the integral

THEOREM 1. There exists a solution £ e &(Γ) of the variational
problem

): J > min on

Every solution of?$(Γ) satisfies a.e. on <2$ the conformality relations

tu = ϊ ϊ , 5M X, = 0 .

In addition, if J3ίΓ is quasiregular (cf. [15]), each solution of ^β(Γ)
is Holder continuous on &, and continuous on &.

Proof. The result can be proved by a technique due to Morrey.
A complete proof is presented in [15], in particular, pp. 198-200.

THEOREM 2. // J'Γ' is a quasiregular set of class C\ each solu-
tion of §β(Γ) is of class HϊΛoc d &>"{&, R*)9 for all s e [1, oo), and
for all αe(0, 1).

Proof. Cf. [13, 14, 20].

THEOREM 3. If Γ is a regular curve of class C2>β, 0 < β < 1,
and 3ίΓ is quasiregular and of class C3, each solution of ^β(Γ) is
of class ΈLK0, R") Π Cl*"(J@9 R3), s e [1, oo) and a e (0, 1), and it is of
class C2fβ in a sufficiently small strip around d&

Proof. Because of Theorem 2, it suffices to prove the last state-
ment. Since Γ is assumed to lie in i n t ^ 7 and since j e C ° ( . ^ R3)
in virtue of Theorem 1, 5 satisfies the Euler equation for J in a
sufficiently small strip around d.^?. Then, [11] can be applied.

In the following, we suppose that the assumptions of Theorem
3 are satisfied. For a solution j of SβCΓ), we introduce the "touching
set"
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= {(u, v) e &\ ι(u, v) e

which is mapped by j onto the boundary of J%~ and its open com-
plement

which is mapped into iτ
On ^ , j(w, v) satisfies the Euler equation

where

Δ

fc — — d)f = — grad ε β) = grad ε log ω
ω ω

or, equivalently,

(3.2) Λϊ = (fc 3ϊ)[ϊ.Xϊ.[ on .

But on Jy~, ιiu, v) satisfies a.e. the equation

(3.3) Δι = 2^r*(£)[ ϊ w x Ϊ J

when έ%f*(l) denotes the mean curvature of $3ίΓ in the point χ«
In particular, we have

(3.3') Δι = 0 a.e. on

where 3 ^ ^ is a plane.
To each solution % of $β(JH), we form the linear operator

L = /I + A

where

A = α(w, v)3u + 6(M,
 /y)3v

and where

α(w, v) = A?(ϊ(w, v))ϊ«(w, v) , δ(w, t;) - A?(j(w, v))tv(u, v) .

That is,

Because of Theorem 3, the functions a and 6 are certainly of class
U°(0). The Euler equation (3.1) can now also be written as

(3.4) Li-i
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By an observation due to Chicco, Ή\{0, JB)-subsolutions of L satisfy
the strong maximum principle, i.e., if σsHi(&, R) fulfills

(3.5) { ψσ -Fφ + Λσ - φ}dudv ^ 0 for all φ e H&&, R) with φ ^ 0 ,

we have

(3.6) sup σ <; sup σ ,

and sup .̂/ a = sup^ σ for some ball &' c c ^ implies that a = const
a.e. on &. (Here, sup means the essential supremum; cf. [6], and
also [8], Theorems 8.1 and 8.19, pp. 168 and 188-189.)

This maximum principle can also be formulated in the following
way:

LEMMA 1. If we have σeC°(.^9 R), and

Lσ :> 0 a.e. on &,

then

max σ = max a ,

and σ assumes its maximum on & in an interior point of £@ if
and only if σ = const.

REMARK. Note that each composition σ = /ojc of the considered
solution of ξβ(Γ) with a G\JtT, R)-ίunction / is of class C°(^ R) Π
Hi(&, R) by virtue of Theorem 3, so that we can apply the lemma
to such a composition.

4* Inclusion theorems for the solutions of ?$(Γ) when JQc) —

I z\F%\2dudv, and when 3^ reduces to {£: z > ε}, ε > ()• Let

) = z, thus, ω' — (0, 0, 1), and

(4.1) fc(s) = (o, 0, i ) .

Suppose that

(4.2) 3T\ = {5: ^ ^ ε} , ε > 0 ,

and that F c f e ί; > ε}.
Let £ = j:(u, v) be a solution of φ(Γ). The associated operator

L — Δ + A is now given by
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(4.3) a = -^ , 6 = -^ , Λ^adu + bdv .
z z

(Note that zu = zv = zuu = ^ = «„ = 0 a.e. on j/\)
Furthermore, by (3.3) and (3.4), we obtain that the Euler (in-

equalities take the form

Ax = ——{χuzu + xvzv}
z

(4.4) Ay - —{yuzu + yvzυ}
z

Δz = -—{zl + zl} 4- — |Fϊ| 2 on ^ 0 , =0 a.e. on j 7 \

Equivalently, we have

Jo; = —Ax

(4.5) Jy = —Λy

Δz = - ^ + — | F ϊ | 2 on ^ 0 , =0 a.e. on j / ~ .
2

By (3.2), this can be written as

ζ2 on ^ , =0 on

(4.6)

if T7 ̂  0, where

Ϊ . X ϊ , = (ί, ^, 0 , and

( 4 * 7 ) TΓ = lϊ x Iλ = l/f2 + )?2 + ζ2 - i- |Fs | 2 = xS = Ϊ; .

Clearly, the third equation of (4.6) implies that z is subharmonic on
έ%? whence

(4.8) z(u, v) ^ max z for all (u, v)e&.
dm

This follows also from the third equation of (4.4) by means of the
conformality relations. In fact,

tu = t f lu ' Iv = 0

implies that
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ll = 0 , where we have set %w = — (& - ig,) ,

whence

(4.9) \Vz\2^ \Vx\2

Therefore,

/Li

whence, by (4.4),

Δz ^ 0 on &'.

Furthermore, let us introduce

(4.11) τ(u, v) = (x(u, v), y(u, v), 0)

which is the orthogonal projection of χ(u, v) onto the plane {z = 0}.
Then, (4.9) becomes

(4.12) \Fz\2^\Fx\2 in ^ ,

and, secondly, we infer from (4.5) that

(4.13) Lx = 0 in ^ .

Hence, χ ( ^ ) is contained in the convex hull 3r of the cylinder
3 Γ : = 7 x {z-axis}, 7 being the orthogonal projection of Γ onto the
plane {z — 0}.

Combining this result with (4.8) we arrive at the following first
inclusion theorem:

THEOREM 4. Let j(%, v) be a solution of the variatίonal problem

^β(jΓ). Then, for each (u, v) 6 &9 the point £(u, v) is contained in the

cylinder int 3 r Π {(#, y, %)' ε ^ « ^ feΓ} where

(4.14) feΓ = max {z(w, v): (w, v) 6

denotes the maximal z-component of Γ.

Next, we note the identities

(4.15) Λφ2 =

and

(4.16) Δφ- = 21 Fφ |2

holding for arbitrary functions φeC2(.^?, R). Let £o = (x0, τ/0, «0) be
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an arbitrary constant point, and let x0 = (x0, yQf 0). On account of
(4.5), a straightforward calculation shows that

(4.17)

and

(4.18) L(z ~ Zo)2 -

r Z - Zo

I Z

\2\Fz\*

7 t | z

|F ί | 2 on

a.e. on

Hence, for some real parameter c > 0,

on
z

0 a.e. on

Suppose that z0 > 0, 0 < e ^ z, and that 2c2 + 1 — zjz ^ 0. Using
(4.12), the right hand side of the inequality (4.19) can be estimated
from below by

— c2 + 2 — 2± \\Fz\2 or 0, on ^ or on J?~9 respectively.
C2L Z J

Thus we infer

LEMMA 2. If 0 < ε <: z < zQ, and if zjε ^ min {2c2 + 1, c2 + 2},

then

L\(τ - Xo)2 + — (z - zA ^ 0 a.e.
1 c 2 ) on

Next, we consider the composition

σ = (x - Xo)2 - - i (* - ^o)2

for c ^ 1 and ^ ^ 0. Using (4.12), (4.17), and (4.18), we obtain that

and that

Lσ ^ —(e2 - l ) | F x | 2 ^ 0 on
c2

a.e. on
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Hence, we arrive at

LEMMA 3. If z0 ^ 0, 0 < ε <̂  z <: hΓ, and if

c ^ 1 and c2 - 2 + •& ̂  0 ,

then we have

L\(X-χaγ-\(z-zA ^ o .

Thirdly, we consider τ = (x — x0)
2 — (l/c2)(z — z0). Since

— \n\' on
L(z — 30) = Lz =

LO on

we infer t h a t

on
and that

iτ^^2c 2 --^) |Fx | 2 on <̂ 0 .
2 C V 2;/

Thus we obtain

LEMMA 4. If 0 < ε <* z, and if c2 ̂  l/2ε, iί follows that

- x0)
2 - —(is; - zo)l ^ 0 a.e. oti &.

)

To be somewhat more systematic we shall investigate for which
<72-functions a = a(z) we can prove that

Lσ ^ 0 a.e. on ^ ,

where

σ(u, v) = (x(w

Because of the identity

Δa(z) = α"(

and of the Euler equations

Lz = — | F j | 2 on ̂ o , i « = 0 on
Δz
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we find that

Δa(z) = a"(z) \Vz\2 - a\z)Az + —a\z)\Vι|2 on

2z

Therefore,

(4.20)

Since

we infer that

Δa{z) = 0 a.e. J/ .

Lσ ^ 2|Fr|2 ^ 0 a.e. on j 7 \

Λa(z) = a\z)Λz ,

22;
| Fjr | 2 on . ^ 0 .

Therefore,

(4.21) !»-[*-<%

To obtain Lσ 2; 0, we must assume

(4.22) 2 - ^

2z
Vz |2 on

Then,

*[:2 - Vz |2 on ^ .

The optimal choice is

(4.23)

which is equivalent to

(4.24)

2 - iLW - a»(z) = o ,
z

dz
= 2z .

The general solution a(z) of (4.24) is given by

/ N Z2

a(z) — — + cx log z — Co
2

where cλ and c2 are arbitrary constants. However, this solution has
to satisfy (4.22) which amounts to
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Sz2 ^ cx .

Since z ^ ε > 0, this is certainly satisfied if

(4.25) ct £ 3ε2 .

This leaves us with three kinds of solutions of (4.23) which are
admissible:

(4.26) e1 = 0: a(z) = — - c2 , z > 0 .
Λ

(4.27) 0 < cx ^ 3ε2: a(z) = — + c, log z - c2 , s ^ ε .

(4.28) c, < 0 : α(s) = — + ^ log z - c2 , z > 0 .

The solution (4.26) with c2 = 0 leads to the composition used in
Lemma 3 with c = l/ 2, 20 = 0.

Let us choose an arbitrary number z0 ^ 0. A straightforward
use of (4.26-4.28) yields the following result:

LEMMA 5. We have

L{(τ - r0)
2 - aά{z)} ^ 0 on ^ 0

/or

«,(«) = i . ( ^ - ^) + 3ε2 l o g /A) ^ ^ ε > 0 ,
2 \z0/

z>0 , c > 0 .

function a2(z) increases monotonically on z > 0 αwcϊ vanishes
for z — z0 if we suppose that z0 > 0.

T%e hypersurface

F - {(a?, y, «): (t - r0)2 - a2(z) - 0, z > 0}

meets the parallel to the z-axis through £0 = (a?0, τ/0, «0) exactly in j o

jPor αϊϊ points % of F different from jr0 w# feαvβ 2; > ^0. The func-
tion OLZ(Z) vanishes for z ~ z*, where
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Moreover, oc^(z) increases for z ^ z*, and it decreases for 0 < z fg 2*.
The hypersurface

F* = {(*, V, z): (r - to)2 - «.(*) - 0, z > 0}

meβίs ίfee parallel to the z-axis through jr0 = (#0, 2/0, s0) exactly in
ϊo* = (»o, 2/o, «*), since aQ(z) > az(z*) for z > 0, 2 =£ z*.

Now we use the various subsolutions of L obtained in the
Lemmata 2-5 to derive further inclusion theorems. As before, we
shall assume for the rest of this section that %(uf v) is a solution of
the minimum problem $β(Γ) with the obstacle condition (4.2). The
existence of such solutions for boundary curves Γ contained in
{z > ε}, ε > 0, has been established in §3, together with their
regularity properties. We proceed by applying Lemma 1 to the
subsolutions of L which have been discussed. Note, that each solu-
tion ι(u, v) = (x(u, v), y(u, v)hΓz(u, v)) of SβCO satisfies

ε <: z(u, v) ^ hΓ for all (u, v)e&,

by virtue of Theorem 4, where hΓ is the maximal ^-component of
Γ defined by (4.14).

THEOREM 5. Let £?U£0) denote the solid ellipsoid defined by

(x - *o)2 + {y- VoT + ^{z - zoy ^ i?2

with center £0 = (xQ, yQ, zQ), and with the semi-axes R, R, cR. Suppose
that z0 > 0, Fa &c

R{i*), and that

•Si ^ min {2c2 + 1, c1 + 2} .

Then,

Assume now, that the interior of i^(£o) is contained in the open
half space {z > ε} which can always be achieved by appropriate choice
of the parameters ε, c, zQ, R. Then

z(u, v) > ε on έ%',

and the set of coincidence J7~ is empty. Therefore, %(u, v) is real
analytic in &, and it satisfies the Euler equations and the con-
formality relations
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Lx = 0

(4.29)

on έ%, where

(4.30) L = J + Λ , ,1 = i ϊS. + ^ .
z 2

COROLLARY 1. /w particular, we can choose zQ — hΓ and ε = hΓβ
Then, zo/ε = 3, omώ ί&e choice c — 1 is admissible for the parameter

Hence Theorem 5 applies to the ball

5Λ(So) = fe:|ϊ-ϊol^Λ} = ^(So) .

Every R > 0 is admissible but a very good choice will be

This is the largest radius such that int BR(ι0) c {z > ε}, whence
is empty, and j:(^, v) satisfies (4.29) on έ%.

THEOREM 6. Let ^,(jr0) denote the solid cone

(x - xoγ + (^ - 2/0)
2 - ! . ( * - z0)

2 ^ o

with vertex j 0 = (a&0, 2/0, ̂ o)» α<^^ ίe^ ^t(h) denote its upper part
c(ίo) Π {z ^ 0̂} Suppose that z0 > 0, c ^ 1, Γ c ^ f c ) ,

C2 _ 2 + *i ^ 0 .

//, in addition, int ^c

+(ϊo) cz{z > ε}9 then

z(u, v) > ε <m

the set of coincidence S~ is empty. Therefore, %(u, v) is real
analytic in έ%, and it satisfies (4.29) on &.

Proof. The maximum principle implies that %,{0) c ^ c(y 0). Yet,
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could be partially contained in the lower part

n {z ^ z0}

of the cone ^ c(£0). This will be excluded by the following reasoning:
By virtue of the regularity results mentioned in §3 we may apply
the — by now standard — Hartman/Wintner technique to obtain an
asymptotic expansion of ι(u, v) around branch points which is of the
same form as in Heinz-Hildebrandt [11]. This implies that %(u, v)
possesses a tangent plane even in branch points. For this reason,
l(u, v) cannot pass through the vertex £0 of the cone ^c(£0) whence
either ι{0) c ^C

+Qro) or ι{0) c ΐ f r(ϊo) must hold. Since Γ c ^c

+fe)
we infer that jr(^) c £fc

+fc).

COROLLARY 2. In particular, c Ξ> i / 2 is always admissible
whatever the value of ε, z0, and hr may be. Choosing ε — zQ —
hΓ — R, c = l / 2 , Γ cz r# vτ&), So = (̂ o, Vo, e), we infer that

whence

z(u, v) > ε for all (u, v) e έ$.

Thus ^7~ is empty, and ι{u, v) satisfies (4.29) on gg.

REMARK. The results of §5, and, in particular, Theorem 11,
will furnish an improvement of Corollary 2.

THEOREM 7. Let ^c(jc,0) denote the solid paraboloid

where

and Γ^ fe) ,

c int ^

(x - xoγ + {y - VoY - \{z - zo)< 0

Moreover, ^7~ is empty and %{u, v) satisfies (4.19) if int ^ f c ) c
{̂  > ε}.

COROLLARY 3. Determine R > 0 by hΓ = 3i2/2, αwi Zeί x0 = ε =
Λ/2, β = 1/l/ΪΓ, Γ c ^ , ^ , ) .
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c int ^Wϊo) C {z > ε}

whence £(u, v) satisfies (4.29).

THEOREM 8. Let z0 > 0, and denote by .£^(χ0) the set

, y, z): (x - z0)
2 + (2/ - ?/o)2 £ y ( z 2 - 2S) + 3ε2 log (iL)} .

Suppose that Γ cz Jϊf,,(&). Then

Γ) c int

Furthermore, ^~ is void, and ι(u, v) satisfies (4.29) if int iS^
{̂  > e}.

THEOREM 9. Let c > 0, 2* = 1/0/2", s0* = («o, 2/o, «*),

^ ^ - clog a + ̂ -Γlogc - -ί - Iog2l .

Suppose that Γ is contained in the upper part

) so*) n {^ ̂  ^ * } .

Then,
) c int

Moreover, ^~ is empty, and ι(u, v) satisfies (4.29) if int Λ^ΐiΐ*) c

{̂  > e}.

Remark concerning the proof. The same reasoning as in the
proof of Theorem 6 applies. Because of the asymptotic expansion
of %(u, v) in the neighborhood of regular or branch points, j(w, v)
cannot fall below the "vertex" j * .

Further maximum principles can be obtained by Hildebrandt
[12], Theorem 8, where ι(u, v) can either be interpreted as minimal
surface in the Riemannian manifold R\ and ds2 ~ z{dx2 + dy2 + dz2},
R% = R*Γ\{z> 0}, or as J^-surface in the euclidean space E\ <%f
defined by (2.13). This technique yields, for instance, the following
result the proof of which will be omitted.

THEOREM 10. Let z0 > 0, δ > 0, Γ c S^UAtύ where

{z^ z0}.
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Let c > 0 be a real parameter such that

+ λ\z - zγ - *1 ̂  s2 for
c2/ 4

\ z\Vι\2

Suppose that %(u, v) is a solution of the Plateau problem

2dudv > min , &<&) cz.S^feo) ,

%\ d& > Γ monotonically .

Then,

t(£g?) c int ^ί j 8(ϊo) ,

J^" is empty, and %(u9 v) satisfies (4.29).

(ii) Another maximum principle (functioning already for
harmonic maps with obstacles) is contained in Hildebrandt-Kaul [15],
Lemma 9, Theorems 8 and 9, pp. 217-221. Here we consider j(w, v)
as minimal surface with respect to the metric ds2 — z {dx2 + dy2 +
dz2} which has been extensively studied. The geodesies are parabolae,
and the geodesic balls (used in [15] for the maximum principle) are
explicitely determined, cf. [10], and, in particular Darboux [7].
However, we have not worked out details.

REMARK. In view of Gulliver's theorem in [9], a solution of
the Plateau problem has no interior branch points if it does not
touch {z = ε}, the boundary of the obstacle.

Two further methods to obtain inclusion theorems will be
presented in §§5 and 6. The first one is a refinement of the tech-
nique used in this section, while the second one is based on an
application of some isoperimetric inequality.

5* Inclusion theorem for the solutions of ?$(Γ) when J(fi) —

\ z\F^\2dudv, and when ^%~ is the upper part of the solid hyper-

boloid fe: z2 ^ (x — xQ)2 + (y — yQ)2 + ε2}* In this section, we consider
once more the variational problem §βCO for the integral

(5.1) J(s) - ( z\Vι\2dudv

which, for conformal parameters u, v of £, agrees with

(5.2) J * ( £ ) - 2 J z\ΐu x Πvldudv .

Let r0 = (xQ9 yQ, 0) be a fixed point in R\ and denote by
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the cone

{5: z2 = (x - x0)
2 + (y - y0)

2 = (x - x0)
2} .

It turns out that each Gauss representation jc — ι(u, v) of <g" = ^ —
{r0} furnishes a solution of the Euler equation belonging to (5.2).
This can easily be checked by proving that

u(x, y) = ±V{x - XoT + (y - 1/0)2 = ± | r -

is a solution of

So?

which is the Euler equation of the integral

I uvl + \Fu\2 dxdy .

However, this integral is the nonparametric counterpart of (5.2).

This observation suggests that the upper part of the cone
{j: z2 ji> |r — ro|

2} forms a domain of inclusion for the variational
problem SβCΓ).- This is in fact true. Since the cone has an unpleasant
singularity in its vertex x0 we perfer to look at the upper sheet

Sίe2 = s_ε2 n {z ^ 0}

of the two-sheeted solid hyperboloid

SU = {(x - x0)
2 + (y - y0)

2 + ε2 ^ ^2} , ε > 0 .

The reasoning is similar to the one used in §4 but more elaborate.
We begin with two observations which can be considered as a re-
finement of the inequality

\ 2 £ \Pz\2

following from the conformality relations

(5.3) £ = t

and

(5.4) X K. = 0 .

LEMMA 6. Let %(u, v) = (x(u, v), y(u, v), z(u, v)) be a function of
class C\&, R3) which satisfies (5.3) and (5.4). Denote ιu X χv by
(ί> Vf C) Then, the following relations hold:
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(5.5) 4?f = {|Fa;|2 +

4ζ2 = {\Γx\> +

Moreover,

(5.6) |Fz | 2 = 0 if

and

(5.7) \vz\* = -A—{\Vx\> + \Vyn if

and

g 2 - C2

ί2 + V2'

Proof. The relations (5.6) and (5.7) follow from (5.5) by a
straightforward computation. Moreover, the second and the third
identity of (5.5) can be obtained from the first one. Thus it suffices
to prove that

By (5.4), we get

ξ2 = (yuzv - yvzuγ - (yl + zlXyl + z\) = x\x\ .

On the other hand, by (5.3),

fiKvl + «i) + (yl + 4) 8 + (yl + 4)2 - (a4 + χ\f

zϊ)(yl + «;) + (»i + z\ + x2

y - xlY + (yl + 4)2 - (xl + xl)2

+ 4) + (yl + zl) + (xl - a£)} - 4^x|

Thus, the lemma is proved.

THEOREM 11. Let %(u, v) be a solution of Plateau problem

\ z\Vι\2dudv > min , &0) c Si ε 2 = 3ίT, j : d& > Γ

where

Stε2 = fe: | r - t o | 2 + e2 ^z2 and z ^ 0}

/or some r0 α^d some ε > 0. Suppose Γ is contained in the interior
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of Sίε2. Then, Ί ( 0 ) c int Siε2. In particular, ι(u, v) is a solution
of the Euler equation (4.29).

Proof. Without loss of generality, we may assume that x0 =
2/0 = 0. Note that ι(u, v) is of class fl"|(^ R3) Π &"(&?, R3) 0 < a < 1.
Let σ(u, v) be defined by

(5.8) σ(u, v) = x\u, v) + y\u, v) — z\u, v) = τ\u, v) — z\u, v) .

In virtue of Lemma 1, the theorem is proved if we can find
functions a(u, v), b(u, v) of class L°°(^ R) such that

(5.9) Lσ ^ 0 a.e. on &

where

(5.10) L - MΔ + α-f- + δf ) .

The construction of the functions a and 6 will be carried out in four
steps.

First, we observe that

(5.11) Aσ = 0 a.e. on j ^ ~

where

(5.12) JT" - {(w, v) G ^ : S(w, v) e 3Sίε2}

denotes the "set of coincidence" of the solution vector χ(t&, v). The
boundary 9Sies of the set of inclusion is nothing but the graph of
the function

z = U(x, y) = Vxι + y2 + ε2

in i?3. In virtue of σeHI(<0, R) and of σ(u, v) - 0 on J ^ (5.11) is
an immediate consequence of a well known result due to Morrey,
cf. [19], p. 69.

On & — J^7 £(w, ̂ ) is real analytic and satisfies the Euler equa-
tions

At — — 31 — ^ r x r W — 1 r x r I
z zW

Choosing

(5.13) L - — \Δ + a— + 6—
2( du dv-
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where a(u, v) and b(u, v) are to be determined later on, we arrive at

La = |Fx|2 - \Vz\" 4- (a;, y, -z) \a£u + b$v + £-
v> Z

Since {jr./|s.|, &,/!&, I, $1} form an orthonormal system for each
(u, v) 6 έ%?y there exist uniquely determined numbers a(u9 v)9 β(u, v),
y(u, v) such that

{x, y, —/

whence

- | F r | 2 - | F s | 2 + (αα + 6 / 3 ) ί | F ϊ l +

and

— z= aZu + PZV + ^- = (azu + βzv) + f/ζ

Therefore,

z l/2

and

We choose α(tt, v) and δ(ίt, v) in the form

(5.14) a = 2* + VΎαolFκi , b = ^ + VT
z z

where aQ(u, v), bo(u, v) are to be determined later on. Then

(5.15) Lσ - — |Fr | 2 — - |" |Fz | 2 + (αoα + bQβ)\Vt\2 .

If ^ + 2̂ _ 0 > w e have | F ^ | 2 = 0, on account of (5.6). Choosing

(5.16) α0 = b0 - 0 if f2 + rf - 0 ,

we find that

(5.17) Lσ=— | F r | 2 ^ 0 when ξ2 + rf = 0 .
z

Now we consider the case f2 + rf- Φ 0. By (5.7),
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|Fx|2 - (2c2 + ΐ)\Fz\2 , where c2 = 2 ^ ,

and we infer from (5.15) that

(5.18) Lσ = {(c2 - 1) + 2(c2 + l)(αoα + boβ)}\Vz\2 if f2 + rf Φ 0 .

Choosing

(5.19) α0 - 60 = 0 if c ^ 1 ,

we obtain once more

(5.20) Lσ = (c2 - l ) | F s | 2 ^ 0 for c ^ l .

The condition c ^ 1 implies that 5Ji lies inside the cone {z2 ^ x2 + y2}.
Moreover, we claim that

( 5 . 2 1 ) [ s i ̂  ^ + 2<? l / α 2 + /3 2 i f 0 ^ c < l .
L — C

Let us put off the proof of this inequality for the moment, and
choose

(5.22) α 0 = — > 9

a . bo = — . f if 0 < c < l .
v ε Va2 + β2 ε Va2 + β2 ~

Then, we obtain from (5.18) that

Lσ = {(c2 - 1) + —(c2 + l)\/a2 + β

) (

Since 0 ^ c < 1 and |χ| ^ ε, we infer that

(5.23) L σ ^ { ( c 2 - 1 ) + 2(1 -c)}\Fz\2^0 if

Note that r is of class C\έ§y JB3). Choosing

(5.24) a = 6 = 0 on JΓ",

we have α, 6 6L°°(^) taking (5.14), (5.16), (5.19), (5.22). and (5.24)
into account, and

Lσ ^ 0 a.e. on &

by virtue of (5.11), (5.17), (5.20), and (5.23).
It remains to prove (5.21) where

(5.25) ζ2 - c2 {f + η2) , 0 ^ c < 1 .
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Since (uf v) e Sίe2, we have also

(5.26) x2 + y2 ^ z2 ,

and

ΐ* = fa y, -*) =
ls.l \t,\

Let φ be the angle between E* and 9Ϊ. Then

sin ω =

Furthermore, let ψ be the smallest angle between 9Ϊ and the cone
{x2 + y2 = 22}. By virtue of (5.25), ψ is simply the angle between
the two lines z — r and z — cr in (r, 2)~plane whence

r 1/2 1/1 + c2

Finally, the relations (5.25) and (5.26) imply that

sin ψ <* sin φ

which, in turn, yields the desired estimate (5.21). Thus, the theorem
is proved.

6* A further inclusion theorem based on an estimate due to
Allard-Michael-Simon* The inclusion theorem of this section is
based on the following

LEMMA 7. Let J^~~ be a C2-submanifold of Rπ of dimension n
and codimension p, i.e., N = n + p. For an inner point ξ of
and for peR+, we define

m(ρ) = mζ(p) = — ί
O hχ-

where d^f{x) denotes the n-dimensional area element of άf at x.
Suppose that, for some p0 > 0, the boundary of the set J^> = {x e j ^ \
\x — xQ\ ̂  p}f considered as compact submanifold with boundary, is
contained in the sphere {xeRN: \x — ξ\ = p0}. Moreover, we assume
that the absolute value of the mean curvature έ%f of ^ is bounded
on J^ by some number H ^ 0. Then we have

( i ) lim^+o m(ρ) = m(0) = ωn,
where o)n denotes the volume of the n-dimensίonal unit ball;

(ii) _ * [ m ( p )] ^ Hm(p) for 0 < p £ po;
dp
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(iii) m(p) ̂  ωn exp ( — Hp) for 0 <: p £ p0.

Proof, (i) is an obvious consequence of the manifold structure
of JF" at ξ. (ii) is a very special case of an important Sobolev type
inequality due to Michael and Simon [17]. A variant of this estimate
was first derived by Allard [1]. (iii) follows immediately from (ii)
by integration.

LEMMA 8. Suppose that the assumptions of Lemma 7 are
satisfied, with the exception that J^ is not a C2-submanifold of RN

but only a C2-immersion into RN of dimension n and codimension
p. Then, the total area A(^) of *β^ can be estimated from below
by

(6.1) A(jro)^p«exv(-Hpo) .

Proof. If J^ is a submanifold of RN the assertion follows from
(iii) of Lemma 7. If S\ is only immersed and H — 0 the estimate
can be obtained from [1]. If H ̂  0 we can proceed as follows: If
J^l is an immersion into RN, then it is also immersed into RN+q,
q > 0, if jR^ is canonically embedded into RN+q. Clearly, the codi-
mension of J^l is now p + q. It is elementary to approximate ^
in RN+g by a sequence of ^-dimensional submanifolds J^l with
boundary on {Xe RlΎ+g: \X — Ξ\ = ρ0}, Ξ = («?, 0), such that the mean
curvature of the J?7^ tends uniformly to the mean curvature of _^,
as ^l tends to ά^, at least, if q is sufficiently large. Lemma 7,
(iii) applies to each of the ̂ 7 , and, by passing to the limit, we
obtain (6.1).

Suppose now that Γ is a closed regular Jordan curve Jϊ3 of class
G-f, 0 < β < 1, which is contained in the slab

S(hl9 h) = {(x, y, z) eRΊh.Kz^ h}

where

(6.2) 0 < h, ̂  h .

Then we choose a number ε > 0 such that

(6.3) h, > 5ε .

Moreover, let ω{z)> z 6 R, be a function of class C2 such that

(6.4) ω(z) = z for z ̂  ε .

Approximation the Lipschitz function
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ε for z ^ ε

z for z > ε

in an appropriate way by functions (o(z)> we infer that, for every
δ 6 (0, ε/2), there exists a C2-function ω(z) satisfying (6.4),

(6.5) ε/2 ^ ε - δ ̂  ω(z) for all zeR

and

(6.6) 0 ̂  \ { ^ — + δ for all zeR .

2ω(z) 2ε

Consider now the Plateau problem

φ(Γ): / > min on

where

(6.7)

and where (£(Γ) denotes the class of all surfaces in Hi(&, R3) which
map d& continuously and in a weakly monotonic way onto Γ. By
virtue of Theorems 1-3, there exists a solution of 5β(Γ); and each
solution ι(u, v) of 5β(Γ) is of class C 2 ( ^ JB3) and satisfies

ι U )[S. x sJ

and

α« = = ϊ v > λw r,v "

on &, where

On account of Gulliver's theorem [9], ΐ(u, v) possesses no branch
points in ^ . Therefore,

(6.8) JT = {£(u,v):(u,v)e^}

is a CMmmersion into R* of dimension n — 2 and of codimension 1,
the mean curvature of which is bounded by

(6.9) \£έ?\^H= — + δ.
2ε

THEOREM 12. Let £ = ι(u, v) be a solution of the Plateau problem
, and suppose that (6.2)-(6.6) are satisfied. Assume also that
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Γ c S(hl9 h), and that

(6.10)

holds, where ά^~ is defined by (6.8). Then, J^ is contained in the
open half space {z > ε}. Hence z(u, v) = ω(z(u, v)) on έ%. Therefore,

, v) is real analytic and satisfies (4.29) on £%.

Proof. Otherwise there is a point jc0 — (#o, Vof z0) e ^ such that
zQ — ε. On account of (6.6) and of Γ c S(hlf h) and 0 < e < 5ε ^ hl9

we can apply Lemma 8 with p0 — hx — ε and with H — l/(2ε) + d thus
obtaining

A(&~) > πρ2e~Hp for 0 < p ^ p0 .

The function p2e~Hp achieves its maximum for 2 — Up = 0, i.e.,
p = 2/Ή = 4ε + 3?(δ), where ^(5) > 0, and η(δ) -> +0 as 5 -> +0.
Hence, there is a ^0 > 0 such that

4 S po = Λi ~ β for 0 < <5 < <?0,

whence

A{&~) > ττ(4ε)2e-2 .

But this is impossible, because of assumption (6.10). The theorem
is proved.

LEMMA 9. Let 5 = ι{u, v) be a solution of ^β(Γ), and suppose
that Γ c S(hu h), and that (6.2)-(6.6) hold. Then

(6.11) Aft) < ^
ε —

where a{Γ) denotes the minimum of the area of all surfaces of the
type of the disc which are bounded by Γ (i.e., are of class

Proof. Let D(j) be the standard Dirichlet integral of ι(u, v):

D(ύ = S \Vifdudv .

Then

D(ϊ) - 2A(j) .

On account of (6.5), we obtain
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(s - δ)D(S) < J(s) .

Let \{u, v), (u, v) e ^ be a minimal surface bounded by Γ which is
of minimal area. That is, feS(Γ),

4 - 0 , fί = β , f« f. = 0 in ^ ,

and

Then,

because £ minimizes J in &(Γ). Since ΓaS(hlfh) the maximum
principle implies that f(B) a S(hl9 h) whence

J(f) ^ hDφ .

Combining these estimates, we arrive at (6.11).
Theorem 12 and Lemma 9 imply immediately

THEOREM 13. Let £ = %(u, v) be a solution of ?fi(Γ), and denote
by a(Γ) the minimum of the area of all disc type surfaces spanning
Γ. Suppose that Γ c S(hu h), and that (6.2)-(6.6) are satisfied as
well as

(6.12) a{Γ) £ ±π(*
h \e

Then ΐJί0?) c {z > ε}, z(u, v) ~ ω(z(u, v)) on &, χ(u, v) is real analytic
on £@ and satisfies (4.29).

REMARK. A good choice of ε would be ε close to hJ5 in which
case the condition (6.12) takes the form

(6.12') a(Γ) < £ £
5 h

7. Remarks about perfect domes* Let %(u, v) = (x(u, v), y(u, v),
z(u, v)) be a solution of (4.29) and (4.30), bounded by Γ. Obviously,
the "reflected" surface

X*(w, v) = (x*(u, v\ z*(u, v)9 y*(u, v)) ,

x*(u, v) = x(u, v) , y*(u, v) = y(u, v) , z*(u, v) = —

satisfies the same equations, i.e.,
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Lx* = 0 , Ly* = 0 , Lz* = - ^ |
2z*

r * 2 __ r * 2 - * . - * _ _ ( )
C.u kv 9 C.u kv v 9

Therefore, $*(u, v) is also a stationary surface for the functional /
but bounded by the reflected curve Γ* (the definition of which is
obvious). In fact, if %(u, v) is a solution of the minimum problem

J >min on <£(Γ) , Γ c X

where K(JΓ) is defined as in the beginning of §3, with 3ίΓ — {z >̂ ε},
e > 0, then £*(%, v) solves

J > max on (E*(Γ*) , Γ* c

where e*(Γ*) is defined by (£*(Γ*) - ft* eH2\^f R*): s*(^) c
ϊ * : 3 ^ ~ > Γ * is continuous and weakly monotonic},

^ Γ * = {z* ^ -s} , ε > 0 .

However, whereas z(u, v) ^ 0 is a subsolution of L, 2J*(̂ , V) is a
super solution. That is, %(uf v) is hanging below Γ (more precise:
below hΓ), £*(u, v) is standing above Γ* (precisely: above — hΓ).
Suppose now that we have found a "hanging solution" %(u, v) bounded
by Γ. Let us build it from a homogeneous material like concrete
with uniform thickness the material being incompressible to a high
degree of accuracy. Turning it upside down we obtain a "standing
solution" which — according to Professor Frei Otto — may serve as
"perfect cupola" since it has a particular static behavior.
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