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ARCHIMEDEAN LATTICE-ORDERED FIELDS THAT
ARE ALGEBRAIC OVER THEIR o-SUBFIELDS

NIELS SCHWARTZ

Several properties of archimedean lattice-ordered fields
which are algebraic over their o-subfield will be shown to be
equivalent. Among these properties are the following: Two
geometric descriptions of the positive cone. A sufficient condi-
tion for an intermediate field of the lattice-ordered field and
its o-subfield to be lattice-ordered. A description of the addi-
tive structure of the lattice-ordered field. Two statements on
the extendibility of lattice orders to total orders. A statement
on the extendibility of a given lattice order to a lattice order
on a real closure.

Introduction* It has been shown in [4], Kap. 2 that each

archimedean Z-field ( = lattice-ordered field) K with positive cone Pκ

has a largest subfield L which admits a total order PL with PL PKQ
Pκ. L is called the o-subfield of K. In this paper archimedean Z-fields
that are algebraic over their o-subfield will be investigated. In §1
several geometric and structural properties of ϊ-fields are considered.
§ 2 contains a discussion of the extendibility of lattice orders to total
orders. Finally, in §3 it is shown how Wilson's construction of
lattice orders on the real field in [5] can be used to construct lattice
orders on extension fields of i-fields.

All the proofs in this paper are based on the following repre-
sentation of Z-fields by continuous functions: By Holder's theorem
the archimedean totally ordered o-subfield L of the Z-field K is iso-
morphic to a unique subfield of the reals. Identify L with this
subfield. Since K is algebraic over L, the set Eκ of embeddings
of K over L into C can be topologized via infinite Galois theory to
become a Boolean space. Let C(EK) be the Banach algebra of con-
tinuous functions of Eκ into C with the norm given by N(f) =
max(|/(α)|; aeEκ). Define φκ(x) = (a(x))aeEκ for all xeK. Then ψκ

embeds K into C(EK) by infinite Galois theory.
After defining ea: C(EK) -»C to be the evaluation map at aeEκ

and S to be the closure of the subset S of a topological space, the
main results of this paper can be summarized in the following

MAIN THEOREM. For the archimedean I-field K which is algebraic
over its o-subfield L, these are equivalent:

(1) There is an aeEκ with a(K) Q R such that φκ(Pκ) Π
eΛO) - 0.
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( 2 ) There is an a e Eκ with a{K) £ R such that φκ(Pκ) Π ea\l) £
i\f '(1), i.e., ea(x) = N(x) for all xeφκ(Pκ).

( 3 ) Nφκ: Pκ —> R is a semiring homomorphism.
( 4 ) Λ/^: PA- —> R is a semigroup homomorphism wrt addition.
( 5 ) For all x e Pκ — Pκ\{0}9 L(x) is a convex l-subfield of K.
(6) K is equal to its own basis subgroup.
( 7) Φκ(Pκ) is a partial order, and the quotient order Q(PK) of

Pκ is a total order.
(8) φκ(Pχ) is a partial order, and Pκ is uniquely extendable to

a total order.
( 9 ) There exists a real closure R of K such that the lattice order

Pκ of K can be extended to a lattice order PR of R with φR{PP) a
partial order.
(Note that φκ(Pκ) is always a pre-order on the algebra C{EK).)

The geometric property (2) of the positive cone has been con-
sidered by Wilson in [6] (see also [4], Satz 5.1). Conditions (1), (3),
and (4) are evidently closely related to (2). (5)-(8) were investigated
in [4] for finite field extensions L £ K. (9) has been inspired by
Wilson's construction of a nontrivial lattice order on the reals ([5]).
Since (2) and (5)-(8) have been shown to hold for finite extensions
L £ K, the theorem essentially states that those conditions which
are true for finite extensions turn out to be equivalent for algebraic
extensions.

Quite naturally, the question arises whether (l)-(9) do not, in
fact, hold for arbitrary algebraic extensions. I have been unable
to determine the answer to this problem.

The terminology concerning Z-groups is that of [2].

1* Geometric and structural properties. This section is devoted
entirely to the proof of the equivalence of conditions (l)-(6) of the
Main Theorem. The proof will be arranged to reflect the obvious
close relationship of the members of each of the pairs (1) and (2), (3)
and (4), (5) and (6).

Proof of (1)~(2). (l)->(2): Suppose that (1) holds for aeEκ.
Then it can be readily verified that ea(φκ(Pκ))QR~]\ Now assume (by
way of contradiction) that (2) does not hold for a, i.e., there is some
β 6 EKf βφa, and some a e φκ{Pκ) such that 0 g ea{a) < \ eβ(a) | = N(a).
Since a is not contained in the closed set C = {x e C(EK); N(x) =
ea(x) |}, there exists a neighborhood U of a with Z7Π C — φ. Therefore

there is some b e φκ{Pκ) with b $ C. By finiteness of b(Eκ), there is
a partition Eκ = Ex U U En such that b is constant on each Et.
Obviously, b/N(b) lies in the unit ball of the finite dimensional subspace
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C(b) = {feC(Eκ); f is constant on all Et) of C{EK). The sequence
(b/N(b))n, neN has a convergent subsequence with limit d e φκ(Pκ)
by compactness of the unit ball in C(b). From \ea(b/N(b))\ < 1 and
\eβ(b/N(b))\ = 1 it follows that eβ(d) - 0 and \eβ(d)\ = 1. In particular,
d ^ 0. But then ea(d) = 0 contradicts (1).

( 2 ) -> (1): Suppose that (2) holds for a e E*. Then βα(a0 =
N(x) for all xeφκ(Pκ). Hence, ea(x) = 0 implies x = 0, i.e., (1) holds
for α.

The following corollaries follow immediately from the proof of
(1) - (2).

COROLLARY 1. Properties (1) and (2) hold for exactly the same
aeEκ.

COROLLARY 2. (1) and (2) hold for at most one a e Eκ.

Proof. If (2) holds for a, β e #*, then α(a?) - iV^(x) = /3(a) for
all x 6 P*. Now K ~ Pκ — Pκ implies a — β.

Proof of (1), (2) -> (3) -> (4). ( 2 ) -> ( 4 ): Suppose that (2) holds
for a e 2?*. Then Nφκ(x) — a(x) for all x e Pκ. Clearly, the restriction
of a to Pκ is a semigroup homomorphism wrt addition.

(4) —> (3): It must only be shown that the restriction of Nφκ to
Pκ\{0} is a multiplicative homomorphism. Pick xf y e Pκ\{0}. There is
some aeEκ such that Nφκ(x + y) = \ a(x + y)\. Since Nφκ is an additive
homomorphism, an elementary computation shows that Nφκ(x) =
I a(x) I, Nφκ(y)~\ a(y)\. But then it follows immediately that Nφκ(xy) =
\a(xy)\ = |α(x)| |α(i/)| - Nφκ(x)Nφκ{y)

(3)—>(2): Define a map αrίC-^C by x \-» Nφκ(x+) — Nφκ(x").
Since P^ generates i ί and since JV^ is a semiring homomorphism,
a is a field homomorphism into the reals. Obviously, a\L is the
identity. Thus a e EKf and a = β ^ . Therefore e α ^ = α = iV^ on
Pκ, or equivalently, ^α and N agree on φκ(Pκ). By continuity they
also agree on φκ(Pκ), i.e., (2) holds for a.

For the next step in the proof of the Main Toeorem it is useful
to recall the following fact from [4] (part (i), proof of Satz 5.3):

LEMMA 1. // the archimedean I-field K which is algebraic over
its o-subfield has property (2), then the l-ideal I(x) generated by
x e Pκ\{0] is contained in L(x).

Proof of (l)-(4) - (5) - (6). (2) -> (5): For all x e Pκ\{0} and all
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a e Pκ\{0} Π L(x), I(a) £ L(x) by Lemma 1. Since L(x) has a strong
order unit, this implies that L(x) is an ϊ-ideal of K, hence a convex
£-subfield.

(5) —> (6): Since any disjoint subset of if is linearly independent
over L ([4], Lemma 3.1), it follows from (5) that K has property
(F) of [1], Now K is equal to its basis subgroup by Theorem 7.3
of [1], since K is archimedean.

(6) -> (5): For any x e Pκ\{0}, the partially ordered field L(x) £ K
has a strong order unit u. Thus, L(x) is contained in the Z-ideal
I(u) generated by u. Since K is its own basis subgroup by hypo-
thesis and since the maximal o-subgroups of K are one-dimensional
over L ([4], Satz 2.3), I(u) is of finite dimension over L. Moreover,
an easy computation shows that I(u) is multiplicatively closed. Thus,
I(u) is a convex i-subfield of K which is of finite dimension over
its o-subfield. By [4], Satz 5.3, L(x) is a convex i-subfield of I(u),
hence also of K.

(5) -> (3): For any x e PK\{Q}, L(x) is an Z-field which is finite
over its o-subfield L. By [6] (see also [4], Satz 5.1), L(x) has property
(2), hence also property (3). Clearly, this implies that Nφκ: Pκ =
\Jx£pκ\{Q]pIΛx) ~-> R is a semiring homomorphism.

2. Extendibility of lattice orders to total orders. In the next
step of the Main Theorem, conditions (7) and (8) will be dealt with.
The implications (l)-(6) —> (7) and (l)-(6) —> (8) are contained in the
following corollaries, which are immediate consequences of the con-
siderations in the preceding section.

COROLLARY 3. If the l-field K has properties (l)-(β), then φκ(Pκ)
is a partial order.

Proof. Let aeEκ be the unique element for which (1) holds.

From -φκ(Pκ) £ e-χ{R-) and φκ(Pκ) C e*\R+) it follows that

-φκ{Pκ) Π Φκ(Pκ) C e*\0) Π Φκ(Pκ) = 0, whence the pre-order φκ(Pκ)

is a partial order.

COROLLARY 4. // the l-field K has properties (l)-(6), then the
quotient order Q(PK) of Pκ is a total order.

Proof. By [4], Satz 4.14, for all xePK\{0} the quotient order
Q(PL{X)) on the convex £-subfield L(x) of K is total. Thus, Q(PK) =
Uχepκwo}Q(PL(χ)) is a total order for K.

COROLLARY 5. If the l-field K has properties (l)-(6), then the
lattice order of K is uniquely extendible to a total order.
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Clearly, Corollary 5 follows from the totality of the quotient
order without any assumptions on the validity of properties (l)-(6).
Next it will be shown that the converse of this is also true, i.e.,
the quotient order is total if the lattice order has a unique extension
to a total order. In fact, the following result is even stronger than
that.

THEOREM 1. For the archimedean I-field K which is algebraic
over its o-subfield, the quotient order Q(PK) is an intersection of
total orders.

Proof. Clearly, Q(PK) induces the natural total order on the
o-subfield L, i.e., the unique total order which makes K a partially
ordered L-vector space. With this total order L is archimedean, or
(AS) in the terminology of [3]. Since K is an algebraic extension
field of L and since K = Q(PK) - Q{PK) is clearly primitive ([3], p.
919), Theorem 3.1 of [3] shows that K is an (AS)-field. Now, by
Theorem 3.2 of [3], Q(PK) is an intersection of total orders on K.

COROLLARY 6. The lattice order of the I-field K can be extended
to a total order.

This immediate corollary of Theorem 1 is exactly Satz 4.10 of
[4]. Thus, an alternative proof (which is much shorter than the
original one) of this important theorem has been found. The next
corollary essentially states that (7) and (8) are equivalent:

COROLLARY 7. The lattice order of K is uniquely extendible to
a total order iff the quotient order is a total order.

To establish the equivalence of (l)-(8) of the Main Theorem, it
only remains to be shown that (l)-(6) follow from (7) and (8). This
proof requires the following two rather technical lemmas.

LEMMA 2. Suppose that K is an archimedean l-field which is
algebraic over its osubfield. If φκ(Pκ) is a partial order, then for
all aePK\{0} there is some aeEκ such that a(a) — Nψκ(a).

Proof. Pick aePκ,aφ0. Then φκ(a)(Eκ) is finite. Thereby ER

is partitioned into finitely many subsets Eif iel, on each of which
φκ(a) is constant. C(a) = {xeC(Eκ); x is constant on Ei9 iel} is a
finite dimensional subalgebra of C(EK), which is canonically isomorphic
to C1 by φ: C(a)-+C!: x H* (x(Ei))ieI. Since φκ(L(a))QC(a) by infinite
Galois theory, the restriction ψ of φφκ to L(a) is well-defined and
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embeds L(a) into C1. Let πt: C1 —> C be the canonical projections, and
write ψt = n{>f.

Define 60 — ψ(ά)/Nφκ(a). Then every i e I is in exactly one of
the following subsets of I:

/i = {ieI; πt{bQ) = 1} ,

/2 = {i e I; 7Γ{(60) ^ 1 is a root of unity} ,

Z3 = {i e /; I π,(60) | = 1, πt(δ0) is no root of unity} ,

In this notation, the claim of the lemma is that I1 is nonempty.
Obviously, Iι U I2 U Iz Φ Φ by the definition of N. One can easily

define a sequence in ψ(PL{a)) with components 1 on Ix U /2, limit 1 on
73, and limit 0 on 74. The limit d1 of this sequence is in ψ(PL{a)) by
closure.

Next it will be shown that Iι U I 2 ^ 9. Clearly, this is true if
/3 = φ. Therefore suppose that I3 Φ φ. Now consider bλ = δodi. The
support of 6t is contained in JL = /L U I2 U /3. Again, define a sequence
in ψ(PL(a)) with components 1 on /A U /2, limit —1 on a nonempty
subset J2' £ J3, and limit 1 on /3\JJ. Again by closure, the limit d.
of this sequence is contained in ψ(PIΛa)). Also, b2 = (6X + M!2)/2 6

>). The support of 62 is contained in J 2 = JAJ2 ^ J^. By itera-

tion, there is a smallest 7* eN such that the support of 6r = (6r_j +
br-idr)/2 is contained in /x U /2. Now assume (by way of contradiction)
that Jx U I2 = ό. But then 0 = br = brj2 + br_xdr\Z is a nontrivial
representation of 0 in ψ{PL{a)). This is a contradiction, since ψ(PL(α))
is a partial order, being the isomorphic image of φκ{PL{a)) £ Φκ(Pκ)

The final step of this proof is to show that Ix Φ φ. This is
obviously true if L — φ. If I2 Φ φ, let k e N be a common multiple
of the exponents of all the roots of unity involved. Define c —
Σf=i Vr- Then the components of c are k on /^ 0 elsewhere. If Ix

were empty, 0 = c — Σf=i r̂ would again be a nontrivial represen-
tation of 0 in the partial order o/r(PL(£t)): contradiction. Thus, IιΦφ
^s claimed.

LEMMA 3. Suppose that φκ(Pκ) is a partial order for the archi-
medean l-field K which is algebraic over its o-subfield L. Then
L{a) = L(a + a2), and {a e Eκ\ \ a(a + a2) | = Nφκ{a + α2)} ~ {ae Eκ;
a(a + α2) = Nφκ(a + a2)} = {α e J5Ά-; α(α) = φκ(a)}.

Proof. This is an easy computation.

The next lemma shows how the subfields L(α), a e Pκ\{0] can be
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embedded order preservingly into the reals. In the proof of (7),
(8) —> (l)-(6) these embeddings will be put together to give an em-
bedding of K into the reals.

LEMMA 4. Suppose that φκ(Pκ) is a partial order for the archi-
medean I-field K which is algebraic over its o-subfield L. Then
a: L(a) —> R is order preserving for all a e Pκ\{0} and all a such that
a(a) = Nφκ(a).

Proof. a(a) = Nφκ(a) clearly shows that a embeds L(a) into R.
So it is only left to show that a is order preserving: Assume (without
loss of generality by Lemma 3) that {aeEκ; a(a) — Nφκ(a)} —
{a eEκ; \a(a)\ — Nφκ(a)}. Now, suppose (by way of contradiction)
that there is some xePL{a) for which a(x) < 0. Note that both
φκ(a)(Eκ) and φκ(%)(Eκ) are finite and that φκ(x) is constant on those
subsets of Eκ on which φκ{a) is constant. By \a(a)/β(a)\ > 1 for all
βeEκ with β{a) Φ Nφκ{a), there is some n e N such that | a(a)/β(a) |* >
\β(x)/a(x)\ for all β eEKt β(a) Φ Nφκ(a). From this it follows that
{aeEκ\ \a(anx)\ = Nφκ(anx)} = {aeEκ\ α(α) = Nφκ(a)}. But then
{a 6 Eκ\ a(anx) = Nφκ(a*x)} = φ by a(anx) = a(a)na(x) = Nφκ{a)na{x) <
0. This contradicts Lemma 2.

Proof o/ (l)-(6) — (7) — (8). (8) -> (2): (By Corollaries 3, 4, 5, 7
this completes the proof.) Pκ is uniquely extendible to a total order
by hypothesis. Thus, by Holder's theorem, there is a unique order
preserving a e Eκ. Assume (by way of contradiction) that (2) does
not hold for this α, i.e., there is some α e Pκ such that Nφκ(a) > a(a).
Then a $ {β e Eκ; β(a) = Nφκ(a)}. Again, one can assume without loss
of generality (by Lemma 3) that {β e Eκ; β(a) = Nφκ(a)} = {β e Eκ;
\β(a)\ — Nφκ(a)}. By Lemma 2, this is a nonempty, compact subset
of Eκ. Now define for all b e Pκ\{0), E(b) = {β e Eκ; β(a) = Nφκ{ά),
β:L(a,b)-*R preserves the order}. For b e Pκ\{0} pick c e Pκ such
that L(a, b) = L(c) (this is possible by part (i) of the proof of Satz
4.10 in [4]). As in the proof of Lemma 4, one sees that there is
some n e N with L(c) = L{anc) and φ Φ {β 6 ^ /5(αwc) = iV x̂(α

%c)} £
{βeEκ; β{a) = Nόκ(a)}. Now it follows from Lemma 4 that {βeEκ;
β(anc) = Nφκ(anc)} £ E(b). In particular, £̂ (6) Φ φ.

So far, it has been shown that each E(b) is a nonempty, closed
subset of {βeEκ-, β(a) = Nφκ(a)}. Now, if 6,, , bk e Pκ\{0}, then
there is some c e Pκ such that L(a, blf , δfc) = L(a, c) ([4], Satz 4.10,
part (i) of the proof). Therefore E(c) Q f]ti EΦt), and the intersec-
tion is nonempty. But then also Γ\hepκ\ o.EQ>) Φ Φ by compactness of
{βeEκ; β(a) = Nφκ(a)}. This gives a contradiction to the uniqueness
of a, since any 7 e n&e/>r ,o; -̂ (&) is another order preserving embedding
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of K into R.

For a certain class of fields, in particular for the reals, the
following stronger version of the equivalence of (l)-(8) holds:

COROLLARY 8. // the total order of the o-subfield admits only
a unique extension to a total order of the l-field K, then (l)-(6) are
equivalent to: φκ(Pκ) is a partial order. Moreover, the quotient
order is always total.

3. Extendibility of lattice orders to over-fields* The direction
(9) —> (l)-(8) of the last remaining equivalence has already been
established by Corollary 8. The other direction of this equivalence
is a corollary of the next result, which will be stated after a few
notations have been introduced: For the ϊ-field K the quotient order
is an intersection of total orders by Theorem 1. Identify this set
of total orders with the subset Tκ £ Eκ of order preserving em-
beddings of K into the reals. By infinite Galois theory, Tκ is a
compact subspace of Eκ. If K £ M is an algebraic field extension,
let TM £ EM be those embeddings of M into the reals which extend
some aeTκ. Let φ: TM—> Tκ be the restriction of the canonical
surjection EM —> EκJκ

THEOREM 2. Suppope that the I-field K is archimedean and
algebraic over its o-subfield L. Let K £ M be an algebraic field
extension. Then the following are equivalent:

(a) There exists a basis B for M over K such that PK(B) =
{ΈibeB^bb] abePKi ab — 0 for almost all 6} is a lattice order on the
field M.

(b) φ is surjective, and has a continuous section σ: Tκ—> TM• M

REMARK. Condition (a) evidently means that Wilson's construction
of a nontrivial lattice order on the reals in [5] is applicable to obtain
a lattice order on M. Therefore Wilson's results will be used exten-
sively in the proof of (b) —> (a).

Proof, (a) -> (b): For each total order T on K extending PK9

T(B) = {ΣjbeβOίφ; ab — 0 for almost all 6, abeT} is a lattice order
on the field M. The quotient order of (AT, T(B)) is total, since (6)
obviously holds for (M, T{B)). This shows that T is extendible to
a total order on M, i.e., φ is surjective. This argument even shows
a bit more: Let Tr

M £ TM be the order preserving embeddings of
(ikf, PK(B)) into R, φf the restriction of φ to T'M. Then φ' is surjec-
tive. But φf is also injective. For, let a, βe TM be such that a\K =
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β\K. If T is the total order on K corresponding to a | K — β | K.
then T(B) is contained in each of the total orders of M corresponding
to a and β. But since the quotient order of T(B) is total, the total
orders corresponding to a and β must be equal, hence a = β. Thus
φf is a continuous bijection of compact spaces, hence a homeomor-
phism. Define σ = <̂ '~1.

(b) ~> (a): Define iVΓ = {(JV, BN); KQNQM intermediate field, BN

basis of N over K such that PK(BN) is a lattice order on iV, the
quotient order of PK(BN) is the intersection of the restrictions of
the elements of σ(Tκ)}. If N is partially ordered by (N, BN) ^ (L, BL)
if N ζZL, BN Q BL, then there exists a maximal (i\Γ, BN) e JV. Assume
(by way of contradiction) that N Φ M. Pick a e M\N, and define
L - N(a).

By identifying Γ x and σ(Tκ) and by infinite Galois theory, K, N,
and L can be represented as subfields of the real Banach algebra
R(TK) = CR(TK). Note that each of these subfields contains the
rationale and separates points, so that they are dense in R{TK) by
the Stone-Weierstraβ theorem. Since the quotient order of PK(BN)
is the intersection of the total orders of N belonging to the elements
of o(Tκ), xeN is positive in the quotient order iff its image ψ(x) e
R(TK) is positive (wrt the pointwise order).

Now the decisive step in this proof is to find a primitive element
6 for the field extension NQ L such that &'s minimal polynomial is
Xn + K^X"-1 + • + &o with the 6, < 0 in the quotient order of
Pκ(BN) and such that ψ(b) > 0. This is almost exactly Step 1 of the
proof of the Main Lemma in [5]. The essential difference is that
in this case the inequalities bt < 0, b > 0 have to be established not
only one total order at a time, but for all the total orders of σ(Tκ)
simultaneously.

For t, seN let T(t, s) be the composition of the following (par-
tially defined) transformations of R(TK):

x i > x/t x i > x — s x i > 1/x x i > x — ljn .

If Xn + α«_i(£, s)Xn + + ao(t, s) is the minimal polynomial
for T(t, s)(a) over N, a mapping τ: N*xN* \-> R(Tκ)

n+1 is defined by
τ(t, s) — (T(t, s)(α), αo(ί, s), , dn~i(t, s)). τ is continuous wrt the
topology induced by R{TK) on N*.

Using [5], proof of the Main Lemma, Step 1, for each a e Tκ.
rationale ta, sa can be found such that a(T(ta, sα)(α)) > 0 and
a(at(ta, 8*)) < 0. The sets Tκ(a) = {βeTκ; β(T(ta, sa)(a)) > 0,
β{alta, sa)) < 0} = {β 6 Tκ; β(T(ta, 8a)(a)) ^ 0, β{ai{tay sa)) g 0} are clopen
subsets of Tκ by continuity of τ. Since Γ^ is compact, this leads
to a finite partition CΊ, , Cm of Tκ into clopen subsets such that
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e a c h Cj i s c o n t a i n e d i n s o m e Tκ(a). F o r e a c h j = 1, •••, m , c h o o s e
a5 such that Cj £ Tκ{aό). Now define t',s'eR(Tκ) by: t\a) = ta.
and s'(α) = sαy for aeCjf j = 1, , ra. By denseness of N Q R(TK),
and by continuity of the evaluation maps R{TK) -> /ί at the points
of 2V, there exist neighborhoods ί7 of t', V of s' in R{TK) such that
for all t 6 2V* Π Z7 and all s e iV* Γ) F the desired inequalities hold:
a(T(t, s)(a)) > 0, a(at(t, «)) < 0 for all a e Tκ. Thus, b = Γ(ί, β)(α) is
the desired primitive element of L over iSΓ. Next, an application of
[5], proof of the Main Theorem, Step 2 leads to a primitive element
c for L over iV such that e09 , cn_x < 0 in the lattice order of Nf

where Xn + ow_1X
%~1 + + c0 is the minimal polynomial of c over

N, and such that a{c) > 0 for all a e Tκ. Define J5Z = BN-{1, c, ,

c%-ij rpkjs j s c i e a r iy a basis of L over iΓ. By construction of this
basis, PK(BL) = P (̂JS )̂({1, c, , c71"1}) is a lattice order on L. Finally,
each total order belonging to some element of σ(Tκ) extends PK(BL).
By the proof of (a) —> (b), these are all the total orders extending
PK(BL) Therefore it follows from Theorem 1 that the quotient order
of PK{BL) is the intersection of the total orders belonging to the
elements of σ{Tκ). Altogether, this shows that (L,BL)eN, contra-
dicting the maximality of N.

Proof of (l)-(8) «-> (9). The only remaining part of the proof is
the implication (l)-(8)-> (9). Because of (8), |2V| = 1. Also, for
any real closure R of K with the quotient order of PKf there is
only one total order on R extending the quotient order. Thus, (b)
of Theorem 2 clearly holds. By (a) of Theorem 2, there is a basis
B for R over K such that PK{B) is a lattice order for R. Since R
with this lattice order is equal to its own basis subgroup, φB{PR) is
a partial order.
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