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KRULL RINGS

ROBERT E. KENNEDY

We extend the notion of a Krull domain to commutative
rings with identity which may contain zero divisors. In order
to do this we present a definition of the divisors of an arbi-
trary ring, and show that the collection of divisors is a com-
mutative semigroup with identity and is a group if and only
if the ring is completely integrally closed. In addition, an
extension of unique factorization domains to arbitrary com-
mutative rings is used to investigate the relationship between
Krull rings and unique factorization rings. In particular, it
is shown that a unique factorization ring is a Krull ring with
trivial class group.

1* Divisors and complete integral closure* The divisors of an

integral domain together with the concept of complete integral closure
is important in the study of unique factorization domains and Krull
domains. To extend the notion of divisors to rings which contain
zero divisors, let R be a ring with total quotient ring K. If A is
a subset of K such that A is an iϋ-module and there exists a regular
element d e R where dA is a subset of R, then A is called a fractional
ideal of R. If, in addition, A contains a regular element of R, then
A is called a regular fractional ideal of R. In what follows, F(R)
will denote the collection of regular fractional ideals of R.

For A, BeF(R), set [A: B] = {xeK\xBc A}. Then [A: B] eF(R).
In particular, [R: A] e F{R) for each A e F(R). Define ~ on F{R) by:
A ~ B if and only if [R: A] = [R: B], Note that ~ is an equivalence
relation on F(R). D(R) will denote the collection of equivalence classes
induced on F(R) by ~. If A e F(R), then div A represents the equiva-
lence class containing A. As in the domain case, a well-defined opera-
tion may be defined on D(R) by: div A + divi? = div AB for A, Be
F(R). With this operation, D(R) is a commutative semigroup with
identity div R. If D(R) is a group, then D(R) is called the group of
divisors of R.

For AeF(R), set A = [R: [R: A]]. Then Ae_F{R) and A ~ A.
In fact, for A, Be F(R), A ~ B if and only if A = B. A partial order
may be defined on D{R) by: div A ^ div B if and only if B c A. With
this partial order, D(R) is a partially ordered semigroup with identity.

The following proposition is of importance since it gives a neces-
sary and sufficient condition for a ring to be completely integrally
closed.

PROPOSITION 1.1. Let R be a ring with total quotient ring K.
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Then R is completely integrally closed if and only if D(R) is group.

Proof Suppose that R is completely integrally closed. Let
AeF(R). It only needs to be shown that div A has an additive in-
verse in D(R).

Let x e [R: A[R: A]]. Then x[R: A] c [R: A]. Therefore xnA[R: A] c
A[R: A] c R for each positive integer n. Let d and d' be regular
elements of R which are contained in A and [R: A] respectively.
Hence dd' is regular and dd'xn e R for each positive integer n. Thus
by complete integral closure, [R: A[R: A]] c R. But then it follows
that [R: A[R: A]\ = R and so divi? = div A + div [R: A], and div [R: A]
is the additive inverse of div A in D(R).

The proof of the converse is similar to the analogous theorem in
the domain case.

An immediate corollary to the above proposition is that if R is
completely integrally closed, then D(R) is a lattice ordered abelian
group. In fact if div A and div 2? are elements of D(R), it follows
that gib {div A, div B} = div (A + B) and lub {div A, div B) = div (AnB).

A regular fractional ideal of a ring R is called a principal frac-
tional ideal if it is of the form Ra where a is a regular element of
the total quotient ring of R. It can be shown that A is equal to the
intersection of all principal fractional ideals which contain A for each
regular fractional ideal A of a ring R. If A = Af then A is said to
be a divisorial ideal of R.

2. Krull rings* Let R be a ring with total quotient ring K such
that R Φ K. Then R is called a Krull ring if there exist a family
{(Fα, P α ) |αe/} of discrete rank one valuation pairs of K with associ-
ated valuations {Va\ael} such that

(I) R = Γi{Va\aeI}.
(II) va{a) = 0 almost everywhere on / for each regular aeKt

and each Pα is regular ideal of Va.
Note that for Pα to be a regular ideal of Va, it is necessary and
sufficient that Pa contain a regular element of R. The last condition
also means that for each regular element a e R, a is an element of
Va — Pa for all except finitely many a el.

For A e F(B), inf {vβ(α)|α e A} exists for each a el since the value
of a regular element is finite. For a el, va(A) will denote this
infinum.

PROPOSITION 2.1. Let R be a Krull ring with a defining family,
{va\ael}, of discrete rank one valuations on K where K is the total
quotient ring of R.
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(i) Let A, BeF(R) where B is divisorial. Then AdB if and
only if va(A) ̂  va(B) for each a el.

(ii) For each A e F{R), va(A) — 0 almost everywhere on I.

Proof. The proof is similar to the analogous theorem in the
domain case.

PROPOSITION 2.2. Let R be a Krull ring with total quotient ring
K. Then R is completely integrally closed and every nonempty set
of divisorial ideals of R has a maximal element.

Proof. Let {va\ael} be a defining family of discrete rank one
valuations on K. Let d be a regular element in R and x e K such
that dxn e R for each positive integer n. Hence va(d) + nva(x) ^ 0
for each positive integer n. Suppose that x e K — R. Then there
exists β el such that vβ(x) < 0. Since d is fixed, n may be chosen
large enough so that vβ(d) + nvβ(x) is strictly less than zero, a con-
tradiction. Hence va(x) ^ 0 for each a el, and xeR. Therefore, R
is completely integrally closed.

That each nonempty set of divisorial ideals of R has a maximal
element follows from Proposition 2.1.

Let R be a Krull ring. Then by Proposition 2.2, every nonempty
collection of positive elements of D(R) has a minimal element. Let
the set of all minimal positive elements of D(R) be indexed by a set
I. For each a el, let Ma be the divisorial ideal of R such that divMa

is a minimal positive element of D{R). Thus {Ma\ael} is the col-
lection of maximal divisorial ideals of R. The proof of the following
lemma is omitted since its proof is similar to that of the domain
case.

LEMMA 2.3. Let R be a completely integrally closed ring with
maximal divisorial ideal M. If div M ̂  div Aγ + div A2 + + div An,
where each div At is a positive element of D(R), then divM <J div Â
for some i.

PROPOSITION 2.4. Let R be a Krull ring. Using the notation
preceding the lemma, each element of D(R) is uniquely of the form

Σ w« div Ma

where na = 0 almost everywhere on I.

Proof. Let div A eD{R). By the corollary to Proposition 1.1,
there exists B e F(R) such that div B is the least upper bound of
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{div A, άivR}. Then, since D(R) is an abelian group, div A = divi?
(div B — div A) and each element of D(R) may be written as the
difference of two nonnegative elements of D(R). Thus, if it is shown
that each positive element of jD(i2) is of the desired form, then so is
every element of D(R). That this is indeed the case is straight forward.
Uniqueness of the above representation follows from Lemma 2.3.

It can be shown that a finite complete direct sum of Krull rings
is a Krull ring. However, it is not necessary that each summand of a
complete direct sum be Krull in order that it be a Krull ring. The
following proposition demonstrates this possibility.

PROPOSITION 2.5. Let R be a Krull ring with total quotient ring
K, and S be a ring which is its own total quotient ring. Then
R 0 >S is a Krull ring.

Proof. Let {(Fα, Pa)\a el} be a defining family of discrete rank
one valuation pairs of K for R. Note that the total quotient ring of
R 0 S is K 0 S. For each a e I, define wa(x, s) = va(x) where va is
a determining valuation on K for (F«, Pα). Then each wa is a dis-
crete rank one valuation on Kξ&S.

Let Wa = {(a, s) eKξ&S\wa(x, s) ^ 0}. Then Wa = Wa@S and

Π{Wa\aeI)=R@S.

Since wa(x, s) = 0 almost everywhere on / for each regular element
(x,s)eK(BS, it follows that R 0 S is a Krull ring.

3* Unique factorization rings* Let R be a ring with total quo-
tient ring K such that R Φ K. H(R) will denote the subgroup of
D(R) whose elements are of the form div.Rα where a is a regular
element of K. The factor group C(R) = D(R)/H(R) is called the
divisor class group of R.

In the domain case, R is a unique factorization domain if and
only if R is a Krull ring and C(R) is trivial. To investigate what
happens when R is an arbitrary ring with identity, a characteriza-
tion of a unique factorization ring will be used. This characteriza-
tion states that every unique factorization ring is a finite complete
direct sum of unique factorization domains and of special principal
ideal rings (1).

In connection with the following proposition, a ring R is said to
have Property (M) if each nonempty collection of regular principal
ideals of R contains a maximal element.

PROPOSITION 3.1. Let R be a ring which is not its own total
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quotient ring. Consider the following statements:
(1) R is a unique factorization ring.
(2) R is a Krull ring and C(R) is trivial.
(3) R is a Krull ring and each maximal divisorial ideal of R

is principal.
(4) R has property (M) and the intersection of two regular

principal ideals is principal.
( 5 ) R is a Krull ring and the intersection of two regular prin-

cipal ideals is principal.
Then (1) => (3) ~ (5) « (2) - (4).

Proof. (2) «=> (3). It is clear that (2) => (3). To see that (3) => (2),
let A be a divisorial ideal of R. Then by Proposition 2.4

div A — Σ n* div Ma

where {Ma\ael} is the collection of maximal divisorial ideals of R
and na = 0 almost everywhere on /. By (3), each Ma is principal and
it follows that

div A = Σ n« div Ma = div Π Ma

n«

is a principal divisor of R. Therefore, C(R) is trivial and (3) ==> (2).
(2) => (4). Since each regular principal ideal of a ring is divisorial,

it follows from Proposition 2.2 that every collection of regular prin-
cipal ideals of a Krull ring has a maximal element. Hence, R has
property (M). If a and b are regular elements of R, then (α) n (δ) cz (α)
and (α) Π (6) c (6). Thus (α) Π (δ) is divisorial since (α) Π (δ) c (α) Π (δ),
and it follows from the assumption that C(R) is trivial that (α) Π (δ)
is principal. Therefore (2) ==> (4).

(5) <=> (3). Let ϋΓ be the total quotient ring of R and let M be a
maximal divisorial ideal of R. Thus, if S = {a eK\M c iϋα}, then
JkΓ = Π IRα|αeS}. Therefore Ma Ra Π R a R for each α e S . If
Ra Γ\ R ~ R for each α e S, then J ί c f l {ίto | α e S} = Λf, a contradic-
tion. Hence there exists aeS such that M a Ra f) R which is properly
contained in R. But Ra Π R is a divisorial ideal of R, and by the
maximality M, M = Ra Π R. Let d be a regular element of R such
that ad e i?. Then dM — Rad Π i?d, and since ad is regular, it follows
that dM is principal. Hence M is principal and (5) ==> (3). Conversely,
since the intersection of two regular principal ideals is divisorial, from
Proposition 2.4 it follows that the intersection of two regular principal
ideals of R is principal. Therefore (5) <=> (3).

(1)=>(2). Since R is a unique factorization ring, R is a finite
complete direct sum of unique factorization contains and special prin-
cipal ideal rings. But each unique factorization domain is a Krull
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domain with trivial class group and a complete direct sum of special
principal ideal rings is its own total quotient ring. Hence R may be
written as ϋ?i 0 S where Rx is a Krull ring and S is its own total
quotient ring. Therefore by Proposition 2.5, R is a Krull ring.

Noting that the divisor class group of a finite complete direct
sum is the complete direct sum of the divisor class groups of each
summand, and that the divisor class group of S is trivial, it follows
that C(R) is trivial. Therefore (1) => (2), and the implications and
equivalences in the statement of the proposition hold.

Of particular interest in Proposition 3.1 is the statement that
(1) implies (2). However, it has not been shown whether the converse
holds. If (2) did imply (1), then it would follow that each Krull ring
with trivial class group is a finite complete direct sum of unique fac-
torization domains and special ideal rings. This, in the author's
opinion, is too strong a result. Accordingly, the proof or disproof
that (2) implies (1) is left as an open problem.
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