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ON THE ZEROS OF CONVEX COMBINATIONS
OF POLYNOMIALS

H. J. FELL

Given monic nth degree polynomials P0(z) and Px{z), let
PA(Z) = (1 - Λ)P0(z)+ΛPί(z). If the zeros of Po and P, all lie
in a circle ^ or on a line L, necessary and sufficient con-
ditions are given for the zeros of PA (0<A<l) to all lie on ^
or L. This describes certain convex sets of monic nth degree
polynomials having zeros in ^ or L. If the zeros of Po and
Pi lie in the unit disk and Po and Px have real coefficients,
then the zeros of P^(O<^4<1) lie in the disk U|<cos(?r/2w)/
sin (π/2n). A set is described which includes the locus of zeros
of PΛ(O<A<1) as Po and Px vary through all monic nth degree
polynomials having all their zeros in a compact set K. When
K is path-connected, this locus is exactly the set described.

Given polynomials P0(z) and Pλ{z), let PA{z) denote the poly-
nomial:

PΛ(z) = (1 - A)P0(z) + AP&) .

PA is defined for any complex value of A and the zeros of PA{z) are
continuous functions of A. In particular, if A is varied through
the reals between 0 and 1, the locus of zeros of PA{z) is a network
of paths in the plane starting at the zeros of P0(z) and terminating
in the zeros of Pλ{z). If the degree of Po is higher than that of Px

then some of the paths of zeros must tend to infinity as A tends
to one. It is the aim of this note to describe these loci of zeros
when Po and Pλ are monic, have the same degree and are constrain-
ed to have their zeros on a circle, on a line or in a disk.

First, let Po and Pt be real and have their zeros in S1 = {z e
C:\z\ = 1} where C denotes the complex numbers. The following
lemma gives a necessary and sufficient condition for the locus of
zeros of PA(z). (0 ^ A ^ 1) to be contained in S1.

LEMMA 1. Let PQ(z) and Pλ(z) be real monic polynomials of degree
n with their zeros contained in S1 •— { — 1,1}. Denote the zeros of
P0(z) by wlf w2, - , wn and of Pλ(z) by zlf z2, , zn and assume:

Wi Φ z3 (1 ^ ΐ, j ^ n)

and

0 < arg(^i) <: a r g O . ) < 2π

0 < argfo) ^ argfo) <2π (l^i<j^n).
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Let oίi be the smaller open arc of S1 bounded by wt and
Zi(i = 1, , n). Then the locus of zeros of PA(z) (0 ^ A <̂  1) is
contained in S1 if and only if the arcs at are disjoint.

Proof If P o and P x a re fixed, t h e n for each zeC such t h a t

P0(z) Φ PX{Z) t h e r e is a unique value of A = A(z) such t h a t PMz)(z) — 0.

The function A{z) is given by:

(*) A(z) — ^ o w = ± — ±
Po(3) - Px{z) λ _ P,(g) __ (g - zx) (g - zn)

P0(g) (g - wO (g - w j

if P0(g) ^ 0.
First assume that PA(z) has all its zeros in S1 for 0 ^ A ^ 1.

When A = 0, the zeros of P^O) are the w€. Perturbing u4 from 0
to 1 will give a trajectory of zeros eminating from each wf. Each
trajectory will pass through a zt at A — 1. Equation (*) implies
that no z can be a zero of P^(^) for two different values of A (un-
less P0(z) = Pγ{z) = 0 which is not the case here). Two trajectories
can intersect only at z's which are multiple zeros of PA for some
A. The set of all z which are multiple zeros of PA(z) for some
A 6 C is a finite set, as this is the set of zeC for which PA(z) and
PA(z) are both zero. PA(z) = 0 implies A(z) = P0'(g)/(P0'(g) - P/(g)) if
Po(g) ^ Pi'Oz) and equating this formula for A(z) with that in (*)
gives a polynomial that z must satisfy if it is a multiple root of
PA(z) for some A. Hence, two trajectories can cross but not coin-
cide over a curve. If the trajectories are constrained to a circle,
they can only intersect at their endpoints. The n disjoint open
arcs covered by these trajectories minus their endpoints are clearly
the arcs α t.

Now assume that the arcs α* are disjoint. Let θt denote the
angle of the arc α*. Consider the quotients

and

a —
z - wn+1-t z

If zeS1 and z £ aύ U αft+1-< then:

arg( ί4) = ±^-

while
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Hence argig^+i-,) = 0 and qtqu+1-t is a positive real. If zeS1—
UίU «i then P^z) PQ(z) is positive and except at the finite number
of zeS1 where P0(z) — P^z), A(z) is real with either A(z) < 0 or
A(z) > 1. If zeoCi for some i, then for j Φ i, qάqn+1-j is a positive
real. On the other hand,

while

In this case arg^^-n-*) = π so PJφfPJίz) is negative and A(z) is
real with 0 < A(s) < 1.

A(z) is a continuous real-valued function of z on each arc at.
A(z) takes on the values 0 and 1 at the endpoints w* and z{ of at.
A{z) must then take on all values between 0 and 1 on each arc at.
That is, for each A(0 ^ A <̂  1) there is a zero of PA(z) in each arc
cti. This accounts for all n zeros of PA(z) so there can be no zeros
of PA(z) outside S1.

Note that a similar lemma holds for polynomials Po and Px

having their zeros in any circle whose center is on the real line.

THEOREM 1. Let <& be any circle whose center is on the real line
and let yi be open arcs in ^f\{z\Imz > 0} for i = 1, , k. The
set of (real) monic polynomials of degree 2k with zeros zίf z19 ,
% & %k where zt 6 τ< (i = 1, , k) is a convex set of polynomials if
and only if the arcs TZ are disjoint.

Proof. All that remains is to consider what happens when Po

and JPj have zeros in common. In this case,

P0(z) = Q(z)P0(z) ,

Pλ{z) - QGOftoO
and

PΛ(Z) = Q(z)((l - A)P0(z) + APx(z))

where P0(z) and Pt(z) satisfy the conditions of Lemma 1. This lemma
applied to (1 — A)P0(z) 4- APλ{z) implies the theorem.

COROLLARY 1. Let PQt Pι and at be as in Lemma 1. For each
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zeS1. Let n(z) = cardiacs e a j . For all zeS1 such that P0(z) Φ
Pi(#), z is a zero of PA(z) for some real value of A — A(z) and
0 ^ A(z) ^ 1 if and only if n(z) is odd or z is a zero of Po or P1%

Proof. This follows easily from the proof of Lemma 1.

The techniques used in the proof of Lemma 1 applied to poly-
nomials whose zeros lie on a straight line give the following result.

THEOREM 2. Let I3(j = 1, -' ,n) be open intervals in a line
L ξZC. The set of monic polynomials of degree n having zeros
Cjϋ = 1, , n) where ζ3- e I3 is a convex set of polynomials if and
only if the intervals I3 are disjoint.

Proof. Let P0(z) and Px{z) have zeros wlf w2, , wn and zl9 , zn,
respectively, where w3- and z3 are in L(j — 1, , n). Assume that
L is directed and that the zeros wt and zά are ordered in this direc-
tion. Define intervals a3 and quotients qs as in Lemma 1 and its
proof. If Po and Px are monic and wt Φ z3(i9 j = 1, * , n) then

) = 0 or 2π zeL — at

= π or — π zeat .

The arguments of Lemma 1 imply that the zeros of PA(0 ^ A^l)
are contained in L if and only if the intervals a€ are disjoint and
the theorem follows.

Theorem 2 is similar to a result of N. Obreschkoff [2] which
states: Let P{x) and Q{x) be two polynomials without common zeros
whose degrees differ by at most one. A necessary and sufficient
condition that P and Q have only real zeros which separate each
other is that the equations aP + bQ = 0 have real zeros for all
real a and b. In the proof of Theorem 2, the zeros of Po and Px

need not separate each other for PΛ(0 ^ A <L 1) to have all its zeros
on the line L. The zeros do, however, need to be "paired" which
is the condition that the invervals α* are disjoint. Theorem 2 can
be restated in the flavor of Obreschkoff as follows.

THEOREM 2'. Let Po and Pλ be monic polynomials of the same
degree. A necessary and sufficient condition that Po and Px have
only paired zeros lying on one line L is that the polynomials PA =
(1 — A)P0 + APt have all their zeros on the line L for A real,

Lemma 1 is essentially Theorem 1 stated in this form. Theorem
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3 (below) can also be so formulated.
In Theorem 2, the polynomials Po and P1 are not required to be

real and there was no need of the symmetry obtained by having
complex conjugate zeros. As linear transformations take circles into
lines, there should be a version of Theorem 1 that does not require
Po and Px to be real.

THEOREM 3. Let (& he a circle in the complex plane and let
Ύi (ΐ = 1, , n) be disjoint open arcs in &'. Let zoe^ — {Jϊ=17i.
Then for any w0 eC, woφ 0, the set of polynomials P having zeros
zt(i — 1, — , n) where zt e τ< and satisfying P(z0) — wQ is a convex
set of polynomials.

Proof. A transformation of the form

w(z) = a(£=4)
\z— d /

will take a given circle through β and δ onto a line, sending β to
the origin and δ to the point at infinity. The inverse of this trans-
formation is given by

z { w ) = d

w — a

If P(z) is the polynomial, P(z) = anz
n + an-ίz"~~1+ -+aλz + α0 then

P{z{w)) = α.( δ ίjs^iίL)) + ...+Φ (Jϋ^βK))+ ao
\ \ w — a l l \ \ w — a I /

[anδ
n(w - aβ/δ)n+ +aAw ~ aβ/δ)(w - α

(w — a)

+ ao(w - a)*] = ±-— Q(w) .
(w — a)n

Q(w) is a polynomial with leading coefficient P(δ) and P(z) — 0 if
and only if Q(w(z)) = 0. Take δ = zQ and ^ to be the given circle.

If Po and Pt are polynomials in the set described in the state-
ment of this theorem, let Qo> Qi and QA be the polynomials associat-
ed with Po, Px and P^ by the above. QA = (1 - A)Q0 + AQX and the
proof of Theorem 2 applies to QA as Qo and Qi have the same lead-
ing coefficient. PA(0 ^ A <̂  1) has zeros in the arcs 7* and PA(z0) = w0

so P^ is in the set described.

REMARK. Theorem 3 is not stronger than Theorem 1. Take,
for example, P0(z) = z2 + z + 1 and Px(z) = z2 - z + 1 then P0(z) ̂  Px{z)
for any ^ e S1.
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The results presented so far show, in particular, that if Po and
Pi are monic real polynomials of the same degree having zeros in
S1 or Rι then any convex combination PA of Po and Px will have
all its zeros in S1 or R1 if and only if the zeros of Po and Pλ are
paired. There remains the question of where the zeros of PA must
lie in general. A special case of a theorem of J.L. Walsh ([1] p. 77)
says that if Po and Px are monic polynomials of degree n with all
their zeros contained in the disk {zed \z\ 5^1}, then all the zeros
of PA(0 <: A ^ 1) are contained in {z e C: \z\ ^ l/sin(π/2n)}.

This bound on the moduli of the zeros of PA(0 ^ ^ 4 ^ 1 ) is
optimal. If \z\ = l/sm(π/2n), construct the lines through z which
are tangent to the circle S1 and let wx and zλ be the points of tan-
gency. Then z will be a zero of P1/2 if Po — (z — zλ)

n and
P2 = (z — wx)

n. If, however, Po and P1 are real polynomials there is
a slightly smaller bound on the moduli of zeros of PA(0 <; A <; 1).

THEOREM 4. Let Po αm£ P2 fee reαi monic polynomials with
their zeros contained in the unit disk {z eC: \z\ ^ 1}. Then the
zeros of PA(0 ^ A ^ 1) are contained in the disk

Proof. Let the zeros of Po and Pi be denoted by zu z2, - - , zn

and wlf w2, , wn and assume that if z^Wi) is not real t h e n s ^ - i =
2<(wΛ+1-< = Wi). Let ςr, = (« — ίδj/ίw — w%). As in the proof of
Lemma 1, z is a solution of P^ for 0 ^ A <; 1, if and only if

2 Qn) = π + 2fcπ for some keZ .

The following two lemmas show that | arg(g<gΛ+1.-<) | is maximal for
(z I fixed and greater than 1 when z is pure imaginary and {ziy w{} —
{ — 1, +1} = {zit Wi}. In this case

|arg(^) | = 2 a r c t a n — ,
PI

if \z\> cot(π/2n) then l/\z\ < ttm(π/2n) and

0 < argfai qn) ^ 2τι arctan-i- < 2n arctanftan-^—) = π
\z\ V 2n /

which is a contradiction.

LEMMA 2. Lei α and fe be two points on a circle of radius 1
with center c. Let p be at distance r > 1 from c, then angle apb is
maximal (minimal if negative) when angle acp equals angle pcb.
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LEMMA 3. Let a and b be two points on a circle or radius 1
with center c and let p and p' be the two points on the perpendi-
cular bisector of the segment ab at equal distances from c. Then
angle apb + angle bpr a is maximal (minimal if negative) when ab
is a diameter of the circle.

To prove these two lemmas, I had to resort to the Law of
Cosines and taking derivatives. The calculations are straightforward
but tedious so I omit them here.

The following result shows what happens when the circle is re-
placed by a given compact set. The result is essentially the same
as a theorem due to Nagy and generalized by Marden ([1] p. 32),
though they state their results only for polynomials having their
zeros in a given convex set.

Let KQC be compact. Given zeC, there is a minimal closed
sector with vertex z that includes K. Let Θ{K, z) denote the angle
of this sector. 0 ̂  Θ(K, z) ̂ 2π (ze C).

THEOREM 5. Let KQC be compact. The locus of zeros of PA

(0 ̂  A ^ 1) as Po and P1 run through all nth degree monic poly-
nomials having all their zeros in K is included in the set

S(K, π/n) = {zeC\Θ(K, z) ̂  π/n} .

If K is path-connected, this locus is exactly S(K, π/n).

Proof. Let qt(i = 1, , n) be defined as in the proof of Lemma
1. If 0 < Θ(K, z) < π/n then 0 <> arg(<^ ••> qt) <π and z cannot be a
zero of PA(0 <>A£1).

If K is path-connected and Θ(K, z) ̂ > π/n there exist zx and w1

in S such that arg((z — z^)/(z — w^) = π/n. z is a zero of a
PJfi StA^ΐ) when P0(z) = (s - z,)n and Px(z) = {z - wj*.

Finally, we return to polynomials having their zeros in a line.
The following result is stated for the interval [—1, +1] in R but
it generalizes easily to polynomials having their zeros in any line
segment in C.

COROLLARY 2. // Po and Px are monic nth. degree polynomials
having all their zeros in [ — 1, +1] then the locus of zeros of
PA(0 ^ A 5̂  1) is included in the union of the two disks with dia-
meter cot(π/2n) + tan(π /2%) whose boundaries pass through the points
— 1 and + 1 .

Proof. Observing that an inscribed angle on a circle is meas-
ured by half the arc it subtends shows that S([ — 1, +1], π/n) is the
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union of the two disks described.
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