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INTEGRAL FORMULAS AND INTEGRAL TESTS
FOR SERIES OF POSITIVE MATRICES

AUDREY TERRAS

The main results of this paper are integral formulas which
generalize that used by Siegel to prove the Minkowski-Ήlawka
theorem in the geometry of numbers. The main application
is the derivation of an integral test for Dirichlet series of
several complex variables defined by sums over integer matri-
ces. Such an integral test yields an easy proof of the conver-
gence of Eisenstein series, whose analytic continuations are
important in harmonic analysis on Minkowski's fundamental
domain for the positive nxn real matrices modulo nxn inte-
ger matrices of determinant ±1 (i.e., O(n)\GL{n, R)/GL(nt Z)).
These integral tests can also be used to analyze the analytic
continuation of Eisenstein series as sums of higher dimensional
incomplete gamma functions.

For example, the easiest case of the integral formulas (that due
to Siegel) implies Theorem 1, which says that for every s in the
interval (0, n/2) there is a positive nxn matrix Y such that the
Epstein zeta function of Y and s takes on any sign. Epstein's zeta
function is the simplest of the Eisenstein series for GL{n). Theorem
8 gives modified incomplete gamma expansions of Eisenstein series
using a method of Selberg involving invariant differential operators
on the space of n x n positive matrices. Our formulas (given in
Theorems 4 and 5) can be applied to show that the expansion in
Theorem 8 only provides an analytic continuation of the Eisenstein
series in the last complex variable. The integral formulas given
here can also be used to prove Theorems 3 and 6, which generalize
the Minkowski-Hlawka result on the size of the minima of quadratic
forms over the integer lattice.

The general linear group GL(n, D) for a domain D consist of
all invertible nxn matrices A such that A and A'1 have entries
in D. The symmetric space for GL(n, R) is the homogeneous space
0(n)\GL(n, R), where 0{n) is the orthogonal group. This homoge-
neous space can be identified with ^ , the space of all positive de-
finite symmetric n x n real matrices, via t h e map sending t h e coset

O(n)g to the matrix Y = *gg for g in GL(n, R). Here ιg denotes the
transpose of g. References for the general theory of such symmetric
spaces are [16] and [44]. Note that A in GL(n, R) acts on Y in
&*n via Y[A] = ιAYA. There have been many applications of analysis
on ^ w in physics (cf. [6]), statistics (cf. [10] and [18]), and number
theory (cf. [8], [14], [26], [33], [35], [44]).
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Hecke's theory of the correspondence between modular forms
and Dirichlet series with functional equations (cf. [14] and [29]) is
central to much of modern number theory. The basic mechanism
here is the Mellin transform and its inversion. For example, if
06*0 = Σπezexp (iπn2z), Imz > 0, then the Mellin transform is:

2π~sΓ(s)ζ(2s) = Γ ys~\θ(iy) -ΐ)dy.
Jo

Many problems in number theory (e.g., the study of L-functions for
algebraic number fields) lead to automorphic forms like theta on
higher rank symmetric spaces. One might expect that the generali-
zation of Hecke's results (e.g., to Siegel modular forms for Sp(n, Z))
would require a Mellin inversion formula for the symmetric space
,^n. Such an inversion formula was obtained by Harish-Chandra and
Helgason in the mid-60's for any symmetric space (cf. [16, p. 60]).
However Siegel modular forms / yield functions f(iY) such that
f(iY) = f(iY[A\) for all Y in &>n and A in GL(n, Z). Thus the
generalization of Hecke's results requires Mellin inversion for the
fundamental domain ^JGL(n, Z). Kaori Imai (cf. [17]) has shown
how to generalize Hecke's results to Siegel modular forms using
such Mellin inversion formulas. When the genus is 2 (i.e., the group
is Sp(2, Z))9 the Mellin inversion formula needed is the Roelcke-Selberg
spectral resolution of the Laplacian on the upper half plane modulo
SL(2, Z) (cf. [3], [12], [20, p. 62], [22], [34], [44]).

Mellin inversion on &n involves the expansion of an arbitrary
function on &n in Fourier integrals of έigenfunctions of the La-
placians on ^n. Such eigenfunctions of the invariant differential
operators on the symmetric space are known as spherical functions
(which are generalizations of the conical functions P_i/2+«G&)) Mellin
inversion on &*JGL(n, Z) involves analogous functions to the spherical
functions called Eisenstein series (as well as the more mysterious
cusp forms). References for the spherical functions and the Eisenstein
series are [3], [11], [12], [16], [20], [22], [24], [34], [44].

The Eisenstein series are functions of two variables—one variable
a vector s in Cq and the other an element Y of ^n. As functions
of Y they are automorphic forms for GL(n) (cf. [5, pp. 199-210]),
meaning that they are eigen for all the GL(n, iϊ)-invariant differential
operators on &*H and are invariant under GL{n, Z).

These Eisenstein series can themselves be viewed as higher
dimensional Mellin transforms of Siegel modular forms. Thus they
provide important examples for the understanding of the problems
of analytically continuing higher dimensional Mellin transfyrms of
Siegel modular forms (which are not cusp forms). These problems
were considered by Koecher in [19]. See also the review by Maass
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in [25]. The integral formulas to be proved in §2 help to analyze
what is going wrong here. Recently Arakawa has obtained a solution
to the problem of analytic continuation in a fairly general case (cf.
[2]). There has been much work on generalizing Hecke's correspond-
ence to Siegel modular forms, though none but Imai [17] make use
of higher dimensional Mellin inversion formulas. Koecher did not
obtain an inverse correspondence in [19] since he was only considering
Mellin transforms of one complex variable. Work on related matters
can be found in [1], [24], [28], [31], [32], [44].

Now define the Eisenstein series for GL(n). Suppose thajt n is
partitioned as n = nx + n2 + * + ng with nό in Z+. Then the
parabolic subgroup P(nl9 n2, •• ,w(?) of GL(n) is defined to be t h e

group of matrices with block form

, UάeGL(nά).

> 0 uj
The power function or (left) spherical function ps(Y) = pf(Y) is
defined for s in Cq and Y in ^ by

(1.1) ps(Y) = Π I YASj where Y = [Yj

with Yj e <?N. , JV,. = nx + n2 + + % .

Here | Y\ denotes the determinant of Y. The general theory of such
power functions is in [16] and [44]. The most important property
of ps is that it is eigen for the GL(n, jR)-invariant differential oper-
ators on ^ (cf. [24, p. 69] or [44]).

The Eisenstein series EP( Y, s) for Y in ^ n and s in Cq is defined
by:

(1.2) EP(Y,8)= Σ P-s(Y[A]),
AeGL{n Z)\P

for Re 8j > (nj+1 + %)/2 , j = 1, . , q - 1 .

The integral formulas of Theorems 4 and 5 will imply an easy
integral test for the convergence of these series, providing a sim-
plification of the classical argument (cf. [5, p. 207], [12], [20], and
[24, Ch. 10]).

It is clear that EP(Y, s) is an automorphic form for GL(ri), since
EP(Y[A], s) = EP(Y, s), for all A in GL(n, Z). Moreover, EP(Yf s)
is an eigenfunction for all the GL(n, JB)-invariant operators on &>n9

since p8 is.
The analytic continuation of EP{ Y, s) to all s in Cg is important

for harmonic analysis on &JGL(n, Z). Many authors have obtained
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the analytic continuation (cf. [3], [22], [24], [39], [40]), but it does
not appear that anyone has obtained an explicit formula in the spirit
of [23], except in the special case q = 2 in [2]. Instead of one
functional equation, there are many. For example, if q = n, there
are n\ functional equations corresponding to the permutations of
the right variables (the Weyl group of the symmetric space).

There is also a sense (cf. [39]) in which the case q = n of (1.2)
contains all the others as specializations upon setting the appropriate
variables equal to zero. Harmonic analysis on &JGL(n, Z) makes
use of the Fourier expansions of Eisenstein series. Often only the
constant term is required (cf. [5, pp. 237-238]). The complete ex-
pansion for the case q = 2 is obtained in [41].

There are many open questions. One would like to know the
dimensions of spaces of automorphic forms for GL(n, Z) with given
eigenvalues for the GL(n, JB)-invariant differential operators. For
some systems of eigenvalues, one would expect only Eisenstein series.
The only known results are for SL(2, Z). References are [42], [44],
[20]. Of course the discrete spectrum of the invariant differential
operators is not even well understood for SL(2, Z).

The special case q = 2 and n1 = 1 of (1.2) is essentially Epstein's
zeta function defined by

(1.3) Z,(Y9 s) = i - Σ * > ] ~ s f for Re s > n/2 .

For it is easy to pull out the g.c.d. of the components of a to obtain:

(1.4) ZX(Y, s) = ζ(2s)EP{Un_1}(Y, («, 0)) .

The Epstein zeta function for n — 3 gives the potential of a crystal
(cf. [6]). Applications to number theory derive from Hecke's integral
formula writing the Dedekind zeta function of a number field as a
finite sum of integrals of Epstein zeta functions (cf. [42, formula
(21)] and [14, p. 198ff.]). It follows (cf. [21, pp. 260-262]) that an
easy proof of the Brauer-Siegel theorem on the growth of certain
invariants of algebraic number fields would exist if one knew that
Zx{Yf s) ^ 0 for all s in (0, n/2) and certain Y in ^ . Unfortunately
life is not so simple, since one can prove:

THEOREM 1. Given s in (0, n/2), there exist quadratic forms Y
in ,0^n such that Zj[Y, s) > 0. There are also Y in &n such that
Z,{Y,s) < 0 or = 0 .

This result is old for n = 2 (cf. [4] and [7]), though it is rather
surprising that the Epstein zeta functions. do not behave the way



INTEGRAL FORMULAS AND INTEGRAL TESTS 475

one conjectures Dedekind zeta functions behave. Of course, one does
not know how to prove that Dedekind zeta functions are negative
in (0, 1), even for quadratic fields (cf. [37] and [43]).

The case q = 2 of (1.2) was studied by Koecher in [19] (cf. [25])
in an attempt to generalize Hecke theory to Sp(n, Z). Thus it is
natural to call the case q ~ 2 of (1.2) the Koecher zeta function.
Siegel used the analytic continuation of this function in [35, Vol. 1,
pp. 459-468; Vol. 3, pp. 328-333] to prove Minkowski's formula for
the volume of the fundamental domain of &*JGL(n, Z).

An outline of the paper follows. Section 2 concerns integral
formulas analogous to that used by Siegel in [35, Vol. 3, pp. 39-46]
to prove the Minkowski-Hlawka theorem. First the special case
q — 2 is considered. The integral formulas for general parabolic
subgroups of GL{n) are given in Theorems 4 and 5. The amazing
thing is that Theorem 4, which is proved by a rather complicated
induction, yields an easy proof of the convergence of Eisenstein
series, while Theorem 5, which is proved easily using ideas of Weil
[49] and the computation of the Jacobian of the partial Iwasawa
decomposition (cf. (2.15)), forces a much more complicated proof of
the convergence of the Eisenstein series. Aside from these con-
vergence arguments, two kinds of applications of these integral
formulas are given. The first is to the size of the minima mk

y defined
by (2.11) for Y in &*n. Such results appear in Theorems 3 and 6.
The second type of application is to the study of properties of the
analytic continuation of the Eisenstein series. For such applications
one requires incomplete gamma expansions of the Eisenstein series
generalizing (2.5) for the special case of Epstein's zeta function.
The simplest special case of the integral formulas of Theorems 4
and 5 (SiegeΓs case) can be combined with formula (2.5) to prove
Theorem 2. The latter concerns the vanishing of the integral of
Epstein's zeta function over the determinant one surface of
Minkowski's fundamental domain for &*JGL(n, Z), assuming that
the complex variable s lies in the critical strip. Theorem 1 is an
easy corollary of Theorem 2. The analytic continuation of the more
complicated Eisenstein series requires a study of higher dimensional
incomplete gamma functions undertaken at the beginning of § 3.
These higher dimensional incomplete gamma functions can be com-
puted rather easily using methods devised by Riho Terras in [45]
and [46]. Theorem 7 shows that these functions can, surprisingly
perhaps, be realized not only as multi-dimensional integrals but also
as one dimensional integrals. However the recursive methods of
R. Terras seem to give speedier algorithms for computing such func-
tions than the formula of Theorem 7. An expression for the general
Eisenstein series as a modified sum of incomplete gamma functions
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is obtained in Theorem 8 using methods due to Selberg involving
invariant differential operators on &>n to annihilate the singular
parts of theta functions. Theorem 4 (or 5) shows that the formula
of Theorem 8 does not converge for all values of all the complex
variables.

The higher dimensional incomplete gamma functions of one com-
plex variable have been shown by Lavrik [23] to arise whenever one
has a Dirichlet series with functional equations involving multiple
gamma factors. Such Dirichlet series include Art in L-f unctions of
number fields. Thus knowledge of the behavior of these higher
dimensional incomplete gamma functions is useful in algebraic num-
ber theory. There are applications to the Brauer-Siegel theorem on
the growth of the product of the class number and the regulator
with the discriminant (cf. [42. p. 9]), to the computation of class
fields (cf. [38]), and there should be applications to the calculation
of Dedekind zeta functions needed to answer the questions raised
in [30]. The Eisenstein series require not only incomplete gamma
functions of one complex variable but also those involving several
complex variables, however.

2* Integral formulas* Minkowski found a fundamental domain
^ for έ?JGL(n, Z) (cf. [8], [24, pp. 123-139], [36, Ch. 2]). Define

= {We&>n\\W\ = 1} and &&Z = J ^ Π £&*n. The integral
formulas to be derived involve integrals over ^\ and S^^. The
GL(n, R)-invariant volume element on ^ n is

dvn= \Y\'in+1)/2dY,

where dY = Lebesgue measure on &>n c Rn{n+1)/2 .

An SL(n, #)-invariant volume element dW on &&*n can be defined
by setting ί = | Γ | and Y = tί/nW with WeS^n to obtain:

dvn = I Y\-«+1)'*dY = t-'dtdW .

Note that, setting G = SL(n, R) and Γ — SL(n, Z), the quotient
G/Γ has a G-invariant volume element dg which is unique up to a
constant multiple (cf. [15], [35, Vol. 3, pp. 39-46], [48]). It follows
that there is a constant cn such that:

ί ΛW)dW=cn\ fCgg)dg,
J&'^n JGIΓ

for /^-invariant functions / on S&«. The constant cn will cancel
out of the integral formulas.

The simplest integral formula to be discussed here is that which
Siegel employed to prove the Minkowski-Hlawka theorem (cf. [8],
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[35, Vol. 3, pp. 39-46], and [49]). The formula says that if h is
sufficiently nice with h: Rn —> C, then

(2.1) vol (G/Γ)-1 \ Σ h(ga)dg = ( h(x)dx .
JGjΓ aeZn-0 JR™

If h is radial; i.e., if h{x) = f{ιxx) then SiegeΓs integral formula
becomes:

(2.2) vo\(St^l)-Λ Σ f(W[a])dW= ί JQxx)dx .

Three applications of (2.2) come to mind. The first is that made
by Siegel. Set

(2.3) mY = min{Y[a]\aeZn - 0 for

Then if kn = n/2πe, one sees that there exist Y in 3Pn such that

(2.4) mγ > kn\ Y\1/n , for n sufficiently large.

Hubert's problem 18 includes that of finding W in &*n such that mw

is maximal for fixed n. It is only solved for n = 1, 2, , 8 (cf. [9],
[26], [27]).

The second application of (2.2) is to find an integral test for
the convergence of Epstein's zeta function. Formula (2.2) implies
that

vol Ci/^Q-1 ( Σ W[a]-dW= \xeRn (*xx)-dx .

The integral on the right is easily evaluated as 2πn/2Γ(n/2)(s — n/2)"1,
provided that Re s > n/2. Then Fubini's theorem says that the series
being integrated on the left must converge for almost all W in
S^^. This series differs from Zx{ W, s) by at most a finite number
of terms. Thus ZX(W, s) converges for Res > n/2 and almost all W
in S^Z. In order to deduce the convergence for all Y in ^ note
that there is a positive constant c such that: cl[a] ^ Y[a] ^ c^Ila]
for all a in Zn, where / is the identity matrix.

The last application of (2.2) is to prove Theorem 1 which is an
easy corollary of

THEOREM 2. For all s with 0 < Res < n/2, \ Z±(W, s)dW = 0.

Proof. Since Epstein's zeta function is the Mellin transform of
a theta function one has (cf. [42, p. 6])
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(2.5) 2π-°Γ(s)Z1( Y,s)=\Y |"1/2 (s - ^ Y - 1

+ Σ
2«

where the incomplete gamma function is defined by:

(2.6) G(s, a) = Γ ts-ιe-atdt for Re α > 0 .

It is now easy to prove Theorem 2 by combining (2.2) and (2.5).

Next consider the more general integral formula stated by Siegel
in [35, Vol. 3, p. 46]. Suppose that 1 <: k < n. Then for a suffi-
ciently nice function h on the space of real n x k matrices:

(2.7) vol (G/Γ) \ Σ HgN)dg = ( h(X)dX.
rank N=k

The proof of (2.7) can be carried out very easily using the argu-
ments of [49]. For the applications to integral tests, note that if
h(X) =fCXX), then:

(2.8) vol (^^l)-1 \ Σ /(W[N])d W = ( MXX)dX .
rank N=k

The integral on the right in (2.8) was evaluated by the statistician
Wishart (cf. [10, Ch. 4]) as:

(2.9) [ fCXX)dX=c%9k\ f(Y)\Y\*'*dvk,

where

(2.10) c . i t = Π πi'Ψ(JI2y*.
j-n-kfl

As for (2.2), there are three applications of formula (2.8). The
first is a result on minima of Γ e ^ defined by

(2.11) m\ = {min | Y[A]\\AeZnxk, rank A = k) .

Then one has:

THEOREM 3. Suppose that k is fixed with 1 ̂  k < n and that
r is less than (n/2πe)k with n sufficiently large depending on k.
Then there exist quadratic forms Ye^n such that m\ > r\ Y\k/n.

Proof. Let Z[0,r](ί) denote the function which is 1 for t in the
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interval [0, r] and 0 otherwise. Then (2.8) implies that

volCPC^;)-1 j ^ _ χ Σ Z[0.r](l W[N]\)dW = cn>k L j , I Y\n/2dvk

rk{N)=k

2 ^_

n

Stirling's formula and the formula for cn,k imply that if r is less
than (n/2πe)k, then the product on the right-hand side of the
above equality approaches zero as n goes to infinity (holding k fixed).
Thus, for sufficiently large n, the average value of the function
ΣtΆoΛl W[N]\), summed over rank k matrices N in Znxle modulo
GL(k, Z), is less than one and so the function must be less than
one for some W in 6^^%. Theorem 3 follows easily.

The second application of (2.8) is to give a quick proof of the
convergence of Koecher's zeta function (the case q = 2 of (1.2)).
Clearly (2.8) and (2.9) imply that

Σ \W[A]\~sdW

= c vol (S&l) (s - — y1 for Re s > n/2 .

The convergence proof proceeds as for Epstein's zeta function except
that one requires Minkowski's reduction theory (cf. [36]) to see that
there is a constant e > 0 such that if I[A] e ^kf then | Y[A] | <̂
c|/[A]|. Also there is a constant c' > 0 such that if Y[A]e^k9

then \Y[A]\ ^ c'|I[A]|. Here c, c[ depend on Y, not A.
The third application of (2.8) is to the analysis of the divergent

integrals arising in the attempt to use Riemann's method of analytic
continuation (the method leading to formula (2.5)) on Koecher's zeta
function. This requires (cf. [42, p. 13]) a study of the integrals
Sr(Q, s) for Q 6 &*n, seC, l ^ r <k^n, defined by:

(2.12) Sr(Q, s) - L^ \X\'Σ>exp(-π(QlB]X[A]))dvh ,
Λ,B

where BeZn*r has rank k and is summed modulo GL(r, Z) and
AeZkxr can be taken as the first r columns of a matrix running
through representatives of SL(k, Z)/H(r9 Z) with H(r, Z) denoting

the subgroup of matrices of the form (s *J. Here Ir is the r x r

identity matrix. Formulas (2.8) and (2.9) show that
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(2.13) Sr(Q,8) = yol{S^l-r)\ t°\ \Y\I A/2

x Σ exp ( - πtί/k(Q[B] Y))dvr — .
B t

This integral diverges like the Dirichlet series EP{r>n_r){Q, A/2). In
order to compute the constant in the preceeding formula for Sr(Q, s),
one needs to know that the sum over A is obtained from summing
over all N in Zkxr of rank k, if one divides by the product of
ζ(fc - j), for j = 0, 1, -, r - 1 (cf. [42, formula (3), pape 2]). One
also needs to see that

vol ( , ^ Q Π ζ(fc - j)-ιck,r = vol
3=0

The formula for v o l ( ^ t ^ ) is needed here (cf. [42, formula (39)].
Next consider integral formulas which generalize (2.8) to arbi-

trary parabolic subgroups of GL(n).

THEOREM 4. Suppose that in the notation of (1.1) the function
f: .^n —> C has the form

U

Then, if Nj = nt + • •• + % (j — 1, 2, , q):

(2.14) \ Σ f(Y[A])dvn

:q) \ fq{tq)t^«-^ψ.

x Π jvoi (S&l,) \ MWi+'Hr*11 ^4
i=i t J«i>o ^.

Proof.
The case # = 2 is a fairly easy consequence of (2.8). One needs

to use the arguments given in evaluating the constant in formula
(2.13). Also one must eliminate the restriction to W of determinant
one in the left-hand side of formula (2.8). This is done by replacing
AW) by g(t)f(t1/nW) and integrating over dt/t.

To prove the general result use induction on q and write
A eGL(n, Z)/P as A = BC with P = P(nl9 --,nq) and

B = (B, *)eGL(nfZ)/P(Nq_l9nq), B^Z**"^

-u nq)/P , D eGL(Nq_lf Z)/P(nlf , nq_Λ) .
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Note that if A = (A, *) with A^Z**"*-*, then Ax = BJ). Thus

S Σ ΛY[A])dvn
JJ?-n AeGL(n Z)\P

= VOl {SSJT) \ fv{tq)t-»*^ ^L
Jί,>0 tq

χ( fU\Y\)\Y\n/ί Σ Π
'* 3=1

where P* = P(nlt , nq^). The proof is easily completed by
induction.

There is another result of the same type as Theorem 4 which
does not make such restrictive hypotheses on the functions/involved.
If P(nL, , nq) = P is a given parabolic subgroup, define

A =

N =

0'

,0 Uml

ι\o

j 6ί?Ir(Λy, JB) for i = 1, ,

Inj = the «.,- x % identity matrix

Then introduce the partial Iwasawa decomposition of Γ e ^ 1 , as:

0'

(2.15) Y =

,0 Q,

with Qj e ̂  and i?,,- e JB*'x"i .

THEOREM 5. Suppose that g:&*JH-+C where H = AZNR and
g{Y) = h(Qu •• ,Qq) with Qj-e^lp using the notation of (2.15).
Here g:&*JH->C means that g(Y[V]) = g(Y) for all V in H.
Then

(2.16) \ Σ
AeGL{n,Z)\P

where P = P(^ 1 ? , nq) and

(2.17) c - Π vol
i

Proof. Argue as Weil did in [49] to see that the integral
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formula (2.16) follows from the computation of the Jacobian of the
partial Iwasawa decomposition (cf. [24, pp. 149-150], [47, p. 293,
bottom]):

Π dRij9

where, as usual, Nά = nx + + nq.
The constant c can be found by comparing the formulas resulting

from Theorems 4 and 5 if the function being integrated over the
fundamental domain is the Eisenstein series.

It is now easy to see that the Eisenstein series (1.2) converges
when Re s3- > (% + nj+1)/2, for all j = 1,2, , q — 1. The easiest
proof uses (2.14) to obtain:

for Re sό > (% + nί+ί)/2, when j = 1, , q — 1, and Re sg > —Nq-J2.
To complete the proof that the Eisenstein series (1.2) converge in
this region, use the reduction theory of Minkowski, just as in the
case q = 2, to see that it suffices to show convergence at just one
point WeS^l. One also needs to know that the number of Ae
GL(n,Z)/P such that |(Γ[^L]), | ^ 1 for some je{l, 2, 3, , q} is
finite.

The second application of (2.14) is to derive:

THEOREM 6. Let kn = vol (S^l) and suppose that 0 < r <
e~m[kn(n - l)/2]1/(%-1}. Then there is a number j e {1, 2, 3, , n - 1},
a matrix A e GL(n, Z) whose first j columns form the matrix Aj9

and a quadratic form W in S^J?\ such that \ W[Aj\ \ > r.

Proof. In (2.14) assume that P(nlf , nq) — P(l, , 1). and set
- Z[0,r](ί), for j = 1, 2, , n - 1, fn(t) = Z[βfββ](ί), to obtain:

fc1 ί Σ /(Y)dvn =
J ^ " n AeβU%,Z)lP

Rewrite the integral on the left using the change of variables
Y = t"nW, with 0 < t and WeS^l as:

AeGHHn,Z)IP J α i=l

If the preceding integral is less than one, then there must exist
l and A in GL(n, Z) such that
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[ t-'dt < 1 , w h e r e e = m i n {(r- 1 1 W[A,\ I ) - " \j = l, • • • , % - ! } .
Ja

It follows that c < ae. Thus if we set a = 1/e, the proof of Theorem
6 is completed.

The constant e'ιl\kn(n - l)/2)ι/{n-ι) is asymptotic to 2e~δ/8nn/4 x
(2ττβ3/2)"~*/4, as w approaches infinity. Comparing Theorem 6 with
Theorem 3, one is left with the question: which wβw will be large?
In fact, one can use the proof of Theorem 3 to see that m{v for
j = [n/2] will be the culprit.

3* Remarks on the analytic continuation of Eisenstein series*
The Mellin inversion formula for &*JGL(n9 Z) requires the analytic
continuation of the Eisenstein series EP(Y,s) beyond Re 8^(^ + 11^/2.
To do the analytic continuation it is natural to attempt to write the
Eisenstein series as sums of higher dimensional incomplete gamma
functions, imitating the method of Riemann which gives formula
(2.5) (cf. [23]). The motivation for using this method rather than
the Maass-Selberg relations or existential arguments from several
complex variables (cf. [20] and [24, pp. 274-275]) is that one hopes
to derive explicit formulas for the Eisenstein series in order to
study their properties further.

It will help to write the Eisenstein series in terms of Selberg's
zeta function defined for Y in &>n and s in Cq~γ by:

(3.1) Z^.^Y, s) Σ

where k = nλ + + nq_19 Re s3- > (n5 + nj+1)/2, (j = 1, , q — 1).
Since Selberg proved all the basic properties of these functions (cf.
[34, pp. 79-81] for the special case of SL(S)), there is good reason
for calling (3.1) Selberg's zeta function. However another function
(also studied in [34, p. 75]) has already usurped that name. Maass
([24, § 17]) calls a slightly different function (with more Riemann
zeta factors) Selberg's zeta function.

The relation between (3.1) and (1.2) is

(3.2) Znv...tnq_ι(Y, s) - EPlnι,...,nq)(Y, (slf , 8q_i9 0)) Π fl ζ(r < f i ) .
ι = l 3=1

Here ζ(s) is Riemann's zeta function and its argument is given by:

(3.3) rui = 2{Si + + *,_, - (k - N^ - j)/2} ,

for Nd = Uί + -" + % .

The proof of (3.2) involves the decomposition which Koecher proved
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in [19] to do the special case q = 2 and nq = 0. The decomposition
says that AeZnxk of rank k modulo P(nlf ••-, nq^) can be written
uniquely as a product BC with J5 e Znxk, (B *) e GL(w, Z)/P(nl9 --,nq)
and

0

with di > 0 and c^/mod dt) .

One would like to expand the Selberg zeta functions or Eisenstein
series in higher dimensional incomplete gamma functions. Let us
discuss the appropriate gamma function first. For s e Cq~x with Re ss

sufficiently large, define the higher dimensional gamma function by:

(3.4) Γnii...inqJs) = \ P..CX"1) exp [~ττ Tr (X)]dvk .

Here k = nL + + nq_lt Then

(3-5) Γ lf....ngjβ) = ff Π π-r^l2Γ(ritj/2) ,

with r i f i as in (3.3). Special cases of this higher dimensional gamma
function appear in work of Siegel (cf. [35, Vol. 1, p. 384]) and in
multivariate statistics (cf. [10, p. 312]).

To prove (3.5), write X — ιTT for T an upper triangular matrix
with t3- > 0 as its ith diagonal element and note that \dX/dT\ —
2ntxt\ tl. The result follows easily.

Motivated by (3.5), define the higher dimensional incomplete
gamma function for s eC 9" 1 and 7 e ^ , k = nt + + nq-19 by:

(3.6) ^ , . . , ^ ( 8 , Y) = \ PsiX-1) exp [-7Γ Tr (XY)]dvk .

Set F = 'TΓ with T upper triangular and make the change of
variables V = X[(T] in (3.6) to obtain:

i ,.-.., χ(«, 3Γ) = P-.(Y) \ P-s(V~') exp [-7Γ Tr (V)]dvk .

The change of variables that proved (3.5) suggests that we
define yet another incomplete gamma function:

(3.7) Γk(s, a)=\ Π v)!e-vs ̂ , for seCk , a > 0 .

The change of variables proving (3.5) shows that:
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(3.8) Lv...,nq.Js, Y) = P-s(Y)Γk (^-, π

with l = i Σ Σ ^ ,
2 i=iH

where r*,/ is as in (3.3) and r denotes the vector whose ^ _ 1 + i t h
component is ritj.

Note that I^s, y) = G(s, j/) = y'Γ^s, y), where G(s, ?/) was the
function (2.6) which appeared in the incomplete gamma expansion
of Epstein's zeta function.

It is also useful to define yet another analogue of G(s, a) in
higher dimensions by:

(3.9) G4(r, α) = [ Π y? exv(-ajVj) ΪV± ,
Jτiy^uvjX) 3=i yά

for a, reCk and Re αy > 0. Then one has

[Gh(r, a) = Π α/^T, (r, Π αj'fc) ,
I i=l V 5=1 /

(3.10)

with 6 and r as defined in (3.8).
The most important property of these incomplete gamma func-

tions is their exponential decay in the second argument as it becomes
large. It is shown in [13] that

Γk(r, x) ~ λ/(2π)k-1/ke-kxxe as x -> oo , if c =

It follows that:

(3.11) Lv...,nqJs, Y)

- exp ( - kπ I Y \1/k)p^s( Y) \ Y ̂ π-VΨ^fk , | Y \ -> - ,

where c is as in the preceding sentence. This is the result needed
for the analytic continuation of Eisenstein series as sums of such
incomplete gamma functions.

Lavrik has obtained in [23] expansions of Dirichlet series with
functional equations involving multiple gamma factors of one com-
plex variable, assuming that the analytic continuation and functional
equation have already been proved by some other method. Lavrik
writes his functions as inverse Mellin transforms. The following
theorem connects the two expressions.
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T H E O R E M 7. / / s = (β, , s), £/&ew

Gfc(s, (α, , α)) = (2πί)~1 ί a,-wΓ(w/k)\w - ksY'dw
J R e M; = C

Proof. The theorem is equivalent to the formula:

Π tr'e-^idtjda = Γ(s/k)\s - βz)-1 .

To prove this make the change of variables yk — Π*=i *i» 2/&-1 =

Λ*jb-i, * * * Vi — atu & = ak- Integrate first over b.

The analytic continuation of the Eisenstein series for GL(n)
starts from the higher dimensional Mellin transform formula:

(3.12) 2Λ1,.....tf_1(Γ, 8) - 2Γnv...tnq_1(s)Znv...,nq_1(Y, s)

p_8(X-yk(Y, X)dvk .
y

Here for 1 <; k < n, Ye £?n and V6 ^ k , the theta function is defined
by:

(3.13) θr(Y,V)= Σ

And in (3.12), ^ t p denotes a fundamental domain for &h modulo
the transposed parabolic subgroup ιP — { F | * F eP — P(nl9 , %ff_i)}.
If q = 2, then ^ p - JTP = ̂  = jTk/GL(k, Z).

When using Riemann's method to obtain the analytic continua-
tion of the Eisenstein series, the singular terms θr cause divergent
integrals to arise as we noted in formulas (2.12) and (2.13) in the
case q = 2. In the 1960's Selberg had the idea of using GL(k, R)-
invariant differential operators on X e ̂ k to annihilate the θr( Y, X)
for 0 ̂  r £ k - 1. The details are to be found in [24, § 16] and
[39]. Set

(3.14) Dx = det (-ί (1 + δti) - £ - ) , for X - (xti) e ,^k ,
\ 2 dxi3 /

where S<y is Kronecker's delta. Then Dx exp [Tr (17)] =
|Γ |exp[Tr ( I F ) ] . So D x will kill the singular terms in Θ(Y, X).
But Dx is not GL(k, i?)-invariant. To obtain such an operator, look
at

(3.15) Da = IXl DzlX]1- , f o r aeR .

Note that the algebra of all GL(k, iί)-invariant differential operators
on &*k is commutative (cf. [15, p. 396], [24, p. 56], [34, p. 57], [44,
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Ch. 5]). One should also know how these operators transform under
the map a(X) = X~\ Set Laf= L(foa)ocrι, for any differential
operator L acting on functions /: &k —> C. Now if L is a GL(k, R)-
invariant differential operator, then La turns out to be the conjugate
of the formal adjoint L* defined by:

^ (Lf)gdvk = j f{L^g)dvk .

And it is easy to compute L* by integration by parts. Therefore

Da = D: = (-l)kDa* where α* = 1 - a + A ± l .

Then Selberg defines

(3.16) L = D α A for α = (fc - ^ + l)/2 , *? = % ! + • • • + ^g_x .

I t follows that:

<3.17) Lxθ{ Y,X) = \ Y\~mIX\-n/2Lxθ( Y~\ X"1) .

It is proved in [24, § 5], [44, Ch. 5] that there is a polynomial
XL(s) such that if f(X) = p^^Z-1). then Lf= XL(s)f, for every GL(k, R)-
invariant differential operator L on &*k.

Suppose that Uk is the k x k matrix defined by

/°
(3.18) Uk =

1

1 0/

Let P* = Pin,^, , n2, nj if P = P(w1( , ?Vi). Suppose that ps

denotes the power function for P and p* denotes the power func-
tion for P*. Then it is easy to see that

{3.19) pJiX-WΛ) = VUX) , if s* - ((sq_t, • , β t f slt - Σ

Riemann's proof of the functional equation and analytic con-
tinuation of the Riemann zeta function can then be modified accord-
ing to Selberg's ideas to prove:

THEOREM 8. Suppose that L is the differential operator given
by (3.16), XL is the polynomial defined just after (3.17), the matrix
Uk is defined by (3.18), and p£ is as in (3.19). Then the following

formula provides an analytic continuation of Selberg1s zeta function
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to a meromorphic function defined for ss_1 in C and the rest of the
variables restricted as in (3.1):

(3.2) 2XL*(s)Λnv...,ngJY,s)

( s(X-L) Σ LxexΏ[-Ύv(Y[A]X)]dvk
AeZnxk rkk

where s = (sq_2, , s29 slt n/2 — Σ?=i SJ)

Proof. Use formula (3.12) and the definition of L* to see that

2λL*0Φt1,...,,v_1( Y, s) - ί p_£X-ι)Lxθ(J, X)dvk .

Now try Riemann's trick and write the integral on the right
above as a sum of two integrals:

)xe.<rtp m ^ l JXej7tp \Y\S1

In the second integral send X to χ-ι[Uk] with Uk as in (3.18). This
map takes J ^ to ^ , with P* as in (3.19). Then use (3.17) to
write:

2XfMΛnv...,nqJYf s)

= \ pΛX-*)Ljθ{Y, X)dvh

+ I Y \~kn \ Ps(X[ Uk])Lxθ( Y-1, X) IX \n/2dvk.

Formula (3.19) completes the proof of (3.20).
The fact that (3.20) only provides an analytic continuation of

the Eisenstein series or Selberg zeta function Znv...tnq__1(Y, s) for the
last variable s can easily been using formulas (2.14) and (3.11).

The analytic continuation of Znv...tng_1(Yf s) in the other s-
variables has only been obtained by rather indirect methods it seems
(cf. [22], [24, pp. 274-275], [39], and [44]).

Formula (3.20) does not relate the Eisenstein series for P with
itself but instead with that for P*. However, one can apply (3.19)
to see that EP*{Y~\ s*) = EP(Y, s).
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