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A NOTE ON DISCONJUGACY FOR SECOND

ORDER SYSTEMS

H. L. SMITH

It is well-known that the equation

(1) x"+A(t)x=0

is disconjugate on [a, b] if and only if there exists a solution
which is positive on [α, 6], in the case that A(t) is scalar-
valued. In this note we generalize this simple result to the
case where A(ί)=((XίJ(ί)) is an nxn matrix-valued function
which satisfies certain generalized sign conditions. These
results apply, for instance, if the off diagonal elements
are nonnegative. Simple necessary and sufficient conditions
are given for disconjugacy if A(t) = A and these are used
to construct examples showing the necessity of sign condi-
tions on A(t) for the above mentioned results and other
results of Sturm type for systems to be valid.

Introduction* Many authors have considered the problem of
extending the well-known results on disconjugacy for the scalar
equation (1) to systems. We mention the work of Morse [8] and
Hartman and Wintner [5], where A(t) is assumed symmetric or con-
ditions are placed on the symmetric part of A. Recently, many-
new results have been obtained in the papers of Ahmad and Lazer
([1], [2], [3]) and Schmitt and the author, [9], where symmetry
assumptions have generally been avoided.

Recall that (1) is said to be disconjugate on the interval [α, b]
if no nontrivial solution of (1) vanishes twice on [a, 6], otherwise
(1) is conjugate on [α, 6]. If xeRn, we write x ^ 0 if α ^ O , l^ί^S
n; x > 0 if x ^ 0 and x Φ 0; and x > 0 if xi > 0, 1 <: i <; n. If A
is an % x ft matrix we denote by σ(A) the spectrum of A.

Below we state two corollaries of our main results and some
examples to indicate the necessity of the hypotheses involved. The
main results are stated in § 2 and the proofs are given in § 3.

COROLLARY 1. Let A(t) — (αiy(ί)) be a continuous, matrix-valued
function satisfying aiά{t) ^> 0, i Φ j. If (1) is disconjugate on [a, b]
then there is a solution x(t) of (1) satisfying x(t) > 0 on [α, 6],

COROLLARY 2. Let A(t) satisfy the conditions of Corollary 1.
// there exists a solution y(t) of the differential inequality yff +
A(t)y <; 0 satisfying y(t) > 0, a <L t <J b, then (1) is disconjugate on
[α, 5].
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REMARK. Corollary 2 cannot be weakened with respect to the
assumption that yit) > 0 without additional conditions on A{t) as
seen by the following example: the equation

X H
is easily seen to be disconjugate on every interval of length less π.
However, a solution is given by

but x(t) >/> 0.
Corollary 2 generalizes Theorem 3 in [3],

We illustrate Corollary 2 by showing x" + ("^ —At2)x ~ ^ *s

disconjugate on [1, °o). To see this, let y(t) — col(£, ί) and observe
that y(t) > 0 on 1 ^ ί < oo and y" + A0O# ^ 0.

In case A(ί) = A — (aί5) we have the following necessary and
sufficient conditions of a particularly simple form for (1) to be dis-
conjugate on [α, b] which do not involve sign conditions on A.

LEMMA 3. Let A(t) Ξ A. Then (1) is disconjugate on [a, b] if
either σ(A) Π (0, oo) = φ or if 6—a < π/V^X for all Xeσ(A)Γί(0, oo).
(1) is conjugate on [a, b] if b—a^z π/i/λ for some Xeσ(A)Γ\(0, oo).

Lemma 3 may be employed to construct some interesting ex-
amples. For instance, let

6 16 + ε2

U -2
Then σ(A(e)) = {2 + si, 2 — si}. According to Lemma 3,

x" + A(l)x = 0

is disconjugate on [0, 4] while

x" + A(0)x - 0

is conjugate on [0, 4] since 4 ^ π\V 2 . Thus the Sturm comparison
test does not hold, in general, for systems since A(l) ^ A(0) (in the
usual sense). In [9] it was shown that the Sturm test does hold if,
for instance, both matrices are nonnegative (they need not be con-
stant; see [9] for a more precise result). It is easy to construct
examples showing that the sign conditions on A(t) in Corollary 1
are not superfluous.
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2* Main results , Let K be a cone in Rn with nonempty
interior. We write x^O if xeK, x> 0 if xeK - {0}, and x > 0 if
iceintUL where intK denotes the interior of K. Let A(t) be a
continuous matrix-valued function defined on [a, b] satisfying:

(H) There exists λ ^ 0 such that (A(t) + λ/)(iΓ) Q K for all
t 6 [α, 6] where / denotes the identity matrix.

Where required, we assume A{t) is defined on all of R satisfy-
ing condition (H). Simply let A{t) = A(b) for t > b and similarly for
t < α.

THEOREM 1. Assume that (H) TioίeZs cmcZ ίfeαί (1) is disconjugate
on [a, &]. Tftew ίftβrβ is α solution y(t) of (1) satisfying y(t)>0,

THEOREM 2. // (H) holds and if y(t) is twice differentiate,
satisfies the differential inequality

y" + A{t)y £ 0 ,

and if y(t) > 0 on a <Lt <; 6, then (1) is disconjugate on [α, 6].

Finally, we point out that Vandergraft [10] has given sufficient
conditions for a matrix A to leave a cone with nonempty interior
invariant involving only the spectral properties of A. In particular,
every strictly triangular matrix has an invariant cone and if A is
symmetric then either A or —A leaves some cone invariant.

3* Proofs* First, we show that it suffices to prove Theorems
1 and 2 with the condition (H) replaced by the following: (H;): For
each t, A(t)(K) £ (K), i.e., A(t) is a positive operator.

To see this make the change in dependent variable by letting
t(s) = a + 1/2& Log (1/1 — s) and change the independent variable by
letting v(s) = e~~kt{8)x(t(s)). Then (1) is equivalent to

( 2 ) v'\s) + {t\s))WI + A(t(s))]v(s) - 0 .

It is assumed that ¥ — λ where λ is as in assumption (H). Clearly
(1) is disconjugate on [a, b] if and only if (2) is disconjugate on the
appropriate interval. Thus, if Theorem 1 holds under assumption
(H'), then the assumption that (1) is disconjugate on [α, b] implies
the existence of a solution v(s) > 0 of (2) on the interval t~\[ay 6])
and hence a solution x{t) of (1) on [α, b] with x(t) > 0 on [α, b].
Similar reasoning shows that it suffices to prove Theorem 2 under
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the assumption (H') In all that follows we assume (IT) holds.
At this point we require some notation. Let X = BC(R, Rn),

the Banach space of bounded continuous functions of R into Rn

with supremum norm. Let JίΓ = {xeX: x(t) e K for all t e R}. Then
,3Γ is a cone in X wnich is total, i.e., K—K=X. If a,beR, α<δ,
define the compact linear operator Aa>b:X—>X by

(Aa,bx)(t) =

0 t> b

\bG(a, δ; t, s)A(s)x(s)ds
Ja

0 t < a

where G(a, b t, s) is the nonnegative Green's function for ~d2x/dt2=
f(t), x(a) = x(fi) = 0. Notice, see [9], that (we assume (H') holds)
Aa>b is a positive operator, i.e., Aaib3iΓ £ 3ίΓ. If a < b define
r(a, b) — p(Aa>b), the spectral radius of Aa,b. We require the follow-
ing lemma which is a trivial modification of lemmas 3.1 and 3.4
and the proof of Theorem 3.5 in [9].

LEMMA 1. The function r(a, b) defined for a < b is continuous
in a for fixed b and continuous in b for fixed a. Moreover,
r(a, b) is nondecreasing in b (for fixed a) and nonincreasing in a
(for fixed b), and r(α, &)->0 + αs& — α — > 0 + . In addition, (1) is
disconjugate on [α, b] if and only if r(a, b) < 1.

Proof of Theorem 1. If (1) is disconjugate on [a, b] then r(a, b)<
1 by Lemma 1. Also by Lemma 1, we can choose ax< a and b±>b
such that r(al9 δ j < 1. Now either (i) r(al9 δ2) < 1 for all δ2 ^ bλ or
(ii) there exists δ2 > δx such that r(al9 δ2) = 1. In case (ii) we may
conclude (by the Krein-Rutman theorem as applied in [9]) the
existence of a solution y(t) of (1) satisfying y(aj = y(b2) = 0 and
y(t) > 0, ax < t < δ2. Thus Theorem 1 is proved in this case. In
case (i), (1) is disconjugate on [au oo) and Theorem 3.11 of [9] com-
pletes the proof of this case.

Proof of Theorem 2. For this argument let X = C([a, b]Rn) and
3ίΓ the corresponding cone. If y(t) » 0 on α ^ ί ^ ί> is a solution
of the differential inequality y" + A(t)y ^ 0, then we observe that
y 6 int J%"(y > 0). Let z = Aa,hy so z(t) satisfies

z" + A(t)y = 0, z(a) = z(b) = 0, z(t) ^ 0 a ^ t ^ ό .

Then ?/(ί) — z(t) satisfies

(y ~ %T ^ 0 and (2/ - z)(a) > 0, (2/ - z)(b) > 0 .
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Hence, if φ is a positive linear functional with respect to K £ Rn

and v{t) = φ(y(t) - z(t)) then v" ^ 0 and v(a) > 0, v(b) > 0. Thus
v(t) > 0 on a ^t ^b. Since φ was an arbitrary positive linear
functional we conclude that y(t) — z(t) > 0 on a ^ t ^ 6, i.e., ?/ > 2
in JT\

If (1) were not disconjugate on [α, δ], then r(α, b) i> 1 and thus
there exists 6' ^ & with r(α, &') = 1 and hence (Theorem 3.5 in [9])
a solution u(t) of (1) satisfying u(a) — u(b') = 0 and u(t) > 0 on [a,
&']. Define u(t) = 0 on (6', &] so w e _%Λ Since # 6 int 3ίΓ we may
choose a > 0 maximal such that au ^ y (i.e., if βu ^ y then /3<; α).
Then we have

cm = αAr,δ'(^) ^ aAa,b(u) ^ Aβ,6y = z <y .

But <m < i/ implies we may choose Ύ) > a such that rju < y, a con-
tradiction to the maximality of a. This contradiction proves the
theorem. Notice that we used the easily established fact that if
a ^ α' < &' ̂  b then Au*,h*x ̂  Aα,6x for all α; 6

Proof of Lemma 3. The lemma follows immediately from the
following assertion: Equation (1) has a nontrivial solution satisfying
x(Q) = χ(T) = 0 if and only if there exists Xeσ(A) Π (0, °°) such that
V λ Γ = kπ for some positive integer k. To prove the assertion,
first assume that 0 g α*(A) so that there exists a complex matrix J5
satisfying B2 = A. A Cw-valued function #(£) satisfies (1) and #(0) —
0 if and only if there exists x0 6 Cn such that α(ί) = (sin Bt)x0. Thus
(1) has a nontrivial solution satisfying #(0) = x(T) — 0 if and only
if det [sin BT] = 0. Let λx, λ2, , Xn be the eigenvalues of A. Then
by the spectral mapping theorem and elementary properties of the
determinant,

det [sin BT] = f[ sin V\T .

Thus det [sin BT] = 0 if and only if VxJT = ΛTΓ for some i, i^j<*n
and some integer Λ. This last holds only if i/λj is real, in parti-
cular Xj must be positive and k must be positive. Hence a necessary
and sufficient condition for there to be a nontrivial C%-valued solution
of (1) satisfying x(0) = x(T) = 0 is for / λ Γ = Λ TΓ for some λ e
σ(A) Π (0, oo) and some positive integer k. Such a solution will be
of the form x(t) = (sin Bt)x0 where x0 Φ 0 is in the null space of
sin BT. The real and imaginary parts of x0, at least one of which is
nonzero, will also be solutions of (1) satisfying x(fi) = x(T) — 0.
This completes the proof of the assertion in case Ogσ (A). In case
Oecr(A) write Rn — M@N where M is the generalized nullspace of
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A, (M = (J»=i Ker An = Ker Ap, p some positive integer which we may
assume is the smallest such) and N = Range A". The complementary
subspaces M and N reduce A and A/M is nilpotent on M. Write
AIM = B, A/N = C. Then (1) becomes

(2) y" + By = 0

( 3 ) Z" + CZ = °
x = y + z .

The previous analysis applies to (3) since σ(C) = σ(A) — {0}. Since
B is nilpotent it is easy to see that the only solution of (2) satisfy-
ing y(0) = y(T) = 0 is the trivial solution (multiply (2) by B^1

where Bp — 0). This completes the proof in this case.
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