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MODULAR SUBLATTICES OF THE LATTICE OF
VARIETIES OF INVERSE SEMIGROUPS

N. R. REILLY

Kleiman used the variety && of all groups to define two
endomorphisms <p and φv& of the lattice £f(^) of varieties
of inverse semigroups as follows: ψ'<7/{<y)— ^ ^ y y and
ψj ( ^ ) = ^^ ί\ y. This introduced two congruences vx and
v2 on Sf{^) which have been very important in recent studies
of SfitS).

This paper is devoted to studying further properties of the
vι and v3 = vι(Λv2 congruence classes.

The first main result establishes that each i^-class is a
complete modular sublattice of J*f(^), although, in some cases,
the class may just consist of a single element.

It is not difficult to see that each ^3-class has a minimum
member. On the other hand, it is shown that not all ^-classes
have maximum members. However, it is established that a
large class of ^-classes do have maximum members. If ^ is
a variety satisfying an identity of the form xn+1tt~xx~n~ι —
x7ltt~1x~n then the i^-class containing ^ has a maximum
member. The condition that a variety satisfies this identity
is equivalent to a member of conditions, one being that every
member of ^ is completely semisimple and such that ^f is
a congruence.

The nature of the maximum element in these cases is very
interesting. If ^satisfies the above identity, then the funda-
mental inverse semigroups contained in ^constitute a variety,
^ say. Letting & = ^ ^ Π ^ , the maximum element in the vr

class containing ^ i s shown to be the MaΓcev product ^ Ό ^ ~
of the varieties & and ^ . It is shown that this is not valid
in general. Other properties of the MaΓcev product are ob-
tained.

1* Notation and terminology• We shall adopt the basic nota-
tion and terminology for semigroups from [2] while, for basic results
in the theory of varieties of groups, the reader is referred to [10].

The variety of all inverse semigroups, (groups, abelian groups)
will be denoted by ^ ( ^ ^ , J ^ ^ ) and the trivial variety by ^T
Throughout the paper the term variety, if unqualified, will always
mean a variety of inverse semigroups.

We will denote by FX(GX) the free inverse semigroup (group)
on a countable set X.

For any semigroup S, Y*{S) will denote the variety generated
by S. For any variety Y] F(y) will denote the relatively free
inverse semigroup in ψ* of countable rank and pi^T) will denote the
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verbal congruence on Fx = F(J?) defining the variety ^7 In addi-
tion, Sfi^Γ) will denote the lattice of varieties contained in ψ\

For any group variety ^ , we denote by ^ ( ^ ) the fully
invariant subgroup of Gx determining the variety g .̂ We shall also
denote by ^(gf) the class of varieties T such that T Π S^* = ^ .
In particular, <^(J/~) denotes the class of those varieties that contain
no nontrivial group.

For any inverse semigroup S, we will denote by E(S) the semi-
lattice of idempotents of S and by μs the maximum idempotent
separating congruence on S. For the basic properties of μS9 the
reader is referred to [8].

For more extensive information on the background and context
of this paper, the reader is referred particularly to the papers by
Djadchenko [3], Kleiman [5], [6], and Reilly [12].

2* The modularity of v3-classes* For any inverse semigroup
S, we denote by A(S) the lattice of congruences on S and write

Θ(S) = {(plf p2) e A(S) x Λ(S): p^EgX Es = p2 n Es x Es} .

From Reilly and Scheiblich [13], we have the following result.

LEMMA 2.1. For any inverse semigroup S,
(1) Θ(S) is a congruence on Λ(S);
( 2 ) each θ-class is a complete modular sublattice of A(S).

Let δ Q Fx x Fx and, for each (uh vλ) e δ let tλ be an element
of X which does not appear in either uλ or vλ. Then we write

δ = {(uxht^uj1, Vχtχtj'vχ): (uh vλ) ed} .

The following result is due to Kleiman [5].

LEMMA 2.2. If δ is a basis for the identities of a variety "T
then b is a basis for the identities of <%S V

From this we immediately obtain the following corollary:

COROLLARY 2.3. Let T be any variety. Then T V g ^ 5 =
S

This leads us to the main result of this section. For varieties
T, W~ with T £ 5T~ we write [ T, <7ST\ for the set of varieties ^

with T Q <Zf Q
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THEOREM 2.4. For any variety Y* of inverse semigroups, the
interval [ ψ] ψ* V &&\ is a complete modular sublattice o

Proof Let p, = ρ(T V &&*) and p2 = p(T). Then F(T V
is just Fx\ρy and i*X$O is just Fx/ρ2. Let τ = pjp^ Then (F
is isomorphic to Fx/p2.

Since ί y ^ 6 3^ V 5 ^ , it follows from Corollary 2.3, that
(Fxlpdlt1 e 5̂7 where /* is the maximum idempotent separating con-
gruence on Fz/p±. Suppose that we denote by p3 the congruence on
Fx inducing μ on Fz/plf that is, such that Fx/p3 is isomorphic to
(Fzlpύlμ- Then Fx/pB e T and so ρ2Qpd. Hence τ = pJp.QpJp, = μ.
Thus r is an idempotent separating congruence on Fx/pt. Hence
(pJp2)eθ(Fx).

Now let W' e [ T, T V 5f<^] and p, = / o ( ^ H . Then pλQ p4Q p2.

Hence, 0̂̂  ^ and p± are all ^ = Θ(FX) equivalent.

Let us write £?(T,T \J <&&*) = [T,TV $?&*] and £?\ T,TV
for the lattice of fully invariant congruences of the form

9 "W 6 [ T, T V Sf^*]. Then ^f'( ^7 T V Sf^*) is the set of
all fully invariant congruences between (and including) p(Ύ) and
ρ(T V &&*) and is anti-isomorphic to £f( T, T V 5 f ^ ) .

From the above, we see that &'{ T,T V ^ ^ ) is contained in
a single 0-class A, say, which, by Lemma 2.1, is a modular sublattice
of A(FZ). Since j ^ ' ( ^ r* V ^ ^ ) is a sublattice of Λ(FJ and so
of A, it follows that £?'( T,T V 5 ^ ) must be a modular lattice.
Hence, £f( T,T' V &&*) is also modular, as required.

Since £f(^) is a complete, it follows that [ T, T V ^ ^ ] is
a complete sublattice.

Let two mappings φv and φA be defined on ^f(^) as follows:

for all

LEMMA 2.5. Kleiman [5]. Γfce mapping φw is a homomorphism
of J*f(^) onto the lattice of varieties containing *&&* and φA is a
homomorphism of S^{J^) onto

This leads to certain useful partitions of .Sf(^"). Let vx{v2) be
the congruence on £f(J?) induced by φy(φA) and vz = ^ n J-V Thus,

e vx if and only if T V ^ ^ = ^ V

( 3*7 ̂ H 6 v2 if and only if T Π 5f <^ = ^ " Π

Of course, for any group variety ^ , the y2-class containing gf is
just ^ ( g 7 ) .

Recall [8] that an inverse semigroup is said to be fundamental
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if it has no nontrivial idempotent separating congruences or,
equivalently, no nontrivial congruences contained in Green's relation
έ%f. Such semigroups have also been called antigroups ([3] and
elsewhere). We shall denote the class of the such inverse semigroups
by &&&>. It should be noted that this class is not itself a variety
although it does have a role to play.

PROPOSITION 2.6. Kleiman [5]. Let T,^6.2%^). Then
T V gf̂ * = ^ " V gf̂ * if and only if T Π Agf^ = 3T~ Π

This result provides us with a further description of vx. Thus,
for

6 ẑ  if and only if T Π Agf^ = 2 ^ Π

Let us now focus our attention on a single zv-class Λ". Let
6 ^ Then clearly ^ = T V g ^ is the maximum element of

On the other hand, by Proposition 2.6 ^ n Agf^ £ ^7 for
all T e ^K Hence, ^f0 = T(^ί Π A^^) is a minimum element of
<yV" and ,̂̂ C = ^ C V ^ ^ . Combining this with Theorem 2.4 we
have the following result.

THEOREM 2.7. Let Λ^ he a vrclass of ^f(^). Then Λ" has
both a minimum element, ^f09 and a maximum element, ^

Moreover, Λ^ is a complete modular sublattice of

Since the minimum element of any j^-class is generated by its
fundamental elements and, conversely, any variety generated by its
fundamental members is the minimum in its ivclass, we say that
any such variety is fundamental.

For any fundamental variety T, let φΎ"\ ̂ ( g f ^ ) -* [ T, T V
be defined by

= T V Sf , for all 5f

Then 'P2" maps ^{^^) into (3^)^, the vrclass containing T.
It is interesting to note some of the situations that arise in this

context.
Let Y2 denote the two-element semilattice, B2 denote the Brandt

semigroup of rank two with trivial structure group and B\ denote
B2 with an identity adjoined.

Then Djadchenko [3] has shown that for T equal to T(Y2) or
T(B2), φ^ is an isomorphism of . S f ( 5 ^ ) onto (T)vx. Although
T(BΪ) covers T{B2) in £f{J?), an example in [12], shows that φr,
where T = T(BΪ) does not map S^(^^) onto {T{B^)vlt However,
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φ' is still one-to-one.
At the other extreme, {T%)v1 can be much smaller than £*?(&&)

and can even consist of a singleton, as the following example
illustrates.

EXAMPLE. Let T = ^T°(l; Gx, Gx; Δ) and S = T U Gz. Define a
multiplication on S by defining it to be the given multiplication
within T and Gx, such that the zero of T is the zero of S and
such that, for any g e Gx, (1; h, k) e T,

g(l; h, k) = (1; fiΛ, Λ)

(1; Λ, £)</ = (1; h, g-'k) .

It is a routine matter to check that S is an inverse semigroup with
respect to this multiplication. In fact, S is a subsemigroup of the
translational hull Ω(T) of T. Moreover, S is fundamental. Hence,
T(β) is fundamental. But clearly GxeT(S). Therefore, T{β) V
&&> = T{S) and the yx-class containing T{S) contains only T(β) itself.

Now S satisfies the identity x3x~3 = α;2α;~2 and so x3x~3 = α;2ίc~2 is
an identity that is valid for y(S). Consequently, any element of
T(S) is completely semisimple (for details see [12]). Thus T(S) is
certainly not the variety of all inverse semigroups, and, in some
sense, is not far up the lattice

3 Maximum elements in v3-classes* Since ^-classes are sub-
lattices of ^-classes, it follows from Theorem 2.7, that each v3-class
is a modular sublattice of C5f?(^). In this section we will show
that each vs-class has a minimum and, in some cases, also a maximum
member.

PROPOSITION 3.1. Let V be a v2-class. Let W~ e V, & = W Π
and T = T(ΎJT n A&0*). Then ^^^VTisthe minimum

member of V.

Proof. Since W~ Π AZ?^* C ^ = ^ V 3 ^ £ ^ " , i t follows that
Π A&& = ̂ ^ Π A5f.^. Similarly,

n s r ^ £ 3^" n

Hence ^ Π ̂ ^ = ^ " Π ̂ ^ . Thus (^, 3*H 6 v3 and ^ £
Since ^ and ̂  are independent of the choice of 'W e V, it follows
that <%s is the minimum element of V.

Although we shall see in §5 that not all v3-classes contain a
maximum element, some do and we can identify the maximum
element for a large family of v3-classes.
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Let rέ?Sfέ%f denote the class of all completely semisimple inverse
semigroups on which £ίf is a congruence. This class is not itself
a variety, however if we denote by Sf&SfSίf} the set of varieties
contained in ^S^^f, then ^ί^^^f) is a sublattice of the lattice
S^{^) of all inverse semigroup varieties.

The class ^S^^ίf was introduced in [12] where the following
result was established.

THEOREM 3.2. Let Y* he a variety of inverse semigroups. Then
the following statements are equivalent.

(1) For every S e T] S is completely semisimple and J%f' is a
congruence: that is, Γ e ^ ^ y ^ ) ;

(2) Ύ* satisfies x^Ht^x'"'1 — xntt~yx~n, for some positive
integer n.

( 3 ) T* Π A^^ satisfies xn+1 = xn, for some positive integer n;
( 4 ) T (Ί A&&* is a variety;

(5) r

Further insight into the nature of the conditions in Theorem
]3.2 can be obtained from the next observation due to Djadchenko
[3].

LEMMA 3.3. A variety Ύ contains no nontrivial groups, that
is Y e £?(J?r)f if and only if an identity of the form xnΛ1 = xn is
valid in ψ* for some positive integer n.

Note that, in the light of Lemma 3.3 and Proposition 2.6, con-
ditions (3) and (4) of Theorem 3.2 imply that °Γ is ^-equivalent to
a variety in <^(.iθ.

We shall show that ^-classes containing varieties of the type
identified in Theorem 3.2 or, equivalently, v3-classes contained in
JVclasses that intersect nontrivially with £?(J7') have maximum
members. In order to identify the maximum member, we shall
need the concept of the product of two classes of algebras introduced
by MaPcev [7].

DEFINITION. If ^ and T are subclasses of a class J2Γ of
algebras, then the product Ήfo^Ύ is defined as consisting of the
algebras A from 3ίΓ such that for some congruence p on A, A/p e Y
and each ô-class which is a subalgebra of A is in ^ .

If ^ , Ύ are varieties of groups and 3ίΓ is the variety of all
groups, then <%f o^Y is just the standard product of group varieties,
as studied in [10].
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Although the product of two varieties of inverse semigroups
has not been studied, in general, the work of Houghton [4] followed
by that of Bales [1] has provided considerable information on the
product of a variety of groups and a variety of inverse semigroups
in the variety ^ of all inverse semigroups.

Since we shall only be considering products in the variety Jf,
we shall denote the product of two subvarieties ^ , ψ* of J? simply
by % o 5T without any subscript.

We note in passing that the MaΓcev product of varieties of
inverse semigroups is not always a variety of inverse semigroups.
If we let *%/ denote the variety of semilattices, then it follows from
the construction of the free inverse semigroup due to Scheiblich [14]
that Fxe^/Ό^^5. Hence, any variety containing gΌgf^ 5 must
contain ^ However, any element S of W ° S ^ 5 must be i?-unitary
(that is, a e S, e and ea e E(S) implies that a e E(S)) while not every
element of ^ is ^-unitary.

However, Bales [1] has shown that the product ^' ojr i s a

variety whenever ^ is a group variety.
As observed by Bales [1], any inverse semigroup identity

u(xlf , xn) — v(xlf - , xn) is equivalent to the following two
identities:

u ( x l f •••, x n ) v ( x u •••, x n γ ι

= v ( x u , x n ) v ( x l t -, x J - 1

u ( x u •••, x n ) ~ ι u ( x l 9 •••,&*)

= v ( x l 9 -", xn)~1v{xlί - - , x n ) .

Thus, for any variety T] there is a basis of identities of the form

u(xlf , xn) = ί(xl9 , xΛ)

where ί(xlf •••,#„) is an idempotent in Fx. For convenience, we

abbrev ia te expressions of t h e form u(xl9 •••, xn) to u(x).

If we wr i te

Idem (T) = {(u(x), i(x))eFx x Fx: u(x) = i(x) is an

identity in ψ* and ί(x) is an idempotent in Fx) ,

then as observed above, Idem (3O provides a basis of identities for
Π

Combining Theorems 3.2 and 3.6 from Bales [1], we obtain the
following important theorem.

THEOREM 3.4. Let gf be a variety of groups and T* a variety
of inverse semigroups. Then 57 °V* is a variety.
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Moreover, the identities

, Vn(xn)) = i^Xί) ίn(xn)

for all u(x)eU(5f) and for all (Vβ{xό), i0j)) 6 Idem (5O, form a
basis of identities for S? ° Tl

We now combine Theorems 3.2 and 3.4 in order to show that a
large class of v3-classes contain maximum members which can be
described by the MaPcev product.

THEOREM 3.5. Let %S G ^ ( ^ y ^ ) . Let gf = ̂  n S ^ and
γ* = ̂ / n A§%^. Tftew & °Y* is the maximum member of the vz-
elass containing <%?.

Proof. Let W be any element of the ivclass containing
Then W Π Agf^5 = <%s Π Agf^5 = T. Therefore, for any Se
S/μs 6 T. Also, for any idempotent e e S, since Ύ/^ Π ̂ * ^ = %f D
^ ^ = 2 ,̂ we have β^ e 2 .̂ Therefore, ^ is a congruence on S
such that S\μs^T and each class of μs that is a subalgebra of S
belongs to gf. Hence, S e g Ό ^ Therefore, ^ " £ gf o ^

To complete the theorem, therefore, it is only necessary to
show that (gf o T, %f)e vz.

Since ^ e ^ ^ ^ g T ) , it follows from Theorem 3.2(3) that an
identity of the form #%+1 = #" is valid in T = ̂  Π A^ 7 ^, for some
positive integer w. Therefore, if v(x) = ίc%+1^~% then (i (ίc), #wαr%) 6
Idem (r1).

Now let G be any group in <&°T and let wφ) e U(&). Then

is an identity that is valid in %? <> j r But, since G is a group, for
any x e G, v(α?) = » and so the identity u(xu , xr) = 1 is valid in
G where 1 denotes the identity of G.

Since this is the case for all u(x) 6 U(&)9 it follows that G e ^ .
Hence, (GoΓ)ίl 5 ^ £ 5f and so, since it is clear that gf Q(&o jr)n
^ ^ , it follows that ( ^ o ^ ) n ̂ ^ = ^ and so ( ^ Ό T, ^)ev2.

On the other hand, if S e g Ό f then there exists a congruence
p on S such that S/peT^ and each p-elass that is an inverse sub-
semigroup of S lies in Ŝ 7, that is, in particular, is a group. Hence,
p must be an idempotent separating congruence, and, by Corollary
2.3, we have S e gf^ V T. Hence, g^ o T C ̂ ^ V 5^ and so

V T £ ^ ^ V (g^ o 5̂ ) £ ^ ^ v T.

Therefore,
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V (Sf V T) Q S?& V T ,

and (Sf o T,^)z v,. Hence, ((gf o τ\ <U) e P3, as required.
Since each v3-class is determined by a fundamental variety and

a group variety and vice versa, it will be convenient to denote the
v3-class determined by a group variety & and a fundamental variety
T by y8(Sf, 3H.

It is interesting to note that in the proof of the second half of
Theorem 3.5, it is established that, for any variety Y1 in which an
identity of the form xn+ί — xn is valid (that is, for any T e &(.y~))
and for any group variety Ŝ , ^ ° f e ^ g 7 , JΓ). This enables us to
restate Theorem 3.5 in terms of the group variety and fundamental
variety determining a v3-class.

COROLLARY 3.6. Let 5f be a variety of groups and let Ψ* e
Then &oψ* is the maximum element in v3(5f, T*).

4* Further results on the MaPcev product* In this section
we show that the MaΓcev product respects the lattice operations in

We recall (see [10]) that, for any subset U of Gz, and, in
particular, for any subgroup U of Gz, and any group G, the verbal
subgroup U(G) of G is the subgroup generated by the set {a(u):
u e U and a is a homomorphism of Gx into G). A verbal subgroup
is always fully invariant.

For a given variety of groups 5^ corresponding to a fully
invariant subgroup U of Gz, U — U{GX). Furthermore, for any
group G, U(G) is the smallest normal subgroup of G such that
G/U(G) 6 gf and, in particular, G belongs to Sf if and only if
U(G) = {1}.

LEMMA 4.1. Let °Γ be a variety and {&λ: X e A) be a family of
varieties of groups. Then

SΠ and (Λ%??)°T

Proof. It is clearly the case that (Z?λoT) Q(V5?χ)°T and so
that. V(5^°5O£(5^)° T.

Let S 6 (V Ŝ  i) ° Tl Then there exists an idempotent separating
congruence p on S such that S/peT* and Ne = φ e V % for all
eeE(S). For each λ, let Uλ = C/(^), ί/ - U(\/&λ) and ΛΓj - U\Ne).
Since {iVe: e 6 i?(jS)} is the kernel normal system for an idempotent
separating congruence, N = UtΛ/̂ : e eE(S)} is, in particular, a semi-
lattice of groups. It can then be verified quite routinely that {Ni:
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e 6 E(S)} is a kernel normal system for each λ. Let the correspond-
ing congruence, which is necessarily idempotent separating, be
denoted by pλ.

Now Γ)U*=U. Hence, since NeeV&λ, for each eeE(S), we
must have f\Ni equal to the trivial subgroup of Ne. Therefore,
Πpx is the identity congruence. Now, for each λ, p/pλ is an
idempotent separating congruence on S/pλ and (S/pλ)/(p/pλ) is
isomorphic to S/p and so lies in Tl Let epλ be any idempotent of
S/pχ. Then the p/prclass containing epλ is isomorphic to NJNi and
so, by the definition of Ni, lies in g^. Hence, for each λ, S/pχ e
^ o T and Π Px is the identity congruence. Therefore, S e V (Sf* ° T)
and the first half of the lemma is established.

With regard to the second assertion, it is again the case that
the inclusion one way is trivial, namely, ( Λ ^ ) ° ^ £ Λ(ί^ o 3O.

Let S e Λ ( ^ o f ) . Then S e ^ o T, for all λ. Hence, for each
λ, there exists an idempotent separating congruence pλ on S such
that epxeg?x, for all eeE(S), and S/pλe T.

Let ^ = Γlpχ. For each eeE(S), ep = Πβ^e ΛS^ while S/p, as
a subdirect product of the S/ρλ, lies in 3^ Hence, Se(Λ&Ί)°T
and the second part of the lemma is established.

From Corollary 3.3 of [1] and Corollary 2.3, we have the follow-
ing result.

LEMMA 4.2. If T is a variety such that 5f^ g T, then the
mapping <& -» gf ojr ^ α one-to-one order isomorphism of
into [ T, 5 ^ V ^ ] .

Combining Lemmas 4.1 and 4.2 we then have the following.

THEOREM 4.3. // T is a variety such that g ^ g T then the
mapping *& —> ^ o ^ ίs α complete lattice isomorphism o
into [ ?7 ^ ^ V 3^].

5* A detailed study of a iλ>-class* In this section it will be
shown that there exist ^-classes that have no maximum elements.
Moreover, the class used to demonstrate this will contain a variety
of the form 2^ ° 3^ where ^ is a group variety and ^ is a funda-
mental variety, thus showing, in addition, that such varieties are
not always maximum in their classes.

We denote by ^ the bicyclic semigroup.
Let G be a group, a an endomorphism of G, and N the set of

nonnegative integers. Then we denote by B(G, a) the set N x G x N
under the multiplication
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(m; g; n)(p; h q) = (m + p - r; ap~r(g)an-r(h); n + q - r) ,

where r — min (n, p).
With respect to this multiplication B(G, a) is a bisimple inverse

semigroup. For the basic properties of such semigroups the reader
is referred to [9] and [11].

For any elements x, y of an inverse semigroup S, we denote
by [x, y] the "commutator" element x~xy~xxy. We require some
elementary facts about elements of this form.

LEMMA 5.1. Let S be an inverse semigroup, G be a group and
a an endomorphism of G.

(1) // either x or y belongs to E(S) then so does [x, y],
( 2 ) For any x,ye<έ?, [x, y] eE(<t?).
( 3 ) For any x,y e B(G, a), [x9 y] belongs to a subgroup of B(G, a).

Proof. The observations can be verified by straightforward
computations.

We recall the definition of the wreath product of two groups
G and H. We denote by GH the group of functions from H to G
where the group operation is defined componentwise. Then, by the
wreath product G Wr H of G and H we mean H x GH with multi-
plication defined by

(&, /)(*, g) = (be, fg)

where fc(y) — fiyc1), for all y eH. With respect to this operation
G Wr H is a group [10]. In particular, (6, f)-1 = (6"1, if*)'1), where
d = b~\

For each positive integer i, let <?* denote the product of i copies
of Z Wr Z. We denote the identities of Z Wr Z and Gt by 1. For
k,beZ let fktbeZz be defined as follows:

b if z = k

0 if z Φ k .

Let α*: Gt -> Gύ be defined as follows: for all F e G o

(1 if w = l

— 1) if 1 < n < i

It is straightforward to verify that at is an endomorphism of G,
such that a\ is the zero endomorphism and, for all FeGi9

P !
(JP(1) if n = ^ .



416 N. R. REILLY

Since the group operation in Z is addition, we denote the group
operation in Zz by addition also.

Let B< = B(Gif at).
Since Gt is a product of wreath products of the integers it

follows that G i G J / ^ ' ^ o j / g ' ^ for all i. Hence, the identity

[[x, y], [u, v]]2 = [[x, y], [u, v]]

is valid in the group ^"'-classes of Bit

LEMMA 5.2. Let e denote the product of the words of the form
wiw~iw~iwi where w = x, y, u, v, xy, yx, uv, vu. Then the identity

( * ) [[exe, eye], [eue, eve]]2 — [[exe, eye], [eue, eve]]

is valid in Bt.

Proof. We omit the details of the proof which consists of
straightforward computations.

COROLLARY 5.3. T(B%) e v£.s*'&&* ° ,s^%?^, T(rt?)).

Proof. Since BJμSt is isomorphic to ^ , we have from Corollary
2.3 that 5 4 e p^Cif), T{&) V &&*]. By Lemma 5.2, (*) is valid in
T(Bi) and so the identity

[[xf y], [u, v]]2 = [[xf y], [u, v]]

holds in T(B%) Π &&*. Thus T(B%) Π ̂ ^ cόtf^g? <> s/&0>. Since
Z Wr Z e T(Bτ) it follows that T{Bt) n ̂ ^ = <S/&^ ° ^/^^.

A simple argument using the fact that, for any group variety
Sf and any inverse semigroup variety T, ̂ ^T Π ̂ ^ ^ ^
will now establish that the varieties T'(Bi) also contain

) . Hence, we have the following proposition.

PROPOSITION 5.4. For any positive integer i,

We shall now show that even although the v3-class (*$/<&&°
contains a MaΓcev product of varieties, it has no maximum member.

We proceed by contradiction. Suppose that there is a maximum
member T. Then T(B%) C T, for all i, and so 5,6 3^ for all i.
Also, T A S ^ * = ̂ ^0* o ^/^^ and so must satisfy the identity

(**) [[*, Vl K v]]2 = [[«, »]f K v]] .

Let S denote the inverse subsemigroup of the product
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1, 2, 3, } consisting of those elements F such that there exist some
fixed integers m and n (dependent on F) such that F(ϊ) — (m; A,; n)f

for some At e Gu for all i — 1, 2, 3,
Let X, Γ, U, V be defined as follows: for all i = 1, 2, 3, ,

= (1; At; 0), F(i) - (1; Bt; 1), F(ΐ) = (1; Ct; 1) where, for

At(n) = 1 , the identity of Z Wr Z ,

B,(n) = (1, /Ofl) , C,(*0 - (2, /Otl) .

It can now be checked that there is no idempotent e in S for
which e[[X, Y], [U, V]] is an idempotent. Therefore S/σ, where σ
is the minimum group congruence on S, does not satisfy (**).
Therefore, SiΨ* and we have the following result.

THEOREM 5.5. The v3-class containing ^^0*°T(rt^) has no
maximum member.
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