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INDUCED ^-ELEMENTS IN THE SCHUR GROUP

RICHARD ANTHONY MOLLIN

The main result of this paper gives necessary and sufficient
conditions for the ^-primary part S(K)P of the Schur group
S (K) to be induced from S (F)p for any subfield F of K where
K is contained in Q (εn), under the restriction that εp2 is not in
K if p > 2 and n is odd if p~2, where εn is a primitive nth
root of unity.

Moreover we completely answer the question: "When is
SiQiεn + ε-1)) induced from S(Q)?" for any n, and also the
question: "When are the quaternion division algebras in S(Q(εn))
induced from S(Q(εn -f ε;1))?" for any n. Finally, in the last
section we investigate the "generalized group of algebras with
uniformly distributed invariants" which we introduced in an
earlier paper. We obtain, for the first time, a sufficient
condition for the group to be induced from a certain subgroup.

Preliminaries* Let L = Q(en) and let K be a subfield of L.
Although it is not necessary for all results in the paper it is con-
venient to choose n as small as possible for a given K. The Schur
subgroup S(K) of the Brauer group B(K) consists of those equivalence
classes [A] which contain an algebra which is isomorphic to a simple
summand of the group algebra KG for some finite group G. An
elegant proof of the following result was given by Janusz [18, Prop.
6.2, p. 89]:

(1.1) Let [A]eS(K) where [A] has exponent n then εnf a primitive
nth root of unity is in K. (In fact (1.1) holds for any field K.)

For K over Q finite abelian, Benard and Schacher [2, Th. 6.1,
p. 89] proved the following:

If [A] 6 S(K) then:

(1.2) If the index of A is n then eΛ is in K.

(1.3) If q is a JϋΓ-prime above the rational prime q and σeG(K/Q),
the Galois group of K over Q, with σ(en) = εjf then the Hasse
q-invariant of A satisfies:

invς A = bσ invqσ A(moά 1) .

If [A]eB(K) and A satisfies (1.2)-(1.3) then A is said to have
uniformly distributed invariants. These algebras form a subgroup
U{K) of B(K). For a treatment of this group see Mollin [7, 14, 15,
16]. We note from (1.2)-(1.3) that S(K) is a subgroup of U(K). For
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a generalization of U(K) to the algebraic number field case and
consequences thereof (including, therefore, results for S(K) see
Mollin [8]-[13]).

Now, if [A] e U{K) and q' and q are if-primes above q then
A(&KK^ and A&κKq have the same index where Kq denotes the
completion of K at q. We call the common value of the indices of
A ®κ Kq for all K — primes above q the q-local index of A and denote
it by ind?(A).

We shall have need of the following formula which can be found
in Deuring [3]:

(1.4) Let [A]eB(K). Let K/F be finite and let q be a ίΓ-prime
above the F-prime q. Then:

inv (A ®F K) = \ K;: Fq | invq A(moά 1) .

Henceforth, when we write a tensor product it shall be assumed
to be taken over the center of the algebra in the left factor. More-
over, by the symbol S(F) ® K we mean the image of S(F) under
the map which extends the center to K. The symbol ~ denotes
equivalence in the Brauer group.

If q is an F-prime above q, then any reference to the decom-
position of q in K over F (abelian), shall be referred to as the
decomposition of q in K/F since the decomposition essentially depends
on q and not on q. For example if q is unramified in K over Fwe
say q is unramified in K over F.

Finally, for groups G and H contained in G, aeG — H means
aeG but aίH.

For most basic results concerning S(K) the reader is referred
to [18].

2* Induced p-elements* Let Q(εn) be the smallest cyclotomic
field containing K. We may assume n Ξ£ 2(mod 4) since Q(εn) = Q(e2n)
whenever n is odd. Let p be a prime such that if p is odd then εp2

is not in K and if p = 2 then n is odd. Let F be a subfield of K
and set Go = G(Q(εn)/F). Now we present for the first time necessary
and sufficient conditions for S(KP) to be induced from S(F)P. In the
following theorem we maintain the above notation and assumptions.
To avoid the trivial case S(K)P = 1 we assume εp is in K.

THEOREM 2.1. S(K)P = S(F)P ®K if and only if
(1) εp is in F and
(2) G?nG = Gp.

Proof. Since S(K)P Φ 1 then equality holds only if εp is in F.
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We show that the equality of the theorem is equivalent to (2) when
(1) holds.

By [6, Th. 2, Th. 3, Th. 5] and [17, Th. 2.2, Th. 2.3], an algebra
class in S(K)P is determined by a skew-pairing ψκ on G to <εp> and
by certain elements in S(Q(ep))p ® K (which also lie in S(F) ® K).
A similar statement holds for S(F)P. Therefore S(K)p = S(K)P (g) K
if and only if every skew-pairing on G is the restriction of a skew-
pairing on Go. Since the values lie in <εp>, this is equivalent to the
assertion that the inclusion of G into GQ induces an inclusion of GjGp

into GJGζ. This is equivalent to (2).

The following result obtained in Mollin [14, Corollary 2.3, p. 165]
is immediate.

COROLLARY 2.2. If K/Q is real of even degree and K is in Q(εn)
where n is odd and no prime congruent to 1 modulo 4 divides n
then S(K) = S(Q) (x) K.

Before presenting a sequence of results anchored to Theorem 2.1
we demonstrate that the theorem does not hold if n is even and ε4

is not in K. We shall need a result which we isolate as a lemma
since it verifies remarks made in Mollin [14, p. 165], (remarks follow
Theorem 2.2 therein).

LEMMA 2.3. Let n = 2nh, a ^ 2, (2, h) = 1, and let K = Q(εn + ε;1).

(i) If a = 2 then S(K) = S(Q) (x) K,
(ii) // a > 2 then S(K) Φ S(Q) <g) iΓ.

Proof, (i) If α = 2 and fe = 1 the result is clear. We assume
that h > 1. We see easily that in order to obtain S(K) = S(Q) (x) i ί
it suffices to prove i n d ^ A ^ l for [A]eS(K) whenever \KP:QP\ is
even where p is a iΓ-prime above p. If p\n then by Yamada [18,
Th. 1, p. 591], indp A = 1 for any [A] e S(JBL ). If p does not divide
n and | ϋΓ̂ : Qp | is even then Yamada's aforementioned result says
that if [A]eS(K) with inάpA = 2 then pfn = - 1 (mod^) where /
is the residue class degree of p in Q(εn)/Q. This means that p is
inert in Q(sn)/K so that //2 must be even in order that |Z*/. Qp| is
even. Thus, pfn Ξ — l(modw) implies that —1 is a square modulo
4, which is absurd. This establishes (i).

(ii) If h = 1 then the result follows from Yamada [18, Th. 2.2,
p. 586] and Mollin [7, Th. 2.6, p. 277]. We assume h > 1 and let

n = pji . . . pj where the p/s are distinct primes. Choose a prime
p such that p = — l(mod/ι) and p ΞΞ 5(mod2α). Such a choice is
allowed by the Chinese Remainder theorem. Now we show that
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there exists [A] e S{K) with ind,, A = 2 and such that [A] 6 S(Q) (x) K.
The smallest positive integer / such that pf == l(mod w) is 2α~2;

i.e., the residue class degree of p in K over Q is 2α~2. Thus, by the
choice of p we have: p does not divide n, f is even, p / / 2 Ξ£ — l(mod w)
and p//2ξέ ±l(mod2 α ) . By Yamada [18, Th. 1, p. 591] this guarantees
the existence of [A] is S(K) with indp^4=2. Now, since pf/2^ — l(modw)
then p splits completely in Q(eJ over if. Hence, / = 2α~2 equals the
residue class degree of p in K over Q. Since a > 2 it follows that

Z" from (1.4).

Now we present the aforementioned example to show that the
theorem does not hold if n is even and ε4 is not in K. We maintain
the above notation; i.e., K — Q(εn + ε"1) where n = 2ah, h > 1, a >
2, (2, h) = 1, and Go - GQ(εJ/(Q). Let:

where:

and

x x x

ε̂  — εh

x (φ8)

where:

Φi(ε») = = r/mod s, Ξ l(mod w/p?*)

is a primitive root modulo pίf and /̂ i =
, s. By Lemma 2.3, S(K) Φ S(Q) (g) Z".

pV'ΛPi — 1) for
We have G2 =

φh. !2). Therefore G2

Q f] G =

where rt

ί = 1, 2,
<^2> x <^ / 2> x x <^ί /2> and G =
<1) = G2. This establishes the counterexample.

Now we establish a series of results tied to Theorem 2.1. In
the introduction to [19] Yamada remarks that if K is a real subfield
of Q(εn) such that G{Q(en)jK) is cyclic; then the structure of S(K)
does not depend on whether or not n is divisible by a prime con-
gruent to 3 modulo 4. Lemma 2.3 indicates that Yamada is correct
in general. However, if we restrict our attention to maximal real
subfields of Q(en) for n odd the result goes through. The following
theorem therefore is the exact analogue of Yamada's result on real
quadratic fields [18].

Moreover, this theorem generalizes and simplifies the proof of
the result obtained in Mollin [14, Th. 2.2, p. 164]. Finally it completes
the answer to the 'Tensoring question' for the maximal real subfield
of Q(εw) for any n.
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THEOREM 2.4. Let K = Q(en + ε"1) where n > 1 is odd. Then
S(K) = S(Q) ® K if and only if there exists a prime q dividing n
such that q = 3(mod 4).

Proof. To establish the necessity assume S(K) = S(Q) (x) K. We
have: G = G(Q(εn)/K) = <^'2 φh

8°
12) where the φt and h, are defined

as in the above example. If we assume pt Ξ= I(mod4) for all i = 1,
2, , s then it is clear that ht = 0(mod4) for all i — 1, 2, , s.
Thus: « Π G = <(^ίl/4)2> x x <(^s/4)2> = G. However G2 - <1>,
so Gl Π G Φ G2 which implies by Theorem 2.1 that S(K) Φ S(Q) X K
contradicting the hypothesis, thereby establishing the necessity.

Conversely if S{K) Φ S(Q) ® K then by Theorem 2.1 we have:
GlnGφG2 = (1). Therefore G\ Π G = G. This forces ht = 0(mod4)
for each i — 1, 2, •••,«, which establishes the theorem.

It is reasonable to ask whether or not a similar result holds for
an arbitrary real subfield Q(εn) for n odd. If % is a prime-power it
does, (see [18]).

However, if n is divisible by at least 2 distinct primes it does
not. The following counterexample illustrates this fact.

Let n — 65 and let:

Let φ = φu φt and let K equal the fixed field of (φ). We note
G2 n G = <A ^2

5> = (?2 which yields S(JS:) = S(Q) (x) iΓ from Theorem
2.1. This completes the counterexample.

Now, let K over Q be finite imaginary and abelian with M as
maximal real subfield. From [1, Th. 2.1, p. 161] it follows that
[A] e S(K) with index 2 satisfies A ~ B (g) K where [B] e B(M) and
B is also quaternion. A natural question to ask is whether or not
[B] e S(M). The following theorem answers this question for certain
fields.

THEOREM 2.5. Let K be contained in Q(en) with n odd such that
K over Q is finite, imaginary and abelian, then

S(K\ - S(M) <g)K.

Proof. If Go Π G Φ G
2
 then there is a cyclic subgroup of G

o
 of 2

power order such that

(i) HΠG2ΦHΠG
(ii) HΠGΦ <1> and
(iii) HΠGΦH.
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Therefore by Pendergrass [17, Th. 2.3, p. 433] there exists [A] e
S(K)2 with inάp A = 2 where p has Frobenius automorphism corre-
sponding to a generator of if. By [1], op. cit., A ~ B(x)K where
[B] e B(M) is quaternion. Thus, for a iΓ-prime β̂ above an ikf-prime
p which in turn sits above the rational prime p; we have from (1.4)
that:

inv^ A = invφ B (x) iΓ Ξ= | ϋΓφ: Λff | inv, #(mod 1) .

However, by (iii) above we have \K%\M^\~2 so it follows that
inv, A — 0, a contradiction which secures the theorem.

We note that the above theorem includes the case where M =
Q(εn + ε;1) for n odd. The following theorem establishes that for
n even the result does not hold. Moreover it yields necessary and
sufficient conditions for elements of order 2 in S(Q(εJ) to be induced
from S(M).

THEOREM 2.6. Let

K=Q(en), i k f ^ Q ^ + ε-1).

All elements of order 2 in S(K) are induced from S(M) if and only
if n is odd or a power of 2.

Proof First we prove the necessity of the condition. Assume
that n^=2am, where (2, m) = l, α > l , m > l . We now prove that there
exists an element of order 2 in S(K) which is not induced from S(M).
Choose a prime p = I(mod2α) and p = — l(modm). Thus the residue
class degree of p in K over Q is 2; i.e., the smallest integer / such
that pf Ξ l(modτι) is / = 2. However, p = pfn & — l(modw) so p
has inertial degree 1 in K over M. This fact together with p =
pfn == l(mod 2α) is enough to ensure that there does not exist an
element in S(M) with p-local index 2, by Yamada [18, Th. 1, p. 591].
Now,

S(K)t - S(Q(e2.)) (8) ίΓ,

by Janusz [5, Th. 1, p. 346]. Since p == I(mod2α) then there exists
[A]eS(Q(e2a)) with i n d p A - 2 α by Yamada [18, pp. 135-139]. Let
[A]2a~2 = [B]. Then indp 5 = 4 and if φ is a iΓ-prime above p then:

S (g) i : Ξ= I ^ : Q^ε^) | inv, J5(mod 1) .

But I K%\ Qp(e2a) \ = 2 so that ind^CS ® ίΓ) = 2. We have [B ® JE] 6
S(K) having p-local index 2 but B0K is not induced from S(M).
This establishes the necessity.
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Conversely, if n is odd then we are done by Theorem 2.1, so
we assume n is a power of 2. Given [A] e S(K) with indp A = 2we
have IJSΓ,: MP\ = 1 which follows from the fact that A ~ B ® if with
[1?] e J5(Λf) being quaternion. Now it suffices to show that there
exists [C] e S(M) with indp C — 2, but this is immediate from Yamada
[18, Th. 2.2, p. 586].

3, The tensoring question for UF(K). Let K/F be finite Galois
where F is an algebraic number field. We define UF(K) to be the
subset of B{K) consisting of [A] e B(K) such that:

(3.1) If the index of A is m then, εm is in K, and

(3.2) If ^ is a iΓ-prime lying over the i^-prime p and

τ 6 G(K/F) with ei = εLr then:

= 6r inv^r (A)(mod 1) .

For a treatment of this subgroup, which we call the 'group of
algebras with uniformly distributed invariant for K relative to F',
see Mollin [9]. We note here that S(K) is a subgroup of UF(K).

We need a definition before stating the next result. If K and
E are number fields and D is a 2£-division ring; i.e., D is a division
ring with [D] 6 B(K) then we say that D is 'inadequate' if there
exists an ^-division ring containing D.

THEOREM 3.1. Let E/F be a Galois extension of number fields
and K/F any extension of number fields. If D is a K-adequate
division ring with [D] e UF(E) where D has exponent n, then εn is
in K and for all p\n> we have:

Proof From Mollin [9, Th. 3.2, p. 263] we have en is in K and
from Mollin [9, Lemma 31, p. 262] we have that UF(E)p(g)KE is
contained in UK{KE)P. From the proof of [9, Th. 2.10, p. 260] and
from [9, Lemma 3.1, p. 262] it is easily seen that it suffices to prove
that there are no higher p-power roots of unity in KE than in E
and that p does not divide \KE:E\.

Now, let A be a if-division ring containing D. Then D ® KE
is isomorphic to the division ring, of index n in Dί9 generated by D
and K. Therefore p does not divide \KE: E\. Now, if εpa is in KE
but not in E then \E(epa): E\ = p and E(εpa) £ KE. Thus p \ \ KE: E\,
a contradiction which establishes the theorem.
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