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CATEGORY IN FUNCTION SPACES, 1

D. J. LutzEr AND R. A. McCoy

In this paper we study Baire category in spaces of con-
tinuous, real-valued functions equipped with the topology of
pointwise convergence. We show that, for normal spaces, the
Baire category of C.(X) is determined by the Baire category
of C.(Y) for certain small subspaces Y of X and that the cate-
gory of C,(X) is intimately related to the existence of winning
strategies in a certain topological game 7°(X) played in the
space X. We give examples of certain countable regular spaces
for which C.(X) is a Baire space and we characterize those
spaces X for which C.(X) has one of the stronger completeness
properties, such as pseudocompleteness or Cech-completeness.

1. Introduction. It is well-known that the set of all continuous
real-valued functions on a space X is a completely metrizable space
when equipped with the topology of uniform convergence and there-
fore that the Baire Category Theorem is valid in this space. How-
ever, when function spaces carry other topologies, the status and
role of the Baire category property is more mysterious, and in this
paper we consider Baire category in C.(X), the set of all continuous
real-valued functions on a completely Hausdorff space X, equipped
with the topology of pointwise convergence. (See §2 for precise
definitions.) We can preview some of our less technical results as
follows. Experience shows that the Baire category of C.(X) is de-
termined by the kinds of limit points which countable subsets of
X can have. For example, if C.(X) is a Baire space then X has
no nontrivial convergent sequences (Corollary 3.3) and the same
argument shows that the set of bounded members of C.(X) is never
a Baire space. Furthermore, it is sometimes possible to study the
Baire category of C.(X) by examining the continuously extendable
functions defined on countable subspaces of X (3.7). Examples show
that there are infinite nondiscrete spaces X for which C.(X) is a
Baire space, e.g., any normal space in which each countable subset
is closed (see Theorem 8.4). A more interesting fact is that there
are even countable nondiscrete spaces for which C.(X) is a Baire
space, e.g., any space X = @ U {p} where p € 3w — ®, topologized as
a subspace of Bw (see Example 7.1). It is possible for C.(X) to be
a Baire space, where X is countable and regular, without X being
embeddable in f®w (Example 7.2) and we can characterize those filters
4" on @ such that C.(X) is a Baire space when X is obtained by
adjoining a single point to ® and using .4~ as the neighborhood
filter of the ideal point. More precisely, if X has a unique nonisolated
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point whose neighborhood filter is . #; then C.(X) is Baire if and
only if, given any sequence .#,, ., :---, where each ., is an in-
finite family of pairwise disjoint finite sets, it is possible to choose
F,e #, in such a way that the set (X — U {F,:n = 1}) belongs to
the filter _#~ (see §5). Other characterizations are given in terms
of a certain two-person infinite game /'(X) in which one player at-
tempts to construet a set with a limit point by successive choices
of finite subsets of the space X (see §§4, 5, 6 and 7). For C.(X)
to be Baire it is necessary that the first player mof have a winning
strategy in I'(X) 4.6 and there is a certain class of spaces for
which that condition is also sufficient (cf. §6). The assertion that
the first player has no winning strategy in /'(X) can be translated
into more set-theoretic terms, and that is the goal of §5. In §8 of
our paper we investigate completeness properties which are stronger
than simply being a Baire space and characterize two such properties
of C.(X) in terms of winning strategies for the second player in
I'(X). One result in §8 shows that if R denotes the usual space
of real numbers, the funetion space C.(X) cannot be a G;-subset of
the Baire space R* unless X is discrete, a fact which may be viewed
as showing that the (dense) subspace C.(X) of R* cannot inherit the
Baire category property from R in the usual way. In the final
section of the paper, we give a few results deseribing the situation
in which functions are allowed to have their values in spaces other
than R.

2. Preliminary lemmas, special notations and definitions. The
space R*, the Tychonoff product of card (X) copies of the usual
space R of real numbers, is the set of all functions from X to R.
There are two ways to describe the topology of R*. The first is to
use sets of the form

[F, Vl={gecR": g[F]c V},

where F'C X is finite and V C R is open, as a subbase. The second
is to use sets of the form

AN(f, S,e) = {ge R*: if xS then |g(x) — f(z)| < &}

as a neighborhood base at f, where S is a finite subset of X and
e > 0.

The set of continuous, real-valued functions on X, topologized
as a subspace of R*, is denoted by C.(X). If feC.X), then we
will denote basic neighborhoods of f in C.(X) by .+#7°(f, S, ¢) =
C.(X) N A, S, ©).

A space X is completely Hausdorf if, given points z = vy in X,
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there is a continuous real-valued function f: X — R having f(x) # f(¥).
The function f is said to separate the points x and y.

LeEMMA 2.1. Let & and . be two topologies on a set X and
suppose . .. Let C(X,.) and CA(X, .7") denote the spaces of
continuous real-valued functions on (X, &) and (X, .7 ) respectively.
Then

(a) CAX,.S”) is a (topological) subspace of C.(X, .. );

(b) CiX,.”) is a dense subspace of C(X, . o") if and only if
whenever two points of X can be separated by a .7 -continuous
Sfunction, then they can also be separated by an S -continuous
Sfunction;

(e) in particular, C(X) is a dense subspace of R* if and only
if X is a completely Hausdorff space.

Comvention 2.2. Henceforth, every space is at least completely
Hausdorff.

The function space C.(X) derives much of its topological struec-
ture from the space R. In particular, no matter what X is, C.(X)
is a completely regular topological algebra.

A topological space Z is of the second (Baire) category if
N{G,:n =1} +# @ whenever G, G,, --- is a sequence of dense open
subsets of Z, and Z is a Baire space if N{G,:n =1} is dense in Z
under the same hypotheses on the G,’s. If Z is not of the second
Baire category, then Z is of the first category. Obviously, any Baire
space is of the second Baire category, but the converse is false in
general. However, if Z is a homogeneous space (i.e., given z, y € Z,
there is a homeomorphism of Z onto Z sending = to %) then “Baire
space” and “second (Baire) category” are equivalent notions as our
next result shows.

THEOREM 2.3. Let Z be a homogeneous space. Then Z 1is a
Baire space if and only 1f Z is of the second Baire category.

Sketch of proof. Suppose Z is of the second Baire category.
Then the Banach category theorem yields a nonempty open subspace
U which, in its relative topology, is a Baire space. Fix ze€ U. For
any yeZ, let h,:Z—Z be an autohomeomorphism of Z having
h,(x) =y. Then U, = h,[U] is an open neighborhood of y which is
a Baire space so that, in the terminology of [1, 1.2.4e], Z is locally
a Baire space. But then Z is a Baire space.

COROLLARY 2.4. For any space X, CAX) is a Baire space if
and only i1f C.(X) is of the second Baire category.
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Proof. Being a topological vector space, C:.(X) is homogeneous.
Now apply 2.3.

We shall often exploit the fact that C.(X) is a dense subspace
of R* because of the next theorem.

THEOREM 2.5. For any space X, R* is a Baire space, and C.(X)
18 a Baire space if and only tf given any sequence &, &, --- of
dense open subsets of R*, the set C.(X) N (N, &) = D.

Proof. That R is a Baire space no matter how large card (X)
may be follows from, e.g., [2]. The assertion about C.(X) follows
from 2.4.

Let {Y,: a € A} be a family of topological spaces. We may assume
that Y,N Y, = @ whenever a = B3. The topological sum P{Y,: a € A},
also called the “disjoint union of the Y,’s”, is the set X = U {Y,: @ € A4}
endowed with the topology in which a set U < X is open if and only
if UNnY,is open in Y, for each a«€ A. At several points in the
sequel we will need to exploit the natural relationship between
C.(D{Y,.aec A}) and the product space II{C.(Y,):aec A} which is
deseribed by

THEOREM 2.6. The function space C.(P{Y, ac A}) is naturally
homeomorphic to the Tychonoff product space II{C.(Y,): a € A}.

Conventions 2.7. The symbols R, N, @ and @, will denote, re-
spectively, the usual space of real numbers, the positive integers,
the set of finite ordinals (i.e., NU {0}) and the set of countable
ordinals. Finally, ¢ will denote the cardinality of R.

3. Category in C,(X) and subspaces. In this section we will
have spaces YC X and, for a function geC(Y), #3(g, T, ¢) will
denote {heC.(Y): if te T then |h(t) — g(t)| < &}, where T is a finite
subset of Y.

LEmMMA 3.1. Let YC X and let p: Co(X)—C(Y) be the restriction
map. For each basic open set _17°(f, S,¢) in CAX), p[4+7(f, S, ¢)]
is dense 1n N3 (fly, SN Y, €).

Proof. Let ge 45(fly, SNY,e) and let _#3(g, T,0) be any
neighborhood of ¢g. We may assume SNYCTcCY and ¢ <e.
Because X is completely Hausdorff, there is a function ke C.(X)
having k|, = g|; and h|s_y, = flis—p. (Observe that TU (S — Y) is
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finite and TN — Y)= @.) But then he_4(f, S,¢) and p(h)c
A9, T, 0) so that _+3(g, T, 0) N o[ +"(f, S, e)] # @ as required.

THEOREM 3.2. If C.(X) is a Baire space then so is C.(Y) for
every subspace Y of X.

Proof. Let p: C(X)— C(Y) be restriction. Let &, D%, --- be
dense open subsets of C.(Y) and define 57, = p~'[<,]. Since p is
continuous, each 2577 is open in C.(X). Let _#°(f, S, ¢) be a basic
open set in C.(X). Because o[ #7(f, S, ¢)] is dense in the open set
A3 fly, SN Y, &), o[.#°(f, S, ¢)] must meet the dense open set Z,.
Hence _+°(f, S, ¢) N &7, +# @, showing that 57, is dense in C.(X).
But then N{s~:n =1} +# @ so that N{¥,:n = 1} # ©.

COROLLARY 38.3. If X contains an infinite pseudocompact sub-
space, then C.(X) is of first category.

Proof. In the light of 3.2, it is enough to prove that C.(Y)
is not a Baire space whenever Y is an infinite pseudocompact space.
We define &, = {feC.(Y): fIY]N (n, +)* @}. It is clear that
each ¥, is open, and since Y is infinite and completely Hausdorff,
each &, is also dense in C(Y). However, any member of N{Z,: n =1}
would be an unbounded, continuous real-valued function on Y and
that is impossible since Y is pseudocompact.

A simple trick allows us to strengthen the conclusion of Theorem
3.2.

COROLLARY 3.4. If C.X) is a Baire space then so is C.(Z) for
every space Z which can be mapped into X by a continuous 1 — 1
Sunction.

Proof. Let g: Z-— X be a continuous, 1 — 1 function. Let Y =
¢g|X] and topologize Y as a subspace of X. The space Z has two
topologies, viz., the given topology .~  and the topology .&/=
{97lUN Y]: U is open in X}. Clearly &“cC.2 and since X is com-
pletely Hausdorff, so is (7, .%”). According to Lemma 2.1, C.(Z, .&)
is a dense subspace of C.(Z, .o”). Since g:(Z,.9”)— Y is a homeo-
morphism, C.(Z,.&”) is a copy of C.(Y) which is a Baire space ac-
cording to 3.2. But then C.(Z,. ) has a dense, Baire, subspace,
so that C.(Z, o) is itself a Baire space.

Certain partial converses of 3.2 can be obtained: they assert
that the Baire category of C.(Y) for certain small subspaces Y of
X can sometimes determine the category of C.(X).
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DEFINITION 3.5. Let Y X. Let E(Y, X) = {feC.(Y): f can be
extended to an element of C.(X)}, and topologize E(Y, X) as a sub-
space of C.(Y).

THEOREM 3.6. Suppose X 1s completely Hausdorff. Then C.(X)
1s Baire if and only if for each countable Y C X, the space E(Y, X)
1s Baire.

Proof. Suppose C.(X) is Baire and let p: Ci(X) — C(Y) be the
restriction map. Since the range of p is exactly E(Y, X), the argu-
ment given in the proof of 3.2 shows that E(Y, X) must be Baire.

Conversely, suppose E(Y, X) is a Baire space whenever Y is a
countable subspace of X. Let £, D%,D --- be dense open sets in
R*; we show that C.(X) N (N{Z,.:n =1}) = @. For each n let 7,
be a maximal collection of pairwise disjoint open sets in R*, say ¥, =
{ A" (Fans Surmy Carn): @€ A,}, such that ¥,,, refines ¥, and U¥,C Z,.
Then each U ¥, is dense in R*. Furthermore, since the members
of ¥, are pairwise disjoint and since R* has countable cellularity,
(i.e.,/each pairwise disjoint open collection is countable), each 7, is
countable. Let Y= U{S,..a€4d, n=1}. Then, by hypothesis,
E(Y, X) is a Baire space. Let f/,=fun|Y and let A 5(fin, Suny €arn)=
{geC(Y): if zeS,, then |f.(x)— 9@)]| < €nul}- Define 27 =
U {#5( Sy Sany Can): @ € A,}. Then each 57, is a dense open subset
of C.(Y). Because X is completely Hausdorff, E(Y, X) is dense in
C.(Y) so that each set &, = 57, N E(Y, X) is relatively open and
dense in E(Y, X). Since E(Y, X) is a Baire space, we may choose
he N{&,:m =1} and then a function heCy(X) which extends h.
Fix n. For some acAd,, he.,//;y(f;,,,,, S..n €xn) SO that because &
extends & we have he 4" (fun Sum €an). Hence heZ, so that
N{Z.n=1}+ @. According to 2.4, C.(X) must be a Baire
space.

In normal spaces, there is another partial converse of 3.2.

THEOREM 3.7. Suppose X is normal and that C.(Y) is a Baire
space whenever Y is a closed separable subspace of X. Then C.(X)
1s a Baire space.

Proof. If £, D%,D --- is a sequence of dense open sets in RY,
choose maximal pairwise disjoint collections ¥'(n) of basic open sets
in R* in such a way that U¥%(n)C %,. Since R* has countable
cellularity, each ¥'(n) is countable, say Z'(n) = {4 (Fuky Tuits Eniic):
k =1} where each T,, is a finite subset of X. Let Y =
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ely(U{T,,:n, k=1}). Then Y is a closed separable subspace of X.
Let fu, = fai [ Y and define £'(n) = U{A5(Fas Tops €ni): b =1} It
is easy to see that each &’(n) is a dense open subspace of R" so
that, because C.(Y) is a Baire space, there is a funetion g€ C(Y) N
(N{&’(m): n = 1}). Then the Tietze-Urysohn theorem yields a func-
tion G e€C.(X) which extends g, and one easily verifies that Ge
N{Z&(n): n = 1}, as required to show that C.(X) is a Baire space.

REMARKS 3.8. The authors would like to thank Eric van Douwen
for his helpful comments which sharpened an earlier version of 3.7
and for his observation that, since there is a pseudocompact space
in which every countable set is closed, normality is an essential
hypothesis in 8.7. [4, 5.1 and 5.3.]

Question 3.9. Is it true that C.(X) must be a Baire space given
that C.(Y) is a Baire space for every countable subspace of X, and
that X is normal?

4, Necessary conditions: the game /.

DEFINITION 4.1. The game I' = I'(X) is a game in which two
players, called (I) and (II), are given an arbitrary finite starting set
S, and then proceed to choose alternate terms in a sequence S,, S, S,, - -
of pairwise disjoint finite (possibly empty) subsets of a topological
space X. The resulting sequence (S,, S, S,, ---) is called a play of
the game I” and is said to result in a win for player (I) if and only
if the set S, US;US;U --- is mot a closed discrete subspace of X,
i.e., if and only if the set S, US; US;U --+ has a limit point in X.
If player (I) does not win, then player (II) wins.

DEFINITION 4.2. A strategy for player (I) in the game I" is a fune-
tion o which assigns to each pairwise disjoint sequence (S,, S, - - -, Sw),
with & = 0, a finite set S,,., which is disjoint from (S,US,U--- U S;.).
A strategy for player II is a function z which assigns to each pair-
wise disjoint sequence (S,, S, - - -, Syss) (B = 0) a finite set S,,+, which
is disjoint from (S, U S, U +-- U Syru).

DEFINITION 4.3. A strategy ¢ for player (I) in the game I’ is
said to be a winning strategy if, whenever (S, S,, ---) is a play of
the game I in which S,,., = 0¢(S,, S,, ---, S;») for each k& = 0, then
player (I) wins that play, i.e., the set S,US,US; U --- has a limit
point in X. A strategy z for player (II) is a winning strategy if,
whenever a play (S,, S, S,, -+ ) has S,,+,=7(S,, S,, - - -, Sux+s) for every
=0, then S,US,U --- is a closed discrete subspace of X.
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REMARKS 4.4. In defining strategies for player (I) we often use
induections in which S,,., = o(S,, S,, - -+, S;) is defined only for those
sequences (S,, S, - -+, S;) which could result from an actual play of
the game using o at all earlier stages, i.e., sequences (S,, S, ---, S;)
in which S, = a(S,), S; = o(S,, S,, S,), etc. To be precise, we should
define o(S,, S, ---, S;x) = @ for all other sequences. An analogous
remark applies to defining strategies for player (II)-cf. 4.6.

ExampPLE 4.5. (a) Suppose X contains a nontrivial convergent
sequence Z, &, %5, ---. 'To define a winning strategy for player (I)
in I'(X) we let a(S, S, -+, Si) = {x,}, where z, is the first point
of the sequence not in (S, U S, U ---8S;,,).

(b) Suppose X is a space in which every countable set is closed,
e.g., X is an uncountable set containing a point p such that each
point of X — {p} is isolated while neighborhoods of p are co-countable
sets. Then player (II) has an obvious winning strategy: for any
sequence (S, S, ‘-, Suyr), let (S, S, -+, Sepr) = @. There is a
sense in which this is the only possible winning strategy for player
(IT)—see 8.4.

THEOREM 4.6. If C.(X) 1s a Baire space, then player (I) cannot
have a winning strategy in the game I'(X).

Proof. Let o be any strategy for player (I). Using the fact
that C.(X) is a Baire space we will define a counterstrategy r for
(ITI) and a finite starting set S, such that in the play S,, S, = d(S,),
S, = 7(8,, S), ete., player (II) defeats player (I).

We first define an array of finite subsets T'(7, ---, 7,) of X, one
for each finite sequence (¢, %, *- -, 1,) of elements of w, by induction
on k. Let T(0) =@ and, if T(), ---, T(n — 1) are defined, let
Tn) =oe(TO)U --- UT(m —1)). Suppose k =1 and that T(z, ---, ;)
is defined for every k-tuple of elements of w. Let T(i;, -+, %, 0) = @
and, if T(4, - ,%,7) is defined for 0 <7< n — 1, let T(t,0 = *y %y M) =
o(R,, R, Rzy ) Ry, T(iu ) Uy O)U - UT(1,, -+ ) ’l:ky n— 1)) where
Ry,=TO)U---UT@E, — 1), R, = T(¢), R, = T(3, O)U---UT( 3, — 1),
R, = T(il; 7:2); Ty Ry, = T(":n R ia) and R,; = T(in Tty ii, OuU---uU
T(ty, +++, 1, 141 — 1) for j < k.

We next define open subsets #°(3,, - -, 1,) of C.(X) inductively,
one for each k-tuple of elements of w. Let 2#7(0) = @ and, if
7 (0), ---, # (n—1) are defined, let 77 (n) = N{[{z}, (0, 1)]: x € T(n)}—
cl(#Z(0)U---UZ (n —1)). (This notation is defined in §2.) Suppose
Y (ty, -+, 1,) is defined for some k=1. Let Z (4, -+, %, 0) = @.
Suppose # (i, -+, 14, J) is defined for every je{0, ---,n —1}. We
let 27, -+, 4 n) =2, -, N (N{l{z}, k-1, Bl zeTC, -,
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iy, n)}) — B where E=cl(%Z (i, -+, %, OU -+ - UZ (%), +++, %, 0 —1)).

Now define & (n) = U{# (4, 4y, - -, ta): 1;€0 for 1 < j<n}. Each
&, is open in C,(X). We claim that each &, is dense. First consider
<, Let Z = N¥.[{x;}, V;] be a basic open set in C.(X). Let F =
{z, ---, x,}. Since F is finite and the sets T(1), T(2), - - - are pairwise
disjoint, there is a least positive integer p such that T(p)NF = ©.
Then either there is an integer je{l, ---, p — 1} for which % meets
¥ (5) C &, or else (since X is completely Hausdorff and F U T(p)
is finite) % meets 7 (p) © %,. Therefore <, is dense in C.(X).
Suppose we know that &,_, is dense in C.(X). To show that &, is
dense, it is enough to show that U{%# (¢, - - -, t._y, k): k = 0} is dense
in %#°(4,, ---, i,_,) for each (» — 1) tuple (3, - - -, %,_,). To that end, let
7z = Nk, [{z;}, V;] be any basic open set contained in %#7(7,, - - -, 4,_,).
Since the set F = {x;: 1 < j < k} is finite and the sets T(4, - - -, 44, 5)
are pairwise disjoint for j=1,2,3, --., there is a first positive
integer » such that T(, ---, 4,_, ) misses F. But then UnN
(U{F (G~ oy ey, 31 S < p}) # @, s0 &, is dense in C(X).

Because C.(X) is a Baire space, there is a (continuous) function
fen{&,:n = 1}. Because the sets used to obtain each &, are pair-
wise disjoint, there is a unique sequence 4, %, --- such that fe
¥ (i, -+, 1) for each k = 1. Then f[T(, 4, -+, ] & —1, k) so
that, since f is continuous, the set U{T(¢,, ---, %,): k¥ = 1} has no limit
points in X.

Now consider the play of I” which starts with S, = T(O)U --- U
T(i; — 1). Since player (I) uses strategy o, S, = d(S,) = T(¢,). Let
player (II) respond by specifying S, = T(:,0) U --- U T(3, 7, — 1).
Then player (I) must let

Sa = o'(So, Su Sz)
=o(TOU---UT0E, — 1, T(%y), T(, OU -~ UT(3, 4, — 1)),

i.e.,, S,= T, 1,). Then player II) lets S,= T(, 1, 0U---U
T(t, % %5 — 1), and soon. In this play of I", we have S,US,US;U--- =
U{T(z, ++-, %): k =1} which is known to be closed and discrete.
Therefore, ¢ could not have been a winning strategy for player

@.

5. Special results on the game /I'. As Theorem 4.6 illustrates,
it is the nonexistence of winning strategies for I" which is relevant
to the study of C.(X). It is possible to translate this condition out
of game-theoretic language, and that is the point of our first result
in this section.

THEOREM 5.1. The following are equivalent for any space X:
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(a) Player (I) has no winning strategy in the game I;

(b) given infinite, pairwise disjoint collections F#,, F,, +++ of
finite sets, it is possible to choose imfinite subcollections &, < 7,
in such a way that U {F: Fe %, for some n =1} is closed and
discrete;

(¢) given imfinite, pairwise disjoint collections 7, F,, --+ of
finite sets, it is possible to choose one member F,e ¥, such that
UA{F,:m = 1} 1s closed and discrete.

Proof. To prove that (a) implies (b), suppose no winning strategy
for player (I) in I" exists, and that the collections &, #,, --- are
given. Write N = U{N,:k =1} where the sets N, are infinite,
pairwise disjoint subsets of the set N of natural numbers. Now
define a strategy o for player (I) as follows. Let S, be any finite
starting set. Choose the unique index % having 1€ N,. Define o(S,)
to be the first member of %, which is disjoint from S,. Suppose
(S, S, +++, S:,) is a pairwise disjoint sequence of finite sets. Find
the unique index % such that n € N, and let o(S,, S, ---, S,,) be the
first member of .#, which is disjoint from (S, U --- U S,,). By hy-
pothesis, this o cannot be a winning strategy for player (I) so that
there must be a play of the game I', say (S, S, S,, ---), such that
S = 0(Sy, -+ -, S;) for each £ =1, and yet U {S,,+.: & = 0} is closed
and discrete. Then if we let . #, = {S,.+:: S;pv1 €.,) we obtain an
infinite subcollection of .&#,, and U {F: Fe %, for some n =1} =
S, US,US;U --- is closed and discrete.

That (b) implies (¢) is obvious.

To prove that (e¢) implies (a), suppose that ¢ is a strategy for
player (I) in game /. We will show how to find a finite starting
set S, and a play (S,, S, S,, -++) of I" in which S,.4, = a(S,, ---, Sy)
and yet (S,US;U ---) is a closed discrete set. Using the strategy
o, define finite sets T(i, - --, 7,) for each k-tuple of elements of w,
exactly as in the proof of Theorem 4.6. Let &7 = {T(j): 7 = 1} and
for each k-tuple (i, 4, ---, i,) of elements of N, let # (1, ---, %,) =
(T(3, ---, % J): § = 1}. Applying our hypothesis about disjoint collec-
tions, we may choose one member from each of these collections in
such a way that the union of the chosen sets is closed and discrete.
To be more specific, let the chosen sets be T(m)e . and, for each
k-tuple (2, -+, 1), let T3y, - -+, %, m(1,, 5, - -, %,)) be the chosen mem-
ber of F (iy % +++, 4. Now let g, =m, j,=m{), -+, Jor.=
m(Jy, Joy ***, Ju). Define the starting set S, = T(0)U --- U T(5, — 1).
Using the strategy o, player (I) must specify the set S, = d(S, =
o(TO) U+ UT(j, — 1)) = T(5). Then let player (II) respond by
letting S, = T(5, 0)U---UT(j, j, — 1) so that, following strategy o,
Player (I) must let S, = a(S,, S, S,) = a(TO)U --- UT(5, — 1), T(7),
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TG, OU---UTWG, 7. — ) =T, j.)» And when player (II) takes
his or her nth turn, he or she lets S,,=T@, -+, %, 0)U --- U
T(%y, *+*, Tmy turs — 1) so that player (I) is forced to let S,,., =
0(Sy ++y Sew) = T(4y +++, tg+). But then, because U {T(3, ---, 14):
k =1} is closed and discrete, Player (I) has lost in this play of the
game and so ¢ could not have been a winning strategy.

REMARK 5.2. It is sometimes convenient to have an indexed
version of the property described in 5.1 (b). Obviously 5.1 (b)
equivalent to: (b)’ given collections .7, = {F(n, a): a € A,} of pairwise
disjoint finite sets where each A, is an infinite index set, there are
infinite subsets A, C 4, such that U {F(n, @): a € 4}, for some n = 1}
is closed and discrete. The version given in (b) covers the case
where many of the sets F(n, a) belonging to &, are empty, and
that will simplify the proof of 6.5 below.

6. Sufficient conditions involving the game I'. In this seec-
tion, let Y be the class of all collectionwise Hausdorff [3] spaces X
in which the set X* = {x € X: x is not isolated} is a discrete subspace
of X. Other characterizations of members are given in our next
lemma, whose proof is elementary.

LEMMA 6.1. The following properties of a space X are equiva-
lent:

(a) XelX;

(b) X is paracompact and X is discrete;

(e) X s a topological sum X = @P{Y,: a € A} of Hausdorff spaces
Y. each having at most one nonisolated point.

The notation .#"(f, S, &) was defined in §2. We need the fol-
lowing constructive lemma.

LEMMA 6.2. Suppose that, in the product space R*, we have
a sequence N (f., S,, €,) of basic open sets with A (f., S., €.) D
</17“(fn+,, Sa+1, 26,41) Jor each m = 1. Suppose lim, e, = 0 and let T =
U{S,:m =1}, Then the sequence {f,) converges pointwise to some
Function g on the set T and §e N{1"(f., S,, €,): m = 1} whenever
geR* has §l, = 9. Furthermore, if peT and if, for each n, E,
1s a (possibly empty) subset of S, for which fJE,|C[foi(D) — €4y,
Fuoi(D) + €,_1], them for every € >0 there is an integer N = N(g)
such that g[U{E,:n = N}]c @) — ¢, §(p) + ¢).

Proof. Fix any te€T. Choose any % such thatteS,. If7, j=n
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then £, f;€ 4" (fa, S,, €,) so that | fi(®) — £;(t)| < 2¢,. Therefore the
sequence {f,(t)) is a Cauchy sequence in R and has a limit, say g(¢).
Let g e R* agree with g on T. With n fixed and teS,, for each
kz%—l—l, fk € '/I/(fn+]y Sﬂ.ﬂ; 8n+1) and S0 fk(t) € (fn+1(t) _5n+1, f’n+1(t)+6fn.+l)°
Therefore  §(t) = lim, fi(8) € [furi(t) — €ntsy Farr(8) + €anl] T (fult) — &,
ful®) + &,). Hence §e N{AN(f,, Sa, €2): 1 = 1}

To prove the final assertion, suppose p € Sy,. Fix ¢ > 0 and choose
N, so large that whenever n = N,, both ¢, < ¢/3 and | £.(p) — §(p)| <
¢/3. Let N = max(N,, N,) and consider §[E,] where » = N + 1. Fix
teE,. Then

(@) G@) e[ fuld) — &a, full) + &ul;

(b) f,,,(t) € [f-n—1(p) — Enyy fn—l(p) =+ en—l];

(e¢) from (a) and (b),

gt elfari(D) — €noy — &ay furi(0) + &0y + 4] .

(d) Because n — 1 = N,

faoi(p) €[d(p) — ¢/8, g(p) + ¢/3] and so

() gp)—e<gp) —¢e/83—¢epy— 6 = fri(p) —€aey — 6, S () =
Jaoi(D) + &ay + 6, < G(D) + 6/8 + ey + &, < G(p) + &
Therefore, n = N + 1 implies §[E,] < (§(p) — ¢, §(p) + ¢).

We are now in a position to characterize those members X of
Y for which C.(X) is a Baire space.

THEOREM 6.3. Let XeZX. Then C.X) is a Baire space if and
only if player (I) has no winning strategy in ['(X).

Proof. In the light of Theorem 4.6, it remains only to prove
that if player (I) has no winning strategy in I'(X), then C.(X) is a
Baire space. We establish the contrapositive, namely (cf. Lemma
2.4) that if C.(X) is a first category space, then there is a winning
strategy for player (I) in I.

Since X° is a discrete subspace of X, there is a partition
{V,pe X% of the space X into open subspaces for which {p} =
X*N V,. Since C.(X) is the first category there is a sequence &, D
<,D--- of dense open subsets of R* having (N{Z,: n=1)NC(X)=2
(cf. Lemma 2.5).

Now suppose S, is any finite starting set for the game I". Player
(I) should let 7/, =0 and ¢ =1. Then _4°(f, S, &) must interseet
the dense open set %°,. Player (I) chooses a basic open set
M f,, T,2)C<, N N(fo, So, &). Without loss of generality, ¢, €
(0, 2']. Furthermore, enlarging 7, if necessary, we may assume
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that if V,NS,# @ then peT,. Player (I) should now define S, =
0(S,) = T, — S,. For induction hypothesis, suppose sets S, S, ---,
S,..1» numbers ¢, ---, &,_, and functions f, fi, -+, fin_, are defined
in such a way that

(a) e;€(0,27°];

(b) if V,n(U{S;:0=1=2n—2})%= @ then peS,US,U---US,,_;

(C) L/I;:(fw‘—n Tej—u 252j—~1) c -cgj2j—1 ﬂ v/f;(.ﬁj—?, T2j~2, 52:“2) lf .7 §_ n,
where T, = S, U ---8;;

3 d.

@ fle) = {fz,_l(p) if xeSiz,- N V, for some pe X9
Sfoi—i(x) otherwise.
Now suppose S,, is a finite set which is disjoint from (S,US,U--- U
S.._.). Define a function f,, by

Jona(p) if z€8S,, NV, for some pe X?
foui(x) otherwise.

fu(@) = {

Let ¢, = 1/2)¢,,. Let T,, =S US, U---US,;._;US,,. Then the
basic open set A Jfons Ty, &,) must intersect the dense open set
@oni1 S0 that there is a basic open set A" (finrsy, Tontty 26amir) C Fonss
A (Fons Tony €2n). Enlarging T,,., and shrinking e¢,,., if necessary, we
may assume &,,., € (0, 27®*] and that if V, N T,, + @, then pe T,, ...
Player (I) should now define S,,;, = Ty,+; — T>.. Thus the strategy
o is defined.

We claim that in any play (S, S, S,, ---) of I' in which S,,,, =
o(Sy, Sy, + -+, S, 18 defined as above, the set (S,US,US;U---) must
fail to be closed and discrete. For suppose the set 7,=S,US,US,U---
is closed and discrete. Let 7, = S,US,US,--- and let T = T,U T,.
Because part (b) of the induction step, T is a closed set. Let T’ =
{peT: pis a limit point of T;}. Then T,UT'cT. According to
Lemma 6.2, the sequence {f,> converges pointwise to some func-
tion g: T — R. We claim that g is continuous on 7. Certainly g¢
is continuous when restricted to the closed discrete space T,. To
see that ¢ is also continuous on T, U T', let pe T’ and let ¢ > 0.
We apply the final conclusion of Lemma 6.2 with E, = @ if » is
odd, and E,=S,NV, if » is even. Then f,+(H,+) C[fu®) — €.,
fu(p) + &,] for each n = 1 so that, corresponding to the given ¢, there
is an integer N having g[{p} U (U{S,.N V,: = is even, » = N})]C
(9(p) — €&, 9g(p) +¢). Now V,N(TUT) is a relative neighborhood
of pin T,UT, and V,N (T, UT) = {p}U(U{S.N V,|n is even}).
Because X is Hausdorff and U{S,:n < N} is finite, the set {p}U
(U{S,N V,: » is even and » = N}) is a relative neighborhood of p.
But that establishes continuity of g at ». Since p € 7" was arbitrary,
g is continuous on (7, U T"). Since (T, U T") is closed in T, ¢ is
continuous on 7.



158 D. J. LUTZER AND R. A. MCCOY

But X, being in Y, is normal (ef. 6.1) so that because T is a
closed subspace of X, there must be a continuous §eC.(X) which
extends g. But then

which is impossible.

Perhaps the most important open question raised by our results
asks whether the game I'(X) characterizes category in C.(X) for
every space X (or for every normal space X). In view of the known
pathological behavior of the class of Baire spaces under the forma-
tion of products [6], the following result leads us to conjecture a
negative answer, and may point the way to the anticipated counter-
example.

THEOREM 6.4. Suppose X, and X, are spaces for which C.(X,)
and C.X,) are Baire spaces. Then either

(a) Ci(X) X C(X,) is a Baire space; or else

(b) C.(X, 6P X,) is a first category space even though vlayer (1)
has mo winning strategy in the game I'(X, D X,).

Proof. Suppose C.(X,) X C,(X,) is not a Baire space. According
to 2.6, C.(X,) X C.(X,) is homeomorphic to C.(X,P X,) so that, by
24, C.(X, P X,) is of first category. Therefore, to complete the
proof, it is enough to show that player (I) cannot have a winning
strategy in the game /" played in X, @ X,. That is the point of our
next lemma which uses the indexed version of 5.1 (b)—cf. Remark
5.2.

LeMMA 6.5. Let {X,: a€ A} be any family of spaces such that
Jor each ac A, player (I) does not have a winning strategy in I'(X,).
Then player (I) cannot have a winning strategy in I'(P{X,: a € A}).

Proof. For each n, let &, = {F(n, 8): B € B,} be an infinite pair-
wise disjoint family of subsets of P{X,:ac A}. We may assume
that each B, is countably infinite. Then there is a countable 4,C A
such that U{F(n, B8): B€ B,, n=1}CP{X,: ac A},say A/ ={a, a,, - -}.
Applying 5.2 to the space X, , we find infinite sets B,(1) © B, such
that U{X, N F(n, B): A€ B,(1),n =1} is a closed discrete subset of
X,. We inductively choose infinite sets B,(1)D B,(2) D B,3)D ---
such that for each £ = 1, U{X,, N F(n, B): € B,(k) for some n = 1}
is closed and discrete in X,,. Now choose 3, € B,(n) CB,. Fixk =1,
Then X, N(U{F(n, B,):n=1})=[F(1, B)U--- UF(k—1, B ,))N X, JU
[U{F(n, B,):n = k} N X, ] which is the union of a finite set and a
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closed discrete set. Hence U{F(n, 8,): n = 1} is closed and discrete
in §{X,:ac A}

Using the idea in the proof of 6.4 we can obtain a positive
result about products of certain Baire spaces, namely,

THEOREM 6.6. Let {X,: a € A} be any subfamily of 2. If each
space C(X,) is a Baire space, then so is IT{C.(X,): a € A}.

Proof. As in the proof of 6.4, II{C.(X,): « € A} is homeomorphic
to C.(P{X.:aec A}). Because each C.(X,) is a Baire space, player
(I) cannot have a winning strategy in any of the games I'(X,) so
that, in the light of 6.5, player (I) has no winning strategy in
IFr@{X,:acA)). But @{X,:acA}is a member of ¥ so that, by
6.3, C.(D{X,: ac A}) is a Baire space.

REMARK 6.7. Theorem 6.6 might lead the reader to conjecture
that for XeZ, if C.(X) is Baire, then C.(X) must have one of the
stronger completeness properties (e.g., subcompactness, pseudocom-
pleteness) which were designed to make product spaces have the
Baire property. That is not the case, as a combination of Example
7.1 and Theorem 8.4 shows.

7. Applications of the game /. In this section we present
some countable regular spaces whose function spaces are Baire.

ExAMPLE 7.1. Let X be a countable subspace of Bw for which
X¢ is discrete (X? is defined in §6). Then C.(X) is a Baire space.

Proof. There is a countable collection {V,:n = 1} of pairwise
disjoint open subsets of X having X = U{V,:n = 1} and such that
each V, contains at most one limit point of X. Therefore X is the
topological sum @ {V,|n =1} so that Xe3X. Because C.(X) =
II{C.(V,): » = 1} and because each C.(V,) is a separable metric space,
a theorem of Oxtoby [6] shows that C.(X) is a Baire space provided
each C.(V,) is Baire. But that is an easy consequence of 6.3 and
5.1. For suppose .7, .%,, --- is a sequence of infinite, pairwise
disjoint subcollections of finite subsets of V,. Let F, and F| be
distinet members of 5,. Inductively choose distinct members F,, F',
of .#, which are disjoint from the finite set F,UF/U---UF, UF,_.
If the set F, U F,U --- is closed and discrete, we are done. And
otherwise, p is a limit point of (F, U F,U ---) — {p}. Since disjoint
subsets of @ cannot have a common limit point in Bw, it now follows
that U {F,:n = 1} is closed and discrete.
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EXAMPLE 7.2. There is a countable regular space X having
exactly one nonisolated point such that C.(X) is Baire and yet X
cannot be embedded in Bw.

Proof. Let O and E be the odd and even positive integers
respectively. Let 7 be an ultrafilter of subsets of O and let § be
an ultrafilter of subsets of . Let & ={SUT|Sep, Teqg).

Topologize @ by isolating each % = 0 and by letting neighborhoods
of 0 have the form {0} U F where F'e &. If X denotes the resulting
space, then X cannot be embedded in Bw since not every function
on X — {0} can be continuously extended over all of X. However,
C.(X) is a Baire space, again in the light of 6.3 and 5.1. For let
F,, F,, +++ be infinite collections of pairwise disjoint finite subsets
of X. Inductively choose distinct sets F,, F,, F.' from %, in such
a way that F,., U F}.,, UF/,, is disjoint from (F,UF/UF/'U---U
F,UF,UF)). Suppose that neither (F,U F,U:-:) nor (F{UF,U--.)
is closed and discrete. Then each neighborhood of 0 meets F,U F,U - - -
so that F,UF,U F,U --- contains a member of ¥ or a member of
g. We may assume that some member Se7 is a subset of F =
F,UF,U ---. Similarly, F' = FUF,U--- contains either a member
of P or a member of §. Since F' N F = ¢, F' must contain a mem-
ber of §. But then F” = F/ U F,” U --- cannot contain a member
of P or of § so that F” must be closed and discrete.

REMARK 7.3. It would be of interest to have a filter &% on N
so that

(a) & 1is constructed without invoking the axiom of choice;
and

(b) if ® is topologized by using {{0} U F: Fe.& } as the filter
of neighborhoods of 0, then C.(w) is Baire.

8. Completeness properties stronger than Baire. It is well-
known that the family of Baire spaces is badly behaved under the
formation of Cartesian products and this fact has led researchers to
formulate completeness properties which are well-behaved under the
formation of products (see [1] and [5] for surveys). In this section
we concentrate on three such properties: weak a-favorability [7],
pseudocompleteness [6] and (VJech-completeness.

DEFINITION 3.1. [6]. A pseudocomplete sequence for a space Z
is a sequence @, @,, --- of collections of nonempty open subsets of
Z such that

(a) for each n=1, if U+ @ is open then some Pc®, has
o +PcU
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(b) if a sequence P,c®, has cl(P,,,) < P,, for each n = 1, then
N{P,mn =1} + @.
The space Z is called pseudocomplete if Z has a pseudocomplete se-
quence and has the property that each nonvoid open set contains
the closure of some nonvoid open set.

DEFINITION 8.2. [7]. The space (X, .7 ) is said to be weakly
a-favorable if there is a sequence {(¢,> of functions satisfying _

@) ¢, 9 *—> 7 * where 9 * ={Uec.7: U+#@}, with ¢,[JU]CU;

(b) the domain of ¢, is ¥, = {(U, U, ++-, U,) €(F *)*: U;;, C
6;(U,, ---, U;) foreach y=1,2, ---,n — 1} and ¢,: ¥, > .7 * satisfies
,(U, -++, U,) C U, whenever n = 2; .

(¢ if U, U, --- is a sequence having (U, ---, U,)€¥, then
N{U,:n =1} # O.

‘The first major result in this section requires that the space X
be pseudonormal, i.e., that if H and K are disjoint closed sets, one
of which is countable, then there are disjoint open sets U and V
with Hc U and K< V. The crucial property of pseudonormal spaces
required by the theorem is given in the next lemma.

LEMMA 8.3. If Y is a countable closed discrete subspace of a
completely regular, pseudonormal space X, then every real-valued
function on Y can be extended to a continuwous real-valued function
on X.

THEOREM 8.4. Let X be pseudonormal and completely regular.
Then the following are equivalent:

(a) CAX) is pseudo-complete;

(b) Ci«X) is weakly «a-favorable;

(e) oplayer (II) has a winning strategy in the game ['(X);

(d) every countable subset of X is closed;

(e) CAX) intersects every monvoid Gs-subset of R~.

Proof. 'The implication (a) = (b) is always true [7]: We prove
(b) = (e) = (d) = (a) and (d) = (e).

(b) = (e¢). Let <{¢,> be the sequence of functions given by weak
a-favorability of C.(X). We define a strategy = for player (II) in
the game I'(X) as follows. Suppose disjoint finite sets S, and S, are
given. Player (II) should let T, = S, U S,, ¢, = 27, and should define
fi€ R* by the rule

) = 0 if xeX -8,
WEU i weS,.
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Because Ci(X) is dense in R¥, the set 4] = 4+ (f, T, &) N C(X) is
a nonvoid open set in C.(X) so that ¢,(_#7) is defined. Then there
is a basic open set _7; = 4#°(f;, T, &) having (£, T, 2¢,) C ¢,(_A7).
Without loss of generality we may assume ¢, < 2% Player (II)
should define S, = z(S,, S) =T, — T..

For induction hypothesis, suppose » = 1 and that pairwise dis-
joint finite sets S, S, :---, S;.,, numbers ¢, ---, &, and functions
fy ++, fon € R* are defined in such a way that

(a) e,€(0,27] for 1 <1 < 2m;

(b) if N = C,,(X) N j(fk; Tk, sk)’ where Tk = SOUS1U T US;,,
then (_#7], -+, A#%;+;) 18 in the domain of ¢; for 1 < j < n;

©) A5 CCAX) N A (friy Taiy 2605) CH( ANy + -+, N3im) fOT i< <.
Suppose that player (I) specifies some finite set S,,+, which is disjoint
from T,,. Then player (II) should let T,ui; = T2 U Sznt1y Eoner = (1/2)és,,
and should define f,,., € R* by the rule that

f;n(x) lf HAS X - Szn+1 ’

Soari(®) = on + 1 if xeSu. .

Because C.(X) is dense in R¥*, the set _#4,,, = A Jont1s Tont1y Eanvr) N
C«(X) is nonempty, open, and has A#75,, C A5, C $u( A7, A5 ==y A ons)
so that (47, <+, A1, Ao+ belongs to the domain of ¢,.,. Then
the nonempty open set ¢,..( 47, +++, #os) must contain a basic
open set C,,(X)nj (fontay Tonte, 260m+s) Where we may assume &, =
(1/2)52n+1- Let ~///2.n+2 = CE<X) N */I/‘(f;'n+2) T2n+2; 82n+2) and deﬁne S21l+2 =
T(Ss, Sy, * ) Sontr) = Tonis — Towsr. Thus the strategy 7 is defined.

To show that 7 is a winning strategy for player (II) we note
that weak a-favorability of C.(X) yields a g € C.(X) having ge._#7N
AN A50N---. As in Lemma 6.2 the sequence {f,,.,» converges
pointwise to the limit function g on the set T=T,UT, U T, U ---
and fOl‘ te T2n+17 ~g<t) € [.f2n+1(t) — Ent1y f2n+1(t) + 62n+1]° In particular,
for t€S,ui1s

gt) €[@n + 1) — &uiyy @n + 1) + &) C[2m, 20 + 2]

so that the set g[S, U S, US; U ---] has no limit point in R. Because
g: X — R is continuous, the set S, US,US;U --- has no limit point
in X, i.e., player (II) wins the game I'.

(¢) = (d). Suppose player (II) has a winning strategy in I'(X).
Then player (II) also has a winning strategy in each game I'(Z) for
every subspace Z of X. We begin by examining the case where
Z = {x,:n = 0} is a countable subspace of X; we claim that player
(II) has a winning strategy z* for I'(Z) such that if (S, S, S,, ---)
is a play of I'(Z) in which S,, = z*(S,, S, S,, - --) for each m, then
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U{S;a+:: ® = 0} is a closed discrete subspace of Z and U{S,: n = 0} = Z.
To define z* we begin with 7, a winning strategy for player (II) in
I'(Z). Let S,, S, be disjoint finite sets in Z. Compute S; = z(S,, S)
and let B, ={2:0<1=<2}—(S;US,US)). Define S, =17*S, S, to
be S;U E,. Suppose (S, S, S;, S;) is a pairwise disjoint sequence of
finite subsets of z with S, = t*(S,, S). Then S; = z(S,, S,) € S, so that
(S,, S,, S;, S;) belongs to the domain of z. Compute S; = 7(S,, S,, S;, Ss)
and E,={x,|0<:=<4}—(S,US,US;US;). Define S,=7*(S,, S, S,, Ss) =
S!UE,. Continuing in this fashion, we recursively define z* in such
a way thatif S, S, ---, S,... is a pairwise disjoint sequence of finite
sets in Z having S,; =7*(S,, S, S, -+, S;;_1) whenever 1=<j7=<n
then, writing S; = z(S,, S), Si = ©(S,, S, S,, S), ete., we have S;,C S,;
for each ¢ <, and {;|]0 < i < 2n}c U, S;. It follows that when-
ever (S, S, S;, ---) is a play of I'(Z) in which player (II) has used
strategy z*, then (S,, S, S;, S, Si, - --) is also a play of I'(Z) in which
player (II) has used strategy 7, so that S,US,US,U--- must be
closed and discrete in Z.

Now suppose Y is a countable subspace of X and fix pe X — Y.
Let Z = YU{p} and let z* be a winning strategy for I'(Z) as de-
scribed above. Then if (S, S, S,, ---) is any play of the game I’
in which player (II) uses strategy z*, the set {p}US,US,U--- is
guaranteed to be a relative neighborhood of p in the space Z. Now
consider two plays of the game I'(Z) in which player (I) experiments
with two different strategies and player (II) uses strategy z*. In
the first play of the game, the starting set is R, = {p}. Player (I)
specifies the set R, = 7*(¢, R,). Player (II) must respond by choosing
R,=7*(R,, R,). In general, player (I) specifies R,,,=7*(¢, By, Ry * * * 5 R3n)
and player (II) is forced to respond with the set R,,,, = 7*(R,, R, - -,
R,,.,). Because of the special properties of z*, we are guaranteed
that the set {p} UR,UR,U --- is a neighborhood of » in Z. In the
second play of I'(Z), the starting set is T, = @. Player (I) chooses
to let T, = R,. Then Player (II) is compelled to let T, = z*(T,, T)).
For n = 1, player (I) defines T,,., =*(T, T,, -+, T.,) and player
(II) responds with T,,., = 7*(Ty, T, - -+, Ten+). The result of this
play is that the set {p}jUT,UT,UTU--- is known to be a neigh-
borhood of p in Z. But any easy induction shows that T, = R,-,
whenever k£ =1 so that {p}UT,UT,UT,U--+ = {p}UR,UR,UR,U - --.
Because (R,UR,UR,U - )N(R,UR,UR;U ---) = @, it cannot be that
both {p}UR,UR,U--- and {p}UR,UR,UR,U--- are neighborhoods
of » in Z unless p is an isolated point of the space Z. Therefore
p cannot be a limit point of Y. Since p was an arbitrary point of
X — Y, Y must be closed. Hence (d) is established.

(d) = (a). Suppose each countable subspace of X is closed. For
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each %, let ¥, be the collection of all basic neighborhoods of the
form _#°(f, S, ¢) where feC.(X), S is finite, and ¢ < 27". Suppose,
for each n =1, #7(f,, S, &) €V, With A7(f,, S,, €x) D (A" (frsss
Spit Enry). Let T'= U{S,:n =1}. Then T is countable, and hence
a closed and discrete, subspace of X, and on the set 7T the sequence
{f.> converges pointwise to some function g on 7. Because T is a
discrete space, g € C.(T). Because X is pseudonormal and T is count-
able and discrete, it is possible to find a function §e C.(X) which
extends g (ef. 8.3). But then, as in Lemma 6.2, § € N{_#"(f., S., €.):
n = 1}, as required to establish (a).

(d) = (e). Let .= N{<,:n =1} be any nonvoid G, subset of
R* where each &, is open in R*. Fix fe.% and choose basic neigh-
borhoods .#°(f, S,, ¢,) of fhaving _+#°(f, S,, €,) C ¥,. We may assume
¢, is so small that _#°(f, S,, 25,) C A47(f, Sazi, €.—) and ¢, €(0, 27™).
Let T = U{S,: % = 1}. Then T is a countable closed discrete subspace
of X. Hence f|, is a continuous function on T. As above, pseudo-
normality of X allows us to find a function fe C.(X) which extends
flr. But then feCJ(X)N .~ as required.

(¢)=(d). Let Y be a countable subspace of X and suppose
peX —Y. Let Z= YU{p} and define a function f€ R* by the rule
that fi) =1 if reY and f(x) =0 if te X — Y. Index Z as Z =
{w,;n=1}). Let S,={x;:0=<17=<mn} and let ¢, = 2. Then the set

L= N{A4(f, S,, €n): 0 =1}

is a nonempty G;-set in R¥ so that (e) yields a continuous function
ge.” But then ¢g(p) = 0 while g(x) =1 for each x€ Y, so that »
cannot be a limit point of Y. Therefore (d) is established.

REMARKS 8.5. It is easy to see that, in 8.4, (a) = (b) = (¢) = (d)
for any space; no additional separation hypotheses are needed. Fur-
thermore, the pseudonormality hypothesis in 8.4 can be replaced by
any hypothesis which enables (continuous) functions on countable
closed discrete subspaces to be extended to continuous functions on
all of X. One such hypothesis is that X be strongly collectionwise
Hausdorff [3] and completely regular. Examples show that some
hypothesis beyond complete regularity is needed to prove 8.4 since
there is a completely regular pseudocompact space X in which each
countable set is closed [4, 5.1 and 5.3] and for such an X, C.(X)
cannot even be a Baire space (cf. 3.3). Finally, assertion (c) of 8.4
is equivalent to the formally stronger statement “every countable
subset of X is closed and discrete”.
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Students of Baire category theory recognize pseudocompleteness
as being a very weak completeness property. One very strong com-
pleteness property is called éech—completeness a space Z is Cech-
complete if Z is completely regular and is a G, -subset of its Stone-
Cech compactification gZ. It is known that Z is Cech-complete if
and only if Z is a G;-subspace of any completely regular space in
which Z is densely embedded. Our next result shows that, important
as éech—completeness may be in the general theory of Baire category,
there is little point in studying éech-completeness in C.(X).

THEOREM 8.6. The following properties of a space X are equiv-
alent:

(a) C.(X) 1is éech-complete;

(b) X is countable and discrete;

() C.X) is a completely metrizable space.

The proof of 8.6 requires a lemma which may be of some
interest in its own right.

LeMMA 8.7. Suppose that C.(X) contains a nonempty G,-subset
of R*. Then there is a countable closed and open subset T of X
such that each point of Y =X — T 4s isolated, and then C.(X) =
C.(T) X R".

Proof of 8.7. Let &= N{&,:n =1} be a nonempty G,-subset
of R* with .&#C C(X) and each &, being open in R*. Choose fe¢.&”
and for each n find a basic open set (47"(]”, S, €. CZ,. Let T=
U{S,: » = 1}. Then T is countable and whenever g € R* has g|, = f|,,
then g€ C.(X). We claim that X% the set of nonisolated points of
X, is a subset of 7. For if not, choose pe X? — T and define a
function g: X > R by g(x) = f(x) if == p, g(») = f(p) +1. Since
9lr = flr, 9€C(X). But f and g agree on the dense set X — {p} so
that continuity forces f =g, which is impossible. Hence X?cC T,
so that T is closed. Next we claim that the set T is also open.
For otherwise there is a point ¢ € T which is a limit point of X — T.
Define a new function h: X > R by h(x) = f(x) if xe T and hlx) =
S@)+1if xe X —T. As above, heC.(X). But then, because ¢ is
a limit point of X — T, h(g) = f(g) + 1, contrary to h(q) = f(q).
Therefore T is also open. Let Y= X — T. Since X?c T, each point
of Y is isolated and X is the topological sum X = T@ Y. Therefore
(see 2.6) C.(X) = C(T) X C.Y). But Y is a discrete space so that
C.(Y) = R, as required.

Proof of 8.6. Obviously (c) implies (a). To see that (b) implies
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(e), note that if X is countable and discrete then C.(X) = R“ which
is completely metrizable. It remains only to prove that (a) implies
(b). Assuming C.(X) is Cech-complete, C(X) is a G;subset of R*
since C(X) is dense in R*. According to 8.7 there is a countable
set T which is both closed andvopen, such that if Y= X — T then
C(X) = C(T) X R*. Since any Cech-complete space is pseudocomplete
[1] Theorom 8.4 forces every countable subset of X to be closed.
(No additional separation hypotheses are needed; cf. 8.5.) But then
every countable subset of X is closed and discrete. It is known that
if card (Y) gva)l, then RY cannot be éech—complete. But, being a
factor of the Cech-complete space C.(X), RY is (V}‘ech-complete, so Y
is also countable. Therefore X = T Y is a countable discrete
space.

REMARKS 8.8. (a) The proof of 8.6 yields a related result which
may be of some interest, namely:

THEOREM. The jfollowing properties of a space X are equivalent:
(a) CAX) is a Gs;~subset of R*;

(b) X is a discrete space;

() CAX)= R~

Proof. Obviously (b)=(c)=(a). To prove that (a)=(b), use
8.7 to obtain X =T (X — T) where T is a countable closed and
open subset of X and (X — T) is discrete. Because C.(X) is a dense
G;-subset of the weakly a-favorable space R*, C.(X) is weakly a-
favorable [7, 2]. (We remark that R* is also pseudocomplete; how-
ever it is not yet known whether a dense G;-subset of a pseudo-
complete space must be pseudocomplete.) But then the proof of 8.4,
(b) = (d) applies to show that every countable subset of X is closed
and discrete (even though we are not assuming that X is completely
regular and pseudonormal; ef. 8.5) so that X is a discrete space as
required.

It might be interesting to know more about the deseriptive
theory of C.(X) in R~*.

9. The function spaces C.(X, Y). The results concerning C(X)
in earlier sections can be generalized to spaces of functions which
are not real-valued and in this section C.(X, Y) will be the set of
continuous functions from X into the space Y, endowed with the
topology of pointwise convergence, i.e., topologized as a subspace of
the product Y*. We will assume that members of C.(X, Y) separate
points of X or, equivalently that C.(X, Y) is dense in Y*. That
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would be the case, for example, if X were completely Hausdorff and

Y contained an are.
The following result is an immediate generalization of 4.6.

THEOREM 9.1. Suppose Y contains an infinite discrete family
of open sets. If CAX,Y) is a Baire space, then player (I) cannot
have a winning strategy in I'(X).

The hypothesis in 9.1 that Y contains an infinite diserete col-
lection of open sets is equivalent (for Y completely regular) to the
assertion that Y is not pseudocompact. If the domain space X is
countable, then 9.1 can be strengthened considerably.

THEOREM 9.2. Let X be countable and let Y be any infinite
regular space. If CAX, Y) is a Baire space, then player (I) cannot
have a winning strategy in I'(X).

Proof. We construct a subspace Z of Y such that C.(X, Z) is
Baire and Z contains an infinite discrete collection of open sets.
Given such a Z, Theorem 9.1 would apply.

Since Y is an infinite regular space, Y contains an infinite pair-
wise disjoint collection V of open sets whose union is dense in Y.
We let Z= U 7. The inclusion j: Z -+ Y induces an embedding
Jx: CX, Z) — C(X, Y) and we let 2" denote the image of j,. Since
C.X, Y) is Baire, C.(X, Z) will be Baire provided we show that
C(X, Y) — 2 is a first category subset of C.(X, Y). For each ze X,
let &, ={feCAX, Y): f(x)eY — Z}. Each .#, is a closed, nowhere
dense subset of Ci(X,Y) and U{F,:2eX}=C(X,Y)— 2, as
required.

The sufficiency proved in 6.3 can be generalized to C.(X, Y)
provided Y is a complete metric space.

THEOREM 9.3. Let Xe2X and let Y be a complete metric space.
If player (I) has no winning strategy in I'(X), then Ci(X, Y) is a
Baire space.

Combining 9.2 and 9.3 we obtain:

THEOREM 9.4. Let Xe3X and suppose Y is a complete metric
space. If either (i) Y is mot compact or (ii) Y is infinite and X s
countable, then C.(X, Y) ts a Baire space if and only if player (I)
has no winning strategy in I'(X).
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We also point out that Theorems 8.4, 8.6 and 8.8 can be gener-
alized to C(X, Y) in the case where Y is a noncompact complete
metric space such that every continuous function from a countable
closed discrete subspace of X into Y admits a continuous extension
over all of X.
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