ASYMPTOTIC CENTERS AND NONEXPANSIVE MAPPINGS IN CONJUGATE BANACH SPACES

TECK-CHEONG LIM

This paper concerns fixed point theorems for nonexpansive mappings in conjugate Banach spaces. An example shows that there exist fixed-point-free affine isometries on weak* compact convex sets. Asymptotic centers of decreasing net of founded sets in l^1 are shown to be compact and a common fixed point theorem for left reversible topological semigroup of nonexpansive mappings in l^1 is given.

1. Introduction. Let K be a nonempty weakly compact convex subset of a Banach space and $T: K \to K$ a nonexpansive mapping, i.e., $||Tx - Ty|| \leq ||x - y||$, $x, y \in K$. A theorem of Kirk [10] (see also Browder [1], Gödhe [6]) states that if K has normal structure then T has a fixed point. Whether the condition of normal structure is essential remains an open problem, although Schöneberg [13] has shown that some weakenings of normal structure suffice. With a slight modification of normal structure, Kirk's proof of his theorem also yields the following theorem in conjugate Banach spaces.

THEOREM 1 (Kirk). Let K be a nonempty weak^{*} compact convex subset of a conjugate Banach space and assume that K possesses weak^{*} normal structure (see Definition 1 in §3). Then every nonexpansive selfmapping of K has a fixed point.

One major observation presented in this note is that the condition of weak^{*} normal structure in Theorem 1 is essential, even for affine isometries. We also derive a sufficient condition for a conjugate Banach space to have weak^{*} normal structure. In particular, we show that l_1 possesses weak^{*} normal structure. Asymptotic centers of decreasing nets of bounded subsets in l_1 are shown to form a normcompact nonempty subset and an application of this result is made to obtain a common fixed point theorem for families of nonexpansive mappings in l_1 .

2. A counterexample. Let c_0 be the space of null sequences, equipped with the sup norm $|| ||_{\infty}, ||x||_{\infty} = \sup_{i \ge 1} |x_i|$, and l_1 the space of absolutely summable sequences equipped with the norm $|| ||_1, ||x||_1 = \sum_{i=1}^{\infty} |x_i|$. For each sequence x, let x^+ and x^- be the positive and negative part of x, respectively. Renorm c_0 by the new norm defined by

 $|x| = ||x^+||_{\infty} + ||x^-||_{\infty}$.

 $|\cdot|$ is equivalent to $||\cdot||_{\infty}$ since $||x||_{\infty} \leq |x| \leq 2 ||x||_{\infty}$. This method of renorming was used by Bynum [4] to renorm $l_p, 1 .$

LEMMA 1. The dual of $(c_0, |\cdot|)$ is isometrically isomorphic to $(l_1, ||\cdot||)$ with the norm $||\cdot||$ defined by

$$||x|| = \max(||x^+||_1, ||x^-||_1)$$

Proof. Since $|\cdot|$ is equivalent to $||\cdot||_{\infty}$, the dual of $(c_0, |\cdot|)$ is representable by l_1 . It suffices to show that

$$\max(||f^+||_1, ||f^-||_1) = \sup \left\{ \sum_{i=1}^{\infty} x_i f_i \colon x \in c_0, ||x^+||_{\infty} + ||x^-||_{\infty} \leq 1 \right\}$$

for each $f = (f_i) \in l_i$. Note that the supremum on the right can be taken over x satisfying the further requirment that $x_i f_i \ge 0$ for all *i*. (If $x_i f_i < 0$, replace x by another one with $x_i = 0$.) It then follows that

$$\sum_{i=1}^{\infty} x_i f_i \leq ||x^+||_{\infty} ||f^+||_1 + ||x^-||_{\infty} ||f^-||_1$$

 $\leq \max(||f^+||_1, ||f^-||_1).$

For the reverse inequality, note that one can approximate $||f^+||_1$ $(||f^-||_1)$ by $\sum_{i=1}^{\infty} x_i f_i$ by suitably choosing $x_i = 1$ or 0 (-1 or 0).

EXAMPLE 1. Let $K = \{(x_i) \in l_i : x_i \ge 0, \sum_{i=1}^{\infty} x_i \le 1\}$. K is a weak^{*} compact convex set in $(l_i, || \cdot ||)$ since it is the intersection of the unit ball and the weak^{*} closed set $\{(x_i): x_i \ge 0\}$. Let $T: K \to K$ be the mapping defined by the equation

$$Tx = \left(1 - \sum_{i=1}^{\infty} x_i, x_1, x_2, \cdots, x_n, \cdots\right)$$

for $x = (x_i) \in K$. We show that T is an isometry. Let $x, y \in K$ and let $I = \{i \in \mathbb{Z}^+: x_i - y_i \ge 0\}$ and $J = \{j \in \mathbb{Z}^+: x_j - y_j < 0\}$. Assume that $\sum_{i \in I} x_i - y_i \ge \sum_{j \in J} y_j - x_j$. Then $||x - y|| = \sum_{i \in I} x_i - y_i$ and

$$||Tx - Ty|| = \left\| \sum_{i=1}^{\infty} (y_i - x_i), x_1 - y_1, \cdots, x_n - y_n, \cdots \right\|$$

= $\left\| \sum_{j \in J} (y_j - x_j) - \sum_{i \in I} (x_i - y_i), x_1 - y_1, \cdots, x_n - y_n, \cdots \right\|$
= $\max(\sum_{i \in I} x_i - y_i, \sum_{i \in I} x_i - y_i)$
= $\sum_{i \in I} x_i - y_i = ||x - y||$.

136

Similarly, we also have ||Tx - Ty|| = ||x - y|| in case $\sum_{i \in I} x_i - y_i \leq \sum_{i \in J} y_j - x_j$. Hence T is an isometry. T is clearly affine and fixed point free. Further properties of K and T are listed in the following:

(1) $\lim ||y - T^{*}x|| = \operatorname{Diam}(K) = 1, y, x \in K.$

(2) K does not possess weak* normal structure. This is necessarily true by Theorem 1 and the above demonstration.

(3) T^*x converges weakly* to zero for each $x \in K$.

(4) K itself is a minimal T-invariant weak* compact convex set. Indeed every T-invariant weak* compact convex subset C of K must contain 0 by (3). Hence $T^n(0) = e_n \in C$ for all n. Therefore $K = \overline{Co}(\{e_n\} \cup \{0\}) \subseteq C$ and C = K.

The above example shows that the condition of weak* normal structure cannot be removed from Theorem 1 even if the nonexpansive mapping is an affine isometry. In contrast, every affine nonexpansive selfmapping of a weakly compact convex set always has a fixed point.

3. Conjugate Banach spaces having weak normal structure. In this section we derive a condition for a conjugate Banach space to have weak* normal structure.

DEFINITION 1. A weak* closed convex subset C of a conjugate Banach space is said to have weak* normal structure if every weak* compact convex subset K of C containing more than one point contains a point x_0 such that

$$\sup\{||x_0 - y||: y \in K\} < \operatorname{diam} K$$
.

In the following theorem, $\mathbf{R}^+ = \{r \in \mathbf{R} : r \ge 0\}$ and the notation $x_n \xrightarrow{*} y$ will denote the weak* convergence of x_n to y.

THEOREM 2. Let X be a the conjugate space of a separable Banach space. Suppose that there exists a function $\delta: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the following conditions.

(i) For each fixed s, $\delta(r, s)$ is continuous and strictly increasing in r,

(ii) $\delta(s, s) > s$ for every s > 0,

(iii) if $x_n \stackrel{*}{\rightharpoonup} 0$ and $\lim ||x_n|| = s > 0$, then

 $\lim ||y - x_n|| = \delta(||y||, s) \quad for \ every \ y \in K.$

Then every weak^{*} closed convex subset of X has weak^{*} normal structure.

Proof. Suppose on the contrary that X contains a weak* closed convex subset C which does not have weak* normal structure. Then there exists a weak* compact convex subset K of C with Card K > 1 and for every $x \in K$

$$\sup\{||x - y||: y \in K\} = \operatorname{diam} K = d > 0$$
.

By a method of Brodskii-Milman [3], there exists a sequence $\{x_n\} \subset K$ such that $\lim d(x_{n+1}, \operatorname{Co}(x_i)_{i \leq n}) = d$. Since subsequences of $\{x_n\}$ share the same property, we may assume that $x_n \stackrel{*}{\rightharpoonup} x_0$ for some $x_0 \in K$ and $\lim ||x_n - x_0|| = s$. Clearly, s > 0. For each fixed m, we have $\lim_n ||x_m - x_n|| = d$. Therefore, by (iii)

$$d = \lim_{n} ||(x_n - x_0) - (x_m - x_0)|| = \delta(||x_m - x_0||, s) .$$

Using (i), $d = \delta(s, s)$. Using (ii), we have s < d. We shall show that $\sup\{||x_0 - y||: y \in K\} \leq s$. Suppose not, then there exists $z \in K$ with $||z - x_0|| > s$. Then

$$egin{aligned} \lim ||z-x_n|| &= \lim ||(z-x_0)-(x_n-x_0)|| \ &= \delta(||z-x_0||,s) \ &> \delta(s,s) = d \end{aligned}$$

by (iii) and (i). This is impossible. Therefore, $\sup\{||x_0 - y||: y \in K\} \le s < d$, which again contradicts our initial assumption. Hence C has weak* normal structure.

The next proposition shows that the spaces l_p , $p \ge 1$ satisfy the condition in Theorem 2 with $\delta(r, s) = (r^p + s^p)^{1/p}$.

PROPOSITION 1. In l_{p} , if $x_{n} \stackrel{*}{\rightharpoonup} x$, then for every $y \in l_{p}$,

1)
$$\limsup ||x_n - y||^p = \limsup ||x_n - x||^p + ||x - y||^p$$
.

In particular, if $\lim ||x_n - x||$ exists, we have

$$\lim ||x_n - y|| = (\lim ||x_n - x||^p + ||x - y||^p)^{1/p}.$$

Proof. For p = 1, the equality is a special case of a more general equality given in Proposition 2; see Corollary 3. For p > 1, let $J: l_p \rightarrow l_q$, 1/q + 1/p = 1, be the duality mapping defined by

$$Jx = (|x_1|^{p-1}\operatorname{sgn} x_1, \cdots, |x_n|^{p-1}\operatorname{sgn} x_n, \cdots).$$

J is weakly continuous and $\langle Jx, x \rangle = ||x||^p$, see [2]. Since J is the subdifferential of the convex function $f(x) = 1/p ||x||^p$, we have

$$\frac{1}{p}||x_n - y||^p = \frac{1}{p}||x_n - x||^p + \int_0^1 \langle J(x_n - x + t(x - y), x - y) \rangle dt$$

(

(Gossez-Lami-Dozo [7]). Therefore

$$\begin{split} \limsup ||x_n - y||^p &= \limsup ||x_n - x||^p + p \int_0^1 t^{p-1} ||x - y||^p dt \\ &= \limsup ||x_n - x||^p + ||x - y||^p \;. \end{split}$$

Proposition 1 and Theorem 2 implies that every weak* closed convex subset of l_1 has weak* normal structure. Note that such a set may not possess normal structure. For a simple example, let Cbe the unit ball and $K = \{(x_i): x_i \ge 0, \sum_{i=1}^{\infty} x_i = 1\}$. Then K is closed convex and $\sup\{||x - y||: y \in K\} = \dim K = 2$ for every $x \in K$. Combining this result with Theorem 1 we have the following result of Karlovitz [9].

COROLLARY 1 [9]. Let K be a weak^{*} compact convex nonempty subset of l_1 and $T: K \to K$ be a nonexpansive mapping. Then T has a fixed point.

4. Asymptotic centers in l_1 .

DEFINITION 2 [12]. Let C be a nonempty subset of a Banach space X and $\{B_{\alpha}: \alpha \in A\}$ a decreasing net of bounded nonempty subsets of X. For each $x \in C$ and $\alpha \in A$, let

$$egin{aligned} &r_{lpha}(x) = \sup\{||x-y|| \colon y \in B_{lpha}\} ext{ ,} \ &r(x) = \lim_{lpha} r_{lpha}(x) = \inf_{lpha} r_{lpha}(x) ext{ ,} \end{aligned}$$

and

$$r = \inf\{r(x) \colon x \in C\}$$
.

The set (possibly empty) \mathscr{AC} ({ $B_{\alpha}: \alpha \in \Lambda$ }, C) = { $x \in C: r(x) = r$ } and the number r will be called, respectively, the asymptotic center of { $B_{\alpha}: \alpha \in \Lambda$ } w.r.t. C and the asymptotic radius of { $B_{\alpha}: \alpha \in \Lambda$ } w.r.t. C.

PROPOSITION 2. Let $\{B_{\alpha}: \alpha \in A\}$ be a decreasing net of bounded subsets of l_1 and y_n a weak^{*} convergent sequence with weak^{*} limit y. Then

(2)
$$\lim_{\alpha} \sup\{||y - x||: x \in B_{\alpha}\} + \limsup_{n} ||y_{n} - y||$$
$$= \limsup_{\alpha} \sup_{n} \sup\{||y_{n} - x||: x \in B_{\alpha}\}.$$

Proof. For $x \in l_1$, we shall denote by $x^{(i)}$ the *i*th coordinate of x.

By the triangle inequality, we clearly have the inequality \geq in (2). By a simple diagonal process, we may assume that $\{B_{\alpha}: \alpha \in \Lambda\}$

is a decreasing sequence $\{B_n: n \ge 1\}$ of bounded sets. Choose $x_n \in B_n$ such that $\limsup ||y - x_n|| = \limsup ||y - x||: x \in B_n\}$. It follows that it suffices to prove the following inequality:

$$\limsup_n ||y - x_n|| + \limsup_m ||y_m - y|| \leq \limsup_m \sup_n ||y_m - x_n|| \ .$$

We may also assume, without loss of generality, that y = 0, and that $\lim ||x_n||$, $\lim ||y_m||$, and $\lim_m \limsup_n ||y_m - x_n||$ exist.

Let $r = \lim_{m} \limsup_{n} ||y_m - x_n||$ and $k = \lim_{n} ||y_m||$. Suppose, on the contrary that $\lim_{n} ||x_n|| = r - k + p$ for some p > 0. Let $p > \varepsilon > 0$. Let m_1 , N_1 and M_1 (N_1 and M_1 depend on m_1) be sufficiently large integers such that

$$\begin{split} ||y_{m_1}|| &\geq k - \frac{\varepsilon}{4} ,\\ \sum_{N_1+1}^{\infty} |y_{m_1}^{(i)}| &\leq \frac{\varepsilon}{8} \\ ||x_n - y_{m_1}|| &\leq r + \frac{\varepsilon}{4} \end{split}$$

and

$$||x_n|| \geq r-k+p-rac{arepsilon}{4}$$
 , for all $n \geq M_1$.

Then for $n \ge M_1$, we have

$$egin{aligned} r+rac{arepsilon}{4} &\geq ||x_n-y_{m_1}|| = \sum\limits_1^{N_1} |x_n^{(i)}-y_{m_1}^{(i)}| + \sum\limits_{N_1+1}^\infty |x_n^{(i)}-y_{m_1}^{(i)}| \ &\geq \sum\limits_1^{N_1} |y_{m_1}^{(i)}| - \sum\limits_1^{N_1} |x_n^{(i)}| + \sum\limits_{N_1+1}^\infty |x_n^{(i)}| - \sum\limits_{N_1+1}^\infty |y_{m_1}^{(i)}| \ &= ||y_{m_1}|| - 2\sum\limits_{N_1+1}^\infty |y_{m_1}^{(i)}| + ||x_n|| - 2\sum\limits_1^{N_1} |x_n^{(i)}| \ &\geq k - rac{arepsilon}{4} - rac{arepsilon}{4} + r - k + p - rac{arepsilon}{4} - 2\sum\limits_{1}^{N_1} |x_n^{(i)}| \ . \end{aligned}$$

Hence

$$\sum\limits_{1}^{N_1} |x_n^{(i)}| \geq rac{1}{2}(p-arepsilon), \hspace{0.2cm} n \geq M_1$$
 .

Since $y_m \stackrel{*}{\rightharpoonup} 0$ there exist m_2 , $N_2 > N_1$ and $M_2 > M_1$ $(N_2$ and M_2 depend on m_2) such that

$$egin{aligned} &\sum\limits_{1}^{N_1} |y_{m_2}^{\scriptscriptstyle (i)}| \leq rac{arepsilon}{10}$$
 , $& ||y_{m_2}|| \geq k - rac{arepsilon}{5}$,

$$egin{aligned} &\sum\limits_{N_2+1}^\infty |y_{m_2}^{(i)}| \leq rac{arepsilon}{10} \ , \ & ||x_n-y_{m_2}|| \leq r+rac{arepsilon}{5} \ , \end{aligned}$$

and

$$||x_n|| \geq r-k+p-rac{arepsilon}{5}$$
 , for $n \geq M_2$.

Then for $n \ge M_2$, we have

$$egin{aligned} r+rac{arepsilon}{5} &\geq ||x_{\mathtt{n}}-y_{\mathtt{m}_{2}}|| = \sum_{1}^{N_{1}} |x_{\mathtt{m}_{1}}^{(i)}-y_{\mathtt{m}_{2}}^{(i)}| + \sum_{N_{1}+1}^{N_{2}} |x_{\mathtt{m}}^{(i)}-y_{\mathtt{m}_{2}}^{(i)}| + \sum_{N_{2}+1}^{\infty} |x_{\mathtt{m}}^{(i)}-y_{\mathtt{m}_{2}}^{(i)}| \ &\geq \sum_{1}^{N_{1}} |x_{\mathtt{m}}^{(i)}| - \sum_{1}^{N_{1}} |y_{\mathtt{m}_{2}}^{(i)}| + \sum_{N_{1}+1}^{N_{2}} |y_{\mathtt{m}_{2}}^{(i)}| - \sum_{N_{2}+1}^{N_{2}} |x_{\mathtt{m}}^{(i)}| \ &+ \sum_{N_{2}+1}^{\infty} |x_{\mathtt{m}}^{(i)}| - \sum_{N_{2}+1}^{\infty} |y_{\mathtt{m}_{2}}^{(i)}| \ &= ||y_{\mathtt{m}_{2}}|| - 2\sum_{1}^{N_{1}} |y_{\mathtt{m}_{2}}^{(i)}| - 2\sum_{N_{2}+1}^{\infty} |y_{\mathtt{m}_{2}}^{(i)}| \ &+ ||x_{\mathtt{m}}|| - 2\sum_{N_{1}+1}^{N_{2}} |x_{\mathtt{m}}^{(i)}| \ &\geq k - rac{arepsilon}{5} - rac{arepsilon}{5} - rac{arepsilon}{5} + r - k + p - rac{arepsilon}{5} - 2\sum_{N_{1}+1}^{N_{2}} |x_{\mathtt{m}}^{(i)}| \ . \end{aligned}$$

Hence

$$\sum\limits_{N_1+1}^{N_2} |x_n^{(i)}| \geq rac{1}{2}(p-arepsilon) \quad ext{for} \quad n \geq M_2 \;.$$

Continuing in this way, we obtain two sequences $M_1 < M_2 < \cdots$ and $N_1 < N_2 < \cdots$ such that for $n \ge M_k$,

$$\sum_{N_{k-1}+1}^{N_k} |x_{n}^{(i)}| \geq rac{1}{2} (p-arepsilon)$$
 , $N_{_0}=0$.

Thus for $n \ge M_k$, $||x_n|| \ge \sum_{i=1}^{N_k} |x_n^{(i)}| \ge k \cdot 1/2(p-\varepsilon)$. This contradicts the boundedness of the sequence x_n .

COROLLARY 2. Let x_n be a bounded sequence in l_1 and $y_n \stackrel{*}{\rightharpoonup} y$. Then

 $\limsup_n ||x_n - y|| + \limsup_m ||y_m - y|| = \limsup_m \sup_n ||x_n - y_m|| .$

COROLLARY 3. Proposition 1 for p = 1.

THEOREM 3. Let C be a weak* closed convex nonempty subset of l_1 and $\{B_{\alpha}: \alpha \in \Lambda\}$ a decreasing net of bounded nonempty subsets of C. Let the function r(x) be defined as in Definition 2. Then for each $s \ge 0$, $\{x \in C: r(x) \le s\}$ is weak* compact convex and the asymptotic center of $\{B_{\alpha}: \alpha \in A\}$ w.r.t. C is a nonempty (norm) compact convex subset of C.

Proof. Let $K_s = \{x \in C: r(x) \leq s\}$ and let K be the asymptotic center. Clearly, diam $(K_s) \leq 2s$. Since $r(\cdot)$ is a convex function, K_s is also convex. To show that K is weak* compact, it suffices to solw that K_s is weak* closed. Let $y_n \in K_s$ and $y_n \stackrel{*}{\rightharpoonup} y$. By Proposition 2.

(3) $r(y) = \limsup r(y_n) - \limsup ||y_n - y|| \le s$.

Hence $y \in K_s$ and K_s is weak* closed. Suppose now that s = r, where r is the asymptotic radius of $\{B_{\alpha}: \alpha \in A\}$ w.r.t. C. If $r(y_n) = r$, then we must have $\limsup ||y_n - y|| = 0$ for otherwise r(y) < r, a contradiction to the definition of r. Therefore, for a sequence in K, weak* convergence implies norm convergence. Hence K is compact. Since $K = \bigcap\{K_s: K_s \neq \emptyset\}$ and each K_s is nonempty weak* compact, we have $K \neq \emptyset$.

COROLLARY 4. Let C be a weak^{*} closed convex subset of l_1 and D a nonempty bounded subset of C. Then the Chebyshev center of D w.r.t. C is nonempty compact convex. In particular, for any two points x and y, the set $\{z \in l_1 : ||z - x|| = ||z - y|| = 1/2 ||x - y||\}$ is compact.

Proof. If we let $B_{\alpha} = D$ for every $\alpha \in \Lambda$, the asymptotic center of $\{B_{\alpha}: \alpha \in \Lambda\}$ is the same as the Chebyshev center of D.

We conclude this section by giving an application of Theorem 3. Let K be a set and S a semigroup of selfmaps of K. S is said to be a topological semigroup if S is equipped with a Hausdorff topology such that for each $a \in S$, the two mappings from S into S defined by $s \to as$ and $s \to sa$ for all $s \in S$, are continuous. S is said to be left reversible if any two nonempty closed right ideals of S have nonempty intersection (cf. [5, p. 34]). If K is a topological space and S a left reversible topological semigroup of selfmappings of K suce that the mapping $(s, x) \to s(x)$ is separately continuous, then S becomes a directed set if we define $a \ge b$ if and only if $aS \subseteq cl(bS)$. Moreover, if for a fixed element $u \in K$, we define $W_s =$ cl(sS(u)) for all $s \in S$, then the family $\{W_s: s \in S\}$ is a decreasing net of subsets of K (see [8]).

142

ASYMPTOTIC CENTERS AND NONEXPANSIVE MAPPINGS

THEOREM 4. Let C be a weak^{*} closed convex nonempty subset of l_1 and S a left reversible topological semigroup of nonexpansive selfmappings of C such that the mapping $(s, x) \rightarrow s(x)$ is separately continuous. If for some $x \in C$, $s \in S$, sS(x) is bounded, then S has a common fixed point in C.

Proof. Let W_s be defined as in the last paragraph. By Theorem 2 in [12], the asymptotic center K of $\{W_s: s \in S\}$ is a S-invariant subset of C. By Theorem 4, K is a nonempty compact convev set. Since a compact convex set has normal structure, by Theorem 3 in [12] or Corollary 1 in [8], S has a common fixed point in K.

References

1. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. U. S. A., **54** (1965), 1041-1044,

2. ____, Nonlinear functional analysis, Proc. Symp. Pure Math. vol. XVIII, Part 2, A. M. S., 1976.

3. M. S. Brodskii and D. P. Mil'man, On the center of a convex set, Doklady Alad. Nauk SSSR (N.S.), **59** (1948), 837-840.

4. W. L. Bynum, A class of spaces lacking normal structure, Compositio Math., **25** (1972), 233-236.

5. A. H. Clifford and G. B. Preston, *The algebraitheory of semigroups*, Vol. I, Math. Survey, no. 7. Amer. Math. Soc., Providence, R. I., 1961.

6. D. Gödhe, Zum prinzip der Kontraktiven Abbildung, Math. Nachr., 30 (1965), 251-258.

7. J. -P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math., 40 (1972), 565-573.

8. R. D. Holmes and A. T. Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc., (2) 5 (1972), 330-336.

9. L. A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc., 55 (1976), 321-325.

10. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.

11. T. C. Lim, A fixed point theorem for families of nonexpansive mappings, Pacific J. Math., 53 (1974), 487-493.

12. ____, Characterization of normal structure, Proc. Amer. Math. Soc., 43 (1974), 313-310.

13. R. Schöneberg, Private communication.

Received October 4, 1979 and in revised form November 2, 1979.

THE UNIVERSITY OF CHICAGO CHICAGO, IL 60637

Current address: Department of Mathematics George Mason University, Fairfax, VA 22030