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MOIRE PHENOMENA IN ALGEBRAIC GEOMETRY:
RATIONAL ALTERNATIONS IN R2

KEITH M. KENDIG

This paper investigates rational alternations, principally
in R\ Rational alternations in Rn generalize the polynomial
alternations studied in the author's Moire Phenomena in Alge-
braic Geometry: Polynomial Alternations in Rn. Rational
alternations, like polynomial alternations, have the spirit
of diffraction gratings, but may possess singularities, where
grating bands flow together. Both alternations carry with
them more information than ordinary varieties. As in the
polynomial case, the systems of varieties making up two
rational alternations generate new systems of varieties under
union (or dually, intersection), corresponding to systems of
moire fringes of various orders. This paper investigates
density functions naturally associated with these fringes, and
studies the behavior of the fringes at points of indeterminacy
of the defining functions.

1* Introduction* For the sake of motivation, we begin not
with a general rational function, but with a polynomial. Thus, let
p be an element of a polynomial ring k[Xu •••, Xn] over a field fc.
Then p defines an algebraic variety V(p) = {(xlf , xn)\p{xlf , x%) = 0}
in kn = kXv...tZu. It is natural to ask how operations on polynomials
translate into operations on the associated varieties. For instance, if
p,qek[X1} ••^-XJ, then

(1.1) V(pq) = V(p) U V{q) .

This is especially satisfying because the variety V(pq) is so easily-
obtained from the original pieces V(p) and V(q), just by taking their
union. The simple from in (1.1) of course holds for ideals—that is,
for ideals α, b in k[Xu , Xn], we have

(1.2) V(ab) = V(a) U V(b) .

What about sum? That is, how is V(p + q) related to V(p) and
V(q)Ί V(p + q) does not have that same kind of simple geometric
relationship to V(p) and V(q). Of course, one cannot expect a purely
geometric answer to this since, for example, V{p) = V(ap) (a e k\{0}),
b u t in general V(p + q) Φ V(ap + q). Although "V(a + b)= V(a) Π

F(ί>)" answers an analogous ideal-theoretic question, there is still a
natural polynomial question, and polynomials should not be neglected.
The trouble is that since V(p) — V(ap) (a e k\{0}), it seems that in
taking the variety, we lose too much geometric information to hope
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to relate V(p + q) with V(p) and V(q), and that polynomials are
"really" trying to define something more informative. In this paper,
we let a polynomial p define a more informative geometric object
"V*(p)"9 which does not ignore multiplication by elements of the
groundfield. V*(p) will be generalized to V*(r) (r, a rational function)
in §3. For these more informative objects, one can then reasonably
hope to relate V*(p + q) with V*(p) and V*(q).

To keep things visual, we take k = R, though it appears that
much of what we say can be extended to any complete valued field.
We begin by noting that V(p) may be regarded as the inverse image
-̂'({O}) of {0}eR. In place of {0}, we consider the set A = [0, 1] +

2ZQR. Thus A consists of "half of jβ"—unit intervals separated
by unit intervals. For p e R\Xl9 « ,XJ, we define V*(p) by

(1.3) V*(p) = p-1(A)(C«r1,..,xJ

EXAMPLE 1.4.

1.4.1. F*(Xj) £ RχlX, is just the cylindrization along RXί> of A
and thus consists of equally-spaced bands parallel to RXz. To a
physicist, this could be considered as a "straight-line diffraction
grating".

1.4.2. V*{Xl + Xξ) £ Rx^2 consists of circular bands centered
at (0, 0), the bounding circles having radii Vn{n = 1, 2, 3, •••)•
F*(XX

2 + Xξ) can thus be regarded as a "Fresnel diffraction plate".
The bands all have equal area.

Now it is a familiar fact that superimposing diffraction rulings
creates alternately light and dark fringes called "moire fringes".
Let us begin by looking at a specific example in RXll-2: p = aX,(a Φ 0),
and q = XI + Xξ. From a purely geometric viewpoint, it is not very
obvious "why" the line V{aXγ) and the point V{X{ + XI) should yield
a circle V(aXL + XI + Xξ) centered at ( —(α/2), 0) and passing through
(0, 0). Now look at V*(aX1) and V*(X? + X|). In the superposition
of these two diffraction rulings, there appear moire fringes, and we
see that something remarkable happens: there is a system of circular
fringes centered at (-(α/2), 0) and the bands of V*(aXι + XI + Xξ)
appear to run along these fringes. In fact, V(aX1 + XI + Xΐ) is the
unique "fringe curve" (cf. §2) of this system passing through V(aX^)Γ\
V(X{ + Xξ). Fig. 3 in [2] shows these fringes; a is approximately
9.5. This figure also shows a similar system of fringes centered at
(α/2, 0); this, it turns out, corresponds to subtracting XI + Xξ from
αJj. If this figure were extended out further, one could even detect
fainter systems further out, which correspond to adding (or sud-
tracting) various integral multiples of X\ + X\ from aXγ.
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REMARK 1.5. Both F(p)and V*(p) have strengths and weaknesses,
and these tend to complement each other. For instance, at the ground
field level, we have:

V is good at distinguishing V(p) from V(a + p), but

V is poor at distinguishing V(p) from V(ap) (aeR\{0}).

F* is good at distinguishing V*(p) from V*(ap)

(V*(ap) is in obvious sense "finer" than V*(p) if | α | ^ l ,

and "coarser" if \a\ §5 1), but

F* is less good at distinguishing V*(p) from V*(a + p)

(V*(a + p)= V*(a' + p) if a - a'e2Z).

At the "nonconstant polynomial level" we have, for relatively prime
polynomials p9 q e R[Xl9 X2]\R:

V* is good at expressing V*(p + q) in terms of V*(p) and V*(q),

but

F* is poor at expressing V*(pq) in terms of V*(p) and F*(g).

F is good at expressing V(pq) in terms of V(q), but

F is poor at expressing V(p + q) in terms of V(p) and F(g).

Both F and F* have equal claim to producing varieties from
ideals, in the sense that

def
V(a) = F(p) = V*(p) = V*(a) .

pea Pίa

This whole idea of moire fringes arising from superimposing
diffraction gratings has been recognized and used in various physical
sciences for some time. In 1926, for instance, Ronchi ([4]) succeeded
in using the moire effect to test lens systems for aberrations. Until
the early 1950's, further progress was somewhat slow in coming due
to the difficulty in creating sufficiently fine gratings. After that,
there followed a great many applications of the moire effect for very
precise measurement. (See [3] and [5] for bibliographies.) More
recently, some exciting applications of the moire effect have been
found. As one example, moire fringes have been observed in electron
micrographs of thin, crossed crystals. Such fringes supply far more
information and detail than available from ordinary electron micro-
graphs of single crystals. For instance, crystal dislocations of less
than the diameter of one atom ( = 1 angstrom) can be detected, which
represents a resolving power of some 100 to 1000 times greater than
that of the electron microscope itself.

Relative to the question raised at the beginning of this paper,
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we have, in rough terms, the following: Given relatively prime poly-
nomials p, q 6 R[Xlf , Xn]\R, V*(p) U V*(g) displays different systems
of fringes, some obvious and others, fainter and not so obvious.
These fringes correspond to rational linear combinations of p and q;
the fringes alternate between light and dark—in fact, the density
"tries" to oscillate about 3/4 in a piece wise linear way. The ampli-
tudes of these oscillations are "arithmetic in character"—that is, in
a linear combination ctp + c2q, if c2\cx is rational, then the limit of
the amplitudes as b -» °o depends on the prime factors of cjeλ. If
the prime factors are large and odd, this limit is small; if c2jcι is
irrational or a prime factor is even, this limit is zero.

These ideas have been worked out in [2]; in §2 next, we briefly
summarize what we need of [2] in the present paper.

Everything we have mentioned so far deals with polynomials.
However, one can go further and consider V*(r) = r~\A), where
r = r{Xu •••, Xn)eR(Xlf •••, Xn)\R is a rational function. Such

"diffraction rulings" now may possess "singular points", where the
bands flow together. This is in contrast to V*(p), where all the
bands are disjoint.

This is not solely of mathematical interest; it arises in physical
applications, just as the varieties V*(p) do. For example, this be-
havior is approximated in stress-strain problems when the material
under consideration is subjected at certain points to very high stress
or strain; stress-strain lines flow together at such points. We will
see that points where bands of V*(r) flow together are points of
indeterminacy of the rational function r.

The present paper is devoted to extending [2] to the rational
case. This happens also to extend the affine study in [2] to a pro-
jective study, since polynomials, when recentered at a point at
infinity, become no worse than rational functions.

2 Some basic results in the polynomial case*

DEFINITION 2.1. The subset A = [0,1] + 2Z of R is called the
basic linear alternation on R.

DEFINITION 2.2. Let p e R[Xl9 X2]\R. Then p~\A)QRXlX2 is called
a polynomial alternation in RXlχ2, and is denoted by V*(p).

Let p, q e R[Xl9 X2]\R, with (p, q) = 1. For any nonzero linear
combination ctp + c2q (ct e R), we shall look for fringes in V*(p) U V*(q)
running along the level varieties defined by cλp + c2q. Because it will
simplify the exposition somewhat, in the rest of this paper we write
m in place of — fe/cj. (The letter m reminds us of "slope".) Thus
we will consider the varieties q — mp + b (δ e R, m e R U {°°}). We
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make the convention that m — °o in q — mp + b means p -\- b = 0.
Since we will be testing for density along real curves defined by

q = mp + b, we need the following definition.

DEFINITION 2.3. Let p e R[Xlf X2]\R. Then V(p) £ RXlχ2 consists
of infinitely many points, or only finitely many points, or else the
set is 0 . V(p) has dimension 1, 0 or —1, respectively. In the first
V(p) is called a real curve in RXίχ2, and we sometimes use the
suggestive letter C for V(p). If P is not isolated in C, we say that
C has dimension 1 at P, and write dimP C = 1. Similarly, if P is
isolated in C, we write dimPC — 0; if P&C, dimPC = — 1.

REMARK 2.4. Let p, qeR[Xl9 X2]\R with (p, q) = 1; let beR,
and let m be fixed in R U {°°}. Then the variety V(q — mp — 6),
which we denote by Vb(q — mp), is a curve either for all beR, or
for all 6 in a half line of R. (See [2], Lemma 5.6.) When we use
a phrase like "the curve Vb(q — mp)99, we shall be assuming that
Vb(q — mp) is a real curve. As 6 runs through J? in the first case,
the collection of curves clearly covers RXlχ2. As b runs through the
half line in the second case, it is easy to check that the collection
of these curves covers all points of RXlχ2 except possibly on some
real curve of RΣιχ2.

Let {Vb} be the collection of real curves chosen from Vb(q — mp),
as b runs through R. For fixed m, {Vb} reveals "mth order moire
behavior" if the density of F*(p) U V*(q) within the curves of {Vb}
oscillates in b. (We still need to define "density".) We refer to
these testing curves as mth order (moire) fringes, or simply (moire)
fringes; the collection of these curves is called the mth order fringe
family.

DEFINITION 2.5. Let S be a countable union of intervals in R.
Then S has density b in R if for any ε > 0, there is a decomposition
of R into a disjoint union of intervals T* £ R, which are uniformly
bounded in length, so that

(2.5.1) b - length(S n Tt)
length Tt

< ε

for all but possibly finitely many 2V

Notation 2.6. 4(X): R—>R denotes the periodic "triangle
function" defined in the interval of periodicity [ — 1,1) by Δ(X) =

If p and q are linear, we have the following basic result. (See
[2], §3 for the proof.)
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THEOREM 2.7. Let (Xl9 X2) = X, let p{X) = α X, and let q(X) =

α' X, where a and ar are linearly independent in Rx. Then any
line in Rx can be written as

Lb: q = mp + 6

/or some meJ?U{°°} and beR. Let b(L6) denote the density of

[V*(p) U 7*(β)] Π L6 in Lb. Then:

(2.7.1)

(2.7.2)

b(L4) = -ί (be A)
ί/ TO = 0 Or

8 - f

if m — -^- 6 θ\{0}, where (nlf n2) — 1,
n

is

(2.7.3) b(L6) = —
4

for all other m

The Lb in (2.7.2) singles out those directions in which V*(p) U V*(q)
displays moire behavior; in these directions the density oscillates
about 3/4 in a piece wise linear way. The amplitude is small when at
least one of nl9 n2 is large. (2.7.3) includes the limiting case in which
the fraction becomes irrational (nl9 n2—> °o), the oscillation about 3/4
then becoming zero.

In place of the above linear polynomials p and q, we now consider
arbitrary relatively prime p9 q e R[Xl9 X2]\R. The following notion
of "refinement" essentially makes the underlying rulings V*(p) and
V*(q) very fine relative to the fringe bands in V*(p) U V*(q) and one
can then approximate each of the curves q — mp + b by a piecewise
linear curve to get a more general version of Theorem 2.7.

DEFINITION 2.8. Let p9 qeR[Xl9 X2]\R, where (p9 q) = 1. For
any positive integer k and any meR U {^j, define (sm9 tm) by

(kp, mkp + (q — mp)) if meR

(p, kq) if m = o o ,

Then F*(O U V*(tn) is called the k-refinement of V*(p) U V*(q) along
the mth order fringe family.

DEFINITION 2.9. Let p9 qeR[Xu X2]\R, where (p9 q) = 1; let P e
RXlxt, and let meR (J {°°}. Then F*(ί>) U F*(g) has limit density bP

αί P mίik respect to m if the following holds: For every ε > 0 there
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is a d > 0 such that for all positive p less than δ, there is a fc, > 0
so that for all k > kp,

b

area[£(P,
< ε

Here B(P9 p) denotes the open disk of radius p, centered at P.
One can show that for fixed m e R U {°°K the above bP is constant

along any fringe curve Vb(q — mp). With this bP, Theorem 2.5 then
holds for arbitrary relatively prime polynomials p, q e R[Xl9 X2]\R.
See [2], §6 for details and proofs.

3* Some qualitative results about rational alternations and

moires*

We now begin our generalization to the "rational" level. We
start with some preliminary definitions and notations.

DEFINITION 3.1. For any reR(Xl9 X2)\R, r-\A)(QRXlX2) is called
a rational alternation on RXίχ2\ we denote it by F*(r).

Notation 3.2. For any r 6 R(XU X2)\R, write r = p/q, where
(p9 q) = 1. For b e R, let Vh{r) denote V(p - bq); let VJr) denote V(q).
If r is clear from context, we may write simply Vb or V^. In each
case the variety may be a curve, consist of only finitely many points,
or be 0 . If in a particular situation we wish to assume that any
of these is actually a curve, we will use a phrase like "the curve
Vh". Note that V0(r) and VJj) share no one-dimensional components.

Let rlf r2 e R(Xίf X2)\Rf and write for i — 1, 2, rt = pjqif where
(pif q^ = 1. Assume that (rl9 r2) = 1—that is, that no two of plf p2,
qu q2 share a nonconstant factor, and let us agree that Vb(r2 — rnr^)
means Vh{r^) when m = oo. Then for fixed m e R U {°°} and 6 6 R U
{oo}, any curve Vb(r2 — mrj is called an mth order (moire) fringe,
or simply a (moire) fringe. One can then define the ^-refinement
of V*(r^) U V*(r2) along the mth order fringe family just as in
Definition 2.8, replacing p and q there by r2 and r2, respectively.
Also, at any P e RXlX2\(VJχι — mr,))f one can similarly generalize bP

in Definition 2.9 by replacing p and g there by rx and r2. One can
then show, exactly as in the polynomial case (see [2], §6), that bP is
constant on each Vb(r2 — mr^XV^^ — mr^φsR), and one can define
^(^(^2 ~ mrj) to be this constant value. With these definitions, the
proof in [2], §6 of the polynomial version of Theorem 2.5, extends
essentially verbatim to the rl9 r2-level.

We know at this stage that for r19 r2 as above, any two varieties
Vh(r2 — mr2) and Vh(r2 — mrx)(b, Φ b2) are disjoint in RχχXl\VJj)9 and



112 KEITH M. KENDIG

we have determined the density induced on curves Vb(r2 —
(b e R) by F*(rx) U F*(r2). To extend our results to all of RXχX2,
we next study the behavior of curves Vb(r2 — mrj near points of
VOQ{r2 — m7\). The remainder of this paper is devoted to this study.
We work out some basic qualitative results in this section. In §4
we find a density function.

We begin this study by determining, for a given r e R(XU X2)\R,
the "fixed points" in the family {Vb(r)\beR U {<*>}}. First, since any
two different Vh(r), Vh(r) are disjoint in Rx^V^r), we know Vh(r)Γ\
Vh(r) S7 β ( r ) .

LEMMA 3.3. Let r e R{XU X2)\R, and let P be a point of RXlχ2.
If there exist b19b2eR{J{°°} Q)x Φ b2) such that Pe Vh(r)f) VH(r)y then
P is contained in every Vb(r) (6 eR U {°°}).

Notation 3.4. The set of all P satisfying the conclusion in Lemma
3.3 is denoted by W(r)f or by simply W if r is clear from context.

REMARK 3.5. If r is a polynomial, then W(r) = 0 .

Proof of Lemma 3.3. Write r = pjpif pt 6 R[Xl9 X2], (plf p2) = 1>
and rewrite pjp2 = 6̂  as biιpι + bi2p2 = 0(6i3 6 R), where {6it = 0, bi2 Φ 0}
corresponds to bt = 0, {6̂  Φ 0, δί2 = 0} corresponds to bt = ^o, and
{&ΐi ^ 0, δi2 ̂  0} corresponds to 6^/2^0}. Then the condition P e
Vhί(r) Π Vφή in the lemma becomes

6nPi(P) + δi2^(P) - 0 ,

bP^P) + δ22?>2(P) - 0 .

Now fej ̂  b2 implies that (3.6) has rank two; therefore p^P) = p2{P) =
0. Thus for any b = cjc2 e R U {<*>}, we have cyp1{P)—c2p2{P) = 0—that
is, PeVb(r).

Here is an example of Lemma 3.3.

EXAMPLE 3.7. Let r = (X,2 + Xi)/XtX2. Then for all 161 S 2, Fδ =
{(0, 0)} S i?X l X 2. V2(r) is the line X1 - X2 = 0, and F_2(r) is the line
Xi + X2 = 0. For 161 ̂  2, Fδ splits up into two lines, one approaching
RXχ and the other approaching RX2, as δ—>oo. y o o=/ίX i(jiίX 2. Note
that Lemma 3.3 holds (P is (0, 0)), even though Vb is not always a
curve.

The next result relates VJχ2 — mrj with VJp^) and Foo(r2).

LEMMA 3.8.

(3.8.1) For any m e R\{0}, FTO(r2 - mr,) £ V^r,) U FTO(r2) .
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// o\ = pjqi9 where (pif qt) — 1, and if(qlf q2) = 1, then equality holds
in (3.8.1).

Proof. £ : Obvious.
— : Follows at once from the following lemma:

LEMMA 3.9. Let pi9 qieR[Xu Xx]9 where (plf qx) = (p2, q2) = 1,
let meR\{0}. If p2q^ — mpxq2 Φ 0,

Proof. =>: Suppose that (gx, #2) = a e Λ[-ZΊ, J5L"2]\JB. Then $ is a
factor of qxq2, and also a factor of p2q1 — mpxp2.

<=: Suppose (g^ g2) = 1. Let ί be any prime factor of qxq2. We
assume without loss of generality that t\qx. Then tp2qx. Therefore
t\p2qx - mp,q2 iff t\pxq2. However (plf qt) = 1 and (ql9 q2) = 1 imply,
respectively, that t\pγ and t\q2. Thus t\pxq2y and therefore ί|p2^i —
mpλq2. Thus (p2?i. — m^^, qλq2) = 1, which proves "<=".

The following ties in the "fixed points" of a moire with those
of the underlying alternations.

LEMMA 3.10. Let m e R\{0}, and let rx = pjqu r2 = pjq2 and
r2 — mrι be elements of R(XU X2)\R. If (qu q2) = 1, then

(3.10.1) W{r2 - mn) = W{rλ) U PΓ(n) U (VJr) Π FTO(r2)) .

Proof. First, r2 — mrx = (p?^ — mp^/q^. Now T7(r2 — mr2)
consists of those points of RXlχ2 where qλq2 and pλqx — m p ^ are sim-
ultaneously zero. If both qx and q2 vanish at P e W(r2 — mrx), then
Pe V-fa) Π VooW. If qx(P) = 0 but g2(P) =* 0, then p ^ - mpxq2 = 0
implies that ^(P) = 0, so P e T F ^ ) . Similarly, if g2(P) = 0 and

0f then PeW(rt).

REMARK 3.11. If qx and q2 are not relatively prime, then (3.10.1)
may not hold. For example if rx = (Xx + 1)/X2, r2 = (Xx — 1)/X2, then
fΓ(ri + r2) = {(0, 0)}, while (3.10.1) in this case is RXι.

Moire fringes, as well as the underlying alternations, display a
wide range of behavior at points of W. For example let rγ — X19

and consider the protective completion in P\R) of V*(rj) £ RZιZt.
The boundaries of the bands all pass through a single, common point
on the line at infinity, and any two such boundaries intersect there
transversally. If r2 = X2, then the same holds for the boundaries
of the completion of V*(r2) at a different point at infinity; similarly
for all the curves Vb(X2 — mXλ) (for any fixed m 6 R U {°°}). However,
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it may happen that each of the underlying alternations of a moire
has the above kind of transversally intersecting boundaries at infinity,
but that for some m, the mth order moire fringes may fail to have
this property. For example, the boundaries of V*(XJXt) intersect
transversally at (0,0); likewise for V*(X1 + XιlXά) However, any two
fringes corresponding to m = 1 approach (0, 0) in a mutually tangent
manner. (We give definitions in a moment.) Just the opposite can
happen, too. For example, any two boundaries of V*(XJXi) are
tangent at (0, 0); similarly for the boundaries of F*(XX + X!)/Xξ).
However, any two fringes corresponding to m = 1 intersect trans-
versally at (0, 0). These are only two of a number of cases.

There exists at nine-way classification which covers all such
possibilities. For this, we will need a few preliminary definitions
and results.

First, throughout the rest of this section P will denote an arbi-
trary, fixed point in RZιχ2 ^ e w * ^ u s e *^ e n ° t i ° n of germ at P of
a real curve C. If Pg C or if P is isolated in C (i.e., if dimPC = — 1
or 0), the usual germ can be identified with 0 and P, respectively.
However for our purposes, it will simplify the exposition to agree
that the notion germ of C at P carries with it the assumption that
dimPC = 1. Since P is fixed throughout, if dimPC = 1 then the germ
of C at P will be denoted by C~.

We next consider the notion of tangent cone to a germ at P;
this generalizes "tangent space" at a point of a diflferentiable manifold.
This will be useful when considering transversality and tangency.

DEFINITION 3.12. Suppose C~ exists, and let C be a representa-
tive of C~ in a jRXΛ-open neighborhood of P. The tangent cone to
C~, denoted by T(C~), is {P} together with the set of all vectors v
based at P satisfying this condition: there is a sequence of points
{PJ, Pi e C\P, Pi —> P, and a sequence of numbers {rj such that v —

EXAMPLE 3.13. Suppose P = (0, 0) e RXlX2. For C £ RXlX2 defined
by X* - XI T{C~) = RXl; for C £ RXχX2 defined by XI - Xx(Xt - 1),
T(C~) consists of the two lines Xt + X2 = 0 and X1 — X2 = 0.

The following algebraic characterization of T{C~) is important
in the sequel.

THEOREM 3.14. Let C £ -Bx̂ g be defined by a polynomial p e
R[Xlf X2]\Ry let diπipC = 1, and let p^ denote the initial part of p
is expanded about P. Then T{C~) is the zero set in RXlX2 of p\

Proof Theorem 3.14 is a special case of Theorem 2.8 in [1]



MOIR£ PHENOMENA IN ALGEBRAIC GEOMETRY 115

(which, in fact, includes the case when d i m P C = —1 or 0, though
we don't need this here).

REMARK 3.15. T(C~) in Theorem 3.13 consists of finitely many
lines through P. Thus both T(C~) and p^ are homogeneous with
respect to P. If p has no nonconstant repeated factors, and if the
Jacobian (pZι, pX2) has rank one at P, then the zero set of p in CZιZi

is a real differentiate manifold in a C2-neighborhood of P, Cζ=RXlX%

is smooth at P, and T(C~) coincides with the usual (real) tangent
line to C at P.

EXAMPLE 3.16. Let P = (0, 0) 6 RXlX2. For C £ RXχX2 defined by
XI - XI T(C~) is defined by XI = 0 — that is, T(C~) = RXl; for C
defined by X | - X^X* - 1), Γ(C~) is defined by X} - X! = 0 — that
is, it consists of the two lines X1 + X2 = 0 and Xx — X2 = 0. (Cf.
Example 3.12.)

DEFINITION 3.17. Let PeRXlX2, and suppose curves Cx and C2 in
ίϊxiXo both have dimension one at P. Then C? and C<Γ are said to
be tangent along (precisely) T(C?) Π Γ(C2~). If Γ(Cr) = T(Cϊ), we
say CΓ and C7 are /UHT/ tangent. If T(Cr) Π Γ(C2̂ ) = P, we say that
Cr and CjΓ intersect transversally.

REMARK 3.18. Let the curves Ct in Definition 3.16 be defined by
pt e R[Xly X2]\R Then C~ and Cr intersect transversally iff pi and
pt have no common real linear factors.

We now look at the behavior at points of W^ of a given rational
.alternation V*(r) (r e l ? ^ , X2)\R). Write r = p/g, where (p, g) = 1.

THEOREM 3.19. TΓiίfe j>, α α^d ^ ^s above, let P be a fixed,
arbitrary point in W(r), and let p^ and q* be the initial forms of
p and q at P.

3.19.1. // άegp^ = άegq\ then for all but at most one value
b0 of beR, any two V^(r), Vφή (b, Φ b2, blf b2 e R) are tangent at P
along precisely V(p\ q^). If there is a b0 satisfying p* — boq\ then
Vΐ"Q(r), if it exists, is tangent at P to every other Vΐ(r) iff each real
linear factor of (p\ g1) is a factor of (p — boq)\

3.19.2. // degpτ S deggf, then any two Fζ(r), VΓ2(r) (b, Φ b2, b19

b2 6 JB) are fully tangent, with common tangent cone V(pf). V£(r) is
tangent to Vΐ(r) (beR) along precisely
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3.19.3. If deg p f ^ deg q\ then any two Vftr), Vζ(r) (bt Φ b2, b19

b2 6 (iϊ\{0}) U {°°}) are fully tangent, the common tangent cone being
V{(f). V^(r) is tangent to VΓ(r) (6 6 (i?\{0}) (J {oo}) along precisely
V(p\ <7f).

Proof.
3.19.1. If p*Φbtq\ then (p-&««)* = pt-δtf 1 (i = 1, 2). Then 3.19.1

follows at once from this fact:

Suppose 8 and £ are homogeneous polynomials in R[Xl9 X2]\R
having the same degree, and let bl9 b2 (δx Φ b2) be two arbitrary
elements of R. If s + bj and s + b2t are nonzero, then (up to
a nonzero constant factor) (s, t) = (s + &xί, s + M)

We prove this as follows: First, clearly (s, £) | (s + &xί, s + b2t). We
wish to show that (s + bγt, s + 62ί) | (s, t). For this, suppose u\(8 + btt,
s + 62Q—say

Solving these two equations for s and £ gives

t = u(v2 — Vj)/b2 — b, .

Thus u\(8it)f so (s + 6xί, 3 + &2*)l(sit)

3.19.2. For any 6eJS we have (ί> — 6g)f = ί>f, and the first
sentence of 3.19.2 follows. Now when b = ©o, instead of p — bq we
may write α ;p — α2g, where αx = 0 and α2 ^ 0; this gives (p — bqY =
q\ Since (p — 6g)ΐ = p r for any other 6, the second sentence of
3.18.2 follows.

3.19.3. For any be(R\{0}) U {^}, we have (p - 6^)f = q\ giving
the first sentence of 3.19.3. When 6 = 0, (p — 6g)r = p+, and the
second sentence follows.

We next turn our attention to the question of how at a point
P, the geometric behavior of rational alternations rϊ\A)9 r2\A) £
RXlx2 influences the geometry at P of the mth-order fringes of rϊ\A) U
r2\A). The next theorem is the promised 3 x 3 classification of local
behavior of moire fringes in the neighborhood P.

Before stating it, suppose that rt = Pi/qi9 where (pif qt) = 1
(i = l, 2); now if, for example, p^p2 and q1 = q29 then ^ ( r j U F*(r2) =
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Vr*(r1) = F * ( r 2 ) . The resulting moire fringes Vh(r2 — mrλ) =
Vh{{v2Qι — ^ViQdlQiQ^) are in a sense "trivial". However by Lemma
3.9, it is clear that assuming (qlf q2) — 1 avoids this behavior. We
make this assumption in Theorem 3.20, next.

THEOREM 3.20. Let rx = pjqlf r2 = pjq2, where rteR(Xu X2)\R-
Let pi, ql be the respective parts at P of pi9 qt (i — 1, 2), and assume
that (plf qx) = (p2f q2) = (qlf q2) = l. We then have the following classifi-
cation where, for any m e R\{0), VΓ denotes VΓ(r2 — mrj, and where
the italisized statement under (i, j) (i = I, II, III; j = 1, 2, 3) is the
conclusion obtained from assuming i and j .

I. ordpipjq,) = ordP(p2/q2)
1. ordpfe) = ordpfe)

(a) If p\q\ — mp\ql Φ 0, then any two different germs Vΐ[ and Vζ
(&!, 6 2 e i ί U {oo}) are tangent along precisely V(p\q\ — mpjgj, q\q\).
(b) If pίgϊ — mp\q\ = 0, then any two germs F £ and F ζ (δlf b2 e
(R\{0}) U {oo}) are fully tangent, the tangent cone being V(q\) U V(gϊ);
and F<Γ is tangent to each VΓ Φ € (Λ\{0}) U {^}) along precisely

2.
(a) If 3>lgrJ — mp\q\ Φ 0, then any two germs V^ and Vΐ£blf b2 e R)
are fully tangent, the tangent cone being V{p\q\ — mplqt). VZ is
tangent to each VΓ (beR) along precisely V(p\q\ — mplql, qlqΐ).
(b) If p\q\ — mplql = 0, then any of >, = , or < may hold between
deg((ί?2^ — mpλq2Y) and degdq&Y), respectively. For " > " , conclusion
(I, l(b)) holds; for " = ", conclusion (I, l(a)) holds; for u < " , conclusion
(I, 2(a)) holds.

3. ordp(^) ^ ordpfe)
Conclusion is same as that of (I, l(b)).

II. ordpfo/tfO S ovdP(p2/q2)
1. ordp(^) = ordp(^)

Any two different germs V^ and VΓ2 (blf b2 e R U {°°}) are tangent along
precisely V(q\) U V(pl, q\).

2. ordpfo) ^ ordptoJ
Any two germs F&7 and F ^ (blf b2 e R) are fully tangent, the tangent
cone being V(p\) U V(ql). V~ is in tangent to each Vb~ (beR) along
precisely V(q\) U V(p\, q$.

3. ordp(^) ^ ordptoJ
Any two germs Vδ~ and F6~ (6X, 52e(iί\{0}) U {<*>}) are fully tangent,
with tangent cone V(q\) U F(^2) Vo~ is tangent to each F6^
(6 e (Λ\{0}) U {so}) along precisely F(tf2

+) U V(p\, ql).
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III. oτάpipjqj ^ ovdP(pJq2)
Same as in II, except that subscripts " 1 " and "2" of p and q are
everywhere reversed.

REMARK 3.21. Among the polynomials piy qt (i — 1, 2) satisfying
the condition stated at the beginning of Theorem 3.20, almost all of
them also satisfy

(3.21.1) (pi, q\) = (pi, q\) = (ql, ql) = 1 .

More precisely, for a fixed positive integer d, there is in the vector
space Γj(resp. Y2, Zlf Z2) of polynomials ^(resp. p2, qu q2) of degree
<^d, a proper algebraic subvariety A^resp. A2, Blf B2) such that for
polynomials px e Y\Alf p2 e Y2\A2, qx e Z\Bt and q2 e Z2\B2, 3.21.1 holds.
In this sense, the conclusion of the following corollary of Theorem
3.20 "almost always" holds.

COROLLARY 3.22. If in Theorem 3.20, 3.21.1 holds, then in Theorem
3.20, any variety written in the form V(,), is P. In each such
case, the corresponding germs VΓί9 VΓ2 intersect transversally.

Proof of Corollary 3.22. Cases II and III are clear, since (pi, q{) =
1. For case I, it suffices to show that {p\q\ — mplql, q\ql) = 1. But
this follows at once from Lemma 3.9, with pif qt replaced by pi, ql
a -1,2) .

Proof of Theorem 3.20. In each case we compare deg((p2q1 —
ϊ) with degttq&Y) and apply Theorem 3.19.

I. Note that ordp^/tfi) = orάP(p2/q2) implies that
Now

(3.23)

and

plql

Pkl-

- mp\q2

- mplql =

^0 =

: 0=> deg((p2q}

mpxq2γ = P2#ί - mί>;

2)
f) ^ deg pίffί

(3.24)

1. ordP(pJq1) = oτdP(p2/q2) and ordp^) = ordp^) imply that
ordp(p2) = ordp(g2). Thus in this case deg pi = deg #I(i = 1, 2). There-
fore if plql — mplql Φ 0, then d e g ( ^ ί — mplql — deg^ίg2. This, to-
gether with 3.23 and Theorem 3.19.1 establishes (I, l(a)). Next,
suppose that plql — mplql = 0. Then deg((p2qλ — mp&Y) ^ degqlql;
this together with Theorem 3.18.3 establishes (I, l(b)).

2(a). ordp(pjq1) = oτdP (p2/q2) together with ordP(p1) S oτdP(q1)
imply that ordP(p2) S oτdP(q2). ptql — mplql Φ 0 then implies that
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deg(p2ql - mptql) S deg q[q\. This, with 3.23 and Theorem 3.19.2
proves (I, 2(a)). (I, 2(b)) is clear.

3. ordpQ^/tfi) = o*dP(p2/q2) together with ordp^) ^ orάpiq^ imply-
that deg(plql — mplql)^άeg(qlqt); if plq\ — mp\q\φQ, then 3.23 implies

(3.25) deg((M, - mp&Y) ^ deg(qlqt) .

If Pkί - mplvl = 0, then (3.24) shows that (3.25) holds a fortiori.
Now applying Theorem 3.19.3 establishes (I, 3).

II. Note that ordP (pjqj S ordP(p2/q2) implies that ordp(Pt#2) S
ordP(2λ>#3); hence in this case

(3.26) (p2qί - Tπp&y = -mptql .

1. ordp^j) = ordp^J (that is, deg pi = deg ql) and (3.26) imply

that deg((p2?i — mPiQ*)1) — deg(qlqζ). Theorem 3.19.1 now establishes

(II, 1).
2. ordpCPi) S ovdpiqj) and (3.26) show that deg((p2q1 —

deg(qlqt). Then Theorem 3.19.2 establishes (II, 2).
3. In anology to the above, we have deg((i>2g3 —

deg(qlqd, and Theorem 3.19.3 establishes (II, 3).

III. The proofs are the same as those in II, except that the
subscripts " 1 " and "2" of p and q are everywhere reversed.

Here is an example of Theorem 3.20.

EXAMPLE 3.23. Let ε > 0, and in the notation of Theorem 3.20
let rx — pjqt — 1/(Y + εX), r2 — p2/q2 — 1/(Y — εX). We consider
fringes in F*(1/(Γ + εX)) U 7*(1/(Γ - εX)), corresponding to m = 1,
passing through singular points—that is, through points of W2(r2 — mr^).
Now from Lemma 3.10 we see that W(r2 - mr,) = W(r,) U W(r2) (J
(Vdrύ Π Foo(r2)). In this example, any two different Vh(r^ are dis-
joint (they are the mutually parallel lines Y + εX = 1/6); similarly
for F6(r2). Hence W(r,) = W(r2) = 0 . But ^ ( r , ) = F ( Γ + εX) and
Foo(r2) = F ( F - εX), so VJxύ Π m^ίr,) = {(0, 0)}. Hence W(r2 - mr2)
consists of the single point TΓ(rt) U TF(r2) UίFooίn) Π VoαCr,)) = {(0, 0)}—
that is, each 1-fringe passes through (0, 0). This can be seen in
Figure 1, where the obvious fringes correspond to m = 1. Vb(r2—i
is given by 1I(Y +eX) ~ 1/(Y — εX) — 6, which reduces to

(3-23.1) ^ f ? - ~^rr, = 1

Ίb
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7

FIGURE 1

For each be R, one branch of the above hyperbola passes through
(0, 0).

Let P = (0, 0). Then oτάpipjq,) = oτάP(p2/q2) = - 1 . We see that
(I, 2(a)) of Theorem 3.20 applies, since also ordpίpj = 0 S oτάP(qj) =
1, and ptet-mplqt = l (7 + eX)-l (7-eX) = 2εX^0. The theorem
then tells us that any two germs F£(r2 — wr j and Fζ(r2 — mrj
(δlf δ2 6 JB) are fully tangent, the tangent cone being V(2eX) = iίF.
This is also evident in Fig. 1. For δ — °°, (I, 2(a)) tells us that
VZ(r2 — mrj is tangent to each Vΐ(r2 — mr^ (6 6 J?) along V(p\q\ —
mplϊί, gίϊί) - F(2εX, ( F + εX)(Γ - eX)) - {(0, 0)}~that is, that
VZ(r2 — mrj is transverse to each FΓ(f2 — wr j (6 6/2) at (0,0).
This is in fact so, since a representative of VZ(r2 — mrj is Jϊ x, which
is transverse to Rγ at (0, 0).

Note. The fringes running along the other branches of the
hyperbola in (3.23.1) cross Rx at 1/εδ. These fringes are especially
obvious only for smaller values of 6—that is, when 1/εδ is large—
and therefore do not appear in Figure 1.

Incidentally, one can also verify Lemma 3.8 in this case, too.
VJ?d = V(Y + eX), which is the limit of the set of parallel lines
F6(rx) (δ 6 Λ). Similarly, VJr,) - V(Y-εX). Since (qu q2) - (Y + εX,
Y — εX) = 1, we see that equality holds in (3.8.1), so the hyperbolic
fringes in Fig. 1 should approach the limit V(Y + εX) U V(Y - εX)
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as b -» °o. Of course, this union is the set of two asymptotes of
the hyperbolic branchs through (0, 0). As &-> <*>, these branches do
indeed approach the two lines Y = ±eX.

4. Density of rational alternations and moires at V^. In this
section we extend density results in Rx^V^ noted at the be-
ginning of §3, to points of V*,. More precisely, let rlfr2 be rela-
tively prime in R(Xlf X2)\R (i.e., if r, = pjq^ (pίf qt) = 1, then no
two of pu p2, qlf q2 share a nonconstant factor). We wish to study
the density at points of VJrύ of V*(rt), and at points of VJr^ - mτλ)
of V*(rύ U V*(r2). That is, let P be a point in VJχ2 - mrj, let &
be a representative of a real place & centered at P (as in (4.3)),
and let B(P; p) be a disk of radius p centered at P. The problem
is then to evaluate

<ΛΛ\ Km l e n £ t h KV(Tι) U V*(rz» ΠCf l B(P; p)]
K J p-o length[Cf) B(P p)]

It turns out that this limit always exists; it is independent of &
if Pe VJχι — mr$\W(r2 — mr3), but depends strongly on & if Pe
W(r2 — mrO. We begin by looking at the underlying alternations
(corresponding to m = 0 or <χ>), and then turn to moire fringes.

In evaluating limits like (4.1), the following result is useful.

LEMMA 4.2. Let a be fixed in R\{0}; let zeR. Then

Proof. We may assume without loss of generality that a =g 0,
for

(g + I)"" - (z + 2)-a

 = / z \V iz + 1)" - Qg + 2)a \
2-α - (« + 1)-" V 2 + 2 A 2« - (a + l y / '

Divide numerator and denominator of the quotient in (4.2.1) by z"
and set 1/z = s; this gives us

(4.2.2) ( 1 V ) " π L 1

1 (1 t S

The binomial series then allows us to rewrite (4.2.2) as

(A 2 3̂  —as + s2- [bounded]
—as + s2-[bounded]

As z —> oo (i.e., as s —• 0), (4.2.3) approaches 1.
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Let r 6 R(Xlf X2)\R. We now consider the density of V*(r) at
points of VJx). We consider separately the two cases P e Voo{r)\W{r)r

and Pe W(r).
First, let P e Woo{7ή\W(7ή. We wish to show that with respect

to any real place &* centered at P and not contained in V^ the
density bp(^*) at P is 1/2. For this, suppose without loss of generality
that P = (0, 0); then we may write r = p(Xlf X2)/q(Xlf X2)9 where
p(0, 0) = 0, g(0, 0) =£ 0. Let ^ be a place centered at (0, 0), with
representative ^ , defined near (0, 0) by, say,

Xi = t
(4.3)

X2 = f(t) (/ real analytic at t = 0) .

We may assume without loss of generality that RXι is tangent to
&. We are interested in the intersections near (0, 0) of & with
the curves defined by r = n (neZ). Consider, therefore,

(4.4) ^ j J Ά ^ n (\n\ large).

Since ord{0,0)2> = 0 and ord(0>0)# ̂  0, the order k in t of q(ta, f(t))/p(ta, f(t))
is k ^ 1. Then for \n\ sufficiently large, (4.4) has approximate solu-
tions near t = 0 given by

(4.5) atk = — (αei?\(0) independent of t) .
n

Therefore we have t = (l/an)1/k, i.e., ta = (l/an)a/k, or
/ i \«/fc

(4.6)

Since RXχ is tangent to & at (0, 0), we see that for any large n,
the distance from (0, 0) to any intersection of r(Xl9 X2) = n with &*
is well-approximated by | JSΓ21 in (4.6). (Note that for a fixed, arbi-
trarily large n, there may be zero, one or two such intersections.
There are no intersections corresponding to n iff there are two
intersections corresponding to —n.) But (4.6) together with Lemma
4.2 shows that the distance measured along & between successive
points of intersection of & with the curves r = n, become more and
more nearly equal as \n\ -> °°. From Definition 2.3, one easily sees
that in this case the density bP(^*) of V*(r) along & is 1/2.

We now look at the case when P e W(r). Let & be as above.
Now in contrast to the situation of P e FO0(r)\ΐ;F(r), there may be either
infinitely many or only finitely many neZ such that the curve
Vn = Vn(r) intersects & near (0, 0). We consider these two possibilities
separately. First, let ^ + be the subset of 3P corresponding to t ^ 0,
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and let &~ be the subset of & corresponding to t S 0.
We now look at the "infinite" case. In this case

There are both infinitely many points of Vn Π *#*+ near (0, 0),

and infinitely many points of Vn Π 0>~ near (0, 0).

(4.7) easily follows from this fact: if q(ta, f(t))/p(ta, /(«)) is unbounded
as t—>0 from one side, then it is unbounded as t—»0 from the other side.
This fact also implies that ord0(p(ία, /(£))) Φ ord0(g(£α, /(£))). Then k in
(4.6) is replaced by oτά0(q(ta, /(£))) - ord0(p(ta, /(£))), and an argument
like that in the case Pe Foo(r)\Wr(r) (using Lemma 4.2 and (4.7)) shows
that on each of <#+ and &-, the density b P (^) is 1/2; hence in this
case the density b P (^) of V*(r) along & is 1/2.

We now consider the other case, when there are not infinitely
many neZ such that Vn(r) intersects & near (0,0). Then for a
sufficiently small neighborhood U about (0, 0), ^ + Π U is either con-
tained in V*(r), or else is contained in RXιZ^V*(r). In the first
instance, the density of V*(r) Π έ^+ in ^ + is 1 and in the second,
it is 0; similarly for ^ ~ . Thus in this case

the density b P (^) of F* (r) n &* along ^ is 1, 1/2 or 0

depending on whether both, exactly one, or neither ^ + Π U,

3P Π U is contained in V*(r).

In the above "finite" case, all three possibilities can occur, as the
following example shows.

EXAMPLE 4.8. Let r - XJX, e R(Xlf XJ\R; let P = (0, 0).
4.8.1. If &> is defined by

2 = t ,

then ^ g Γ f t / I λ so bp(^) = 1.
4.8.2. If ^ is defined by

X2 = t

then & £ Rx^W^XJXJ, so bP(^>) - 0.
4.8.3. If & is defined by

then for sufficiently small ^ + , ^ + S F*(X2/X1), and ^ ~ £
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V*(XJXJ. Thus in this case b P (^) = 1/2.
We now consider densities of moires at points Pof Voo{r2 —

Let rlf r2 e R(X19 X2)\R, (rly r2) = 1, and let meR. We look separately
at the two cases P e Voo(r2 — mr$\W(r2 — mrj, and P e W(r2 — mr^.

First, suppose P e VJχ2 — mr$\W(r2 — mr^. Let ^ be any real
place centered at P and not contained in Voo(r2 — mr^; let & be a
representative of ^* As a function of 6, the density h(Vb) of ( F * ^ ) U
V*(n))Π F, (δeJS) in Vb is either 3/4, or else it oscillates about 3/4,
with formulas analogous to those in Theorem 2.7 (cf. §3). Using
Lemma 4.2 and the piecewise linearity with respect to b of ϊ>(Vb), we
see that for any ε > 0, there exists a sufficiently large positive integer
n0 so that for any n {\n\ ̂ n Q ) , the density of V*(rj)U V*(r2) measured
over the part of £? corresponding to lftn + 2) <; t ^ 1/^ is within
ε of 3/4. Thus for any ε > 0, the density of F * ^ ) U F*(r2) within
the part of & corresponding to all sufficiently large | ί | , is within
ε of 3/4. Therefore at P itself (Pe VJr2 - mr^\W[χ2 - mrx)), the
density of V*(r^ U F*(r2) with respect to £P, is 3/4.

Now suppose P e WJr2 — mr^. Let Vb — Vb(r2 — mr^ be a fixed
fringe curve through P. Then for any ε > 0, there exists a sufficiently
small neighborhood UP about P such that the density of (F*(rx) U
F*(r2)) Π Vb measured along Vb Π UP9 is within ε of b(Vb). This is
because for any QeVb sufficiently close to P (Q Φ P), the set of
points of (V*(rOU F*(r2))Γ) Fδ near Q has a repeating pattern which
is arbitrarily well-approximated by the pattern R f]Vb about any
fixed point Φ P, where R is a sufficiently high m-refinement of
F*(rO U F*(r2). Thus the density at P e W(r9 - mrλ) along F6(r2 - mr,)
(beR) is just b(Vb).
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