AN ESTIMATE OF INFINITE CYCLIC COVERINGS AND KNOT THEORY

Akio Kawauchi and Takao Matumoto

In this paper we estimate the homology torsion module of an infinite cyclic covering space of an n-manifold by the homology of a Poincaré duality space of dimension $n-1$. To be concrete, we apply it to knot theory. In particular, it follows that any ribbon n-knot $K \subset S^{n+2}(n \geqq 3)$ is unknotted if $\pi_{1}\left(S^{n+2}-\right.$ $K) \cong Z$. We add also in this paper a somewhat geometric proof to this unknotting criterion.

1. Statements of results. Let X be a compact, connected and smooth, piecewise-linear or topological n-manifold with nonzero 1 st Betti number, i.e., $H^{1}(X ; Z) \neq 0$. Let \tilde{X} be an infinite cyclic connected cover of X, that is, the cover of X associated with an indivisible element of $H^{1}(X ; \boldsymbol{Z})$. We denote by $\langle\boldsymbol{t}\rangle$ the covering transformation group of \tilde{X} with a specified generator t. Let F be a field and $F\langle t\rangle$ be the group algebra of $\langle t\rangle$ over F. For $H_{*}=$ $H_{*}(\widetilde{X} ; F)$ or $H_{*}(\widetilde{X}, \partial \widetilde{X} ; F), H_{*}$ is canonically regarded as an $F\langle t\rangle$ module. We define $T_{*}=\operatorname{Tor}_{F\langle t\rangle} H_{*}$ and $T^{*}=\operatorname{Hom}_{F}\left[T_{*}, F\right]$. We assume \tilde{X} is F-orientable. Note that $T_{0}(\widetilde{X} ; F)=H_{0}(\widetilde{X} ; F) \cong F$ and $T_{n-1}(\tilde{X}, \partial \tilde{X} ; F) \cong F$. (Cf. [5, Duality Theorem (II) and Remark 1.3].) Let M be a connected Poincaré duality space with boundary ∂M of dimension $n-1$ over F.

THEOREM. Suppose there is a map $f:(M, \partial M) \rightarrow(\tilde{X}, \partial \tilde{X})$ such that $f_{*} H_{n-1}(M, \partial M ; F)=T_{n-1}(\tilde{X}, \partial \tilde{X} ; F)$. Then

$$
\operatorname{dim}_{F} H_{q}(M ; F) \geqq \operatorname{dim}_{F} T_{q}(\tilde{X} ; F)
$$

for all q. Further, if $f_{*} H_{q}(M ; F) \subset T_{q}(\tilde{X} ; F)$ for some q, then $f_{*} H_{q}(M ; F)=T_{q}(\widetilde{X} ; F)$. In particular, if $T_{q}(\widetilde{X} ; F)=H_{q}(\tilde{X} ; F)$ (e.g., $\left.H_{q}(X ; F) \cong H_{q}\left(S^{1} ; F\right)\right)$ for some q, then the homomorphism

$$
f_{*}: H_{q}(M ; F) \longrightarrow H_{q}(\tilde{X} ; F)
$$

is onto.

Note 1. Our proof will imply also that

$$
\operatorname{dim}_{F} H_{n-q-1}(M, \partial M ; F) \geqq \operatorname{dim}_{F} T_{n-q-1}(\widetilde{X}, \partial \widetilde{X} ; F)
$$

for all q and, if $f_{*} H_{n-q-1}(M, \partial M ; F) \subset T_{n-q-1}(\widetilde{X}, \partial \widetilde{X} ; F)$ for some q, then $f_{*} H_{n-q-1}(M, \partial M ; F)=T_{n-q-1}(\widetilde{X}, \partial \widetilde{X} ; F)$.

In case X is oriented and piecewise-linear and \tilde{X} is obtained
from a piecewise-linear map $g: X \rightarrow S^{1}$, the preimage $X_{1}=g^{-1}(p)$ is a bicollared, oriented, proper ($n-1$)-submanifold of \tilde{X} for any nonvertex point p of S^{1}. Then, we see that the inclusion $i:\left(X_{1}, \partial X_{1}\right) \subset$ ($\widetilde{X}, \partial \tilde{X}$) sends the fundamental class of X_{1} to a generator of $T_{n-1}(\tilde{X}, \partial \tilde{X} ; F)$ for any F. [Proof. Let X^{\prime} be a manifold obtained from X by splitting along $X_{1} . \quad X^{\prime}$ is imbedded canonically in \tilde{X} so that $\partial X^{\prime}=X_{1} \cup\left(X^{\prime} \cap \partial X\right) \cup-t X_{1}$. This implies that $(1-t)\left[X_{1}\right]=$ $\left[X_{1}\right]=t\left[X_{1}\right]=0$ in $H_{n-1}(\widetilde{X}, \partial \tilde{X} ; F)$, i.e., $\left[X_{1}\right] \in T_{n-1}(\tilde{X}, \partial \widetilde{X} ; F) . \quad\left[X_{1}\right] \neq$ 0 in $H_{n-1}(X, \partial X ; F)$ and hence in $H_{n-1}(\tilde{X}, \partial \widetilde{X} ; F)$, since it is the Poincaré dual of $g^{*}\left[S^{1}\right] \in H^{1}(X ; F)$. Thus, $\left[X_{1}\right]$ generates $T_{n-1}(\widetilde{X}, \partial \widetilde{X}$; $F) \cong F$.] Let \hat{X}_{1} be the interior oriented connected sum of the components of X_{1}. Since \tilde{X} is connected, we can construct from i a map $\hat{i}:\left(\hat{X}_{1}, \partial \hat{X}_{1}\right) \rightarrow(\tilde{X}, \partial \widetilde{X})$ such that $\hat{i}_{*} H_{n-1}\left(\hat{X}_{1}, \partial \hat{X}_{1} ; F\right)=T_{n-1}(\widetilde{X}$, $\partial \tilde{X} ; F)$. From this observation and the theorem, we see the following:

Corollary 1. $\operatorname{dim}_{F} H_{q}\left(X_{1} ; F\right) \geqq \operatorname{dim}_{F} T_{q}(\tilde{X} ; F)$ for all q and F. If $i_{*} H_{q}\left(X_{1} ; F\right) \subset T_{q}(\widetilde{X} ; F)$ for some q and some F, then $i_{*} H_{q}\left(X_{1}\right.$; $F)=T_{q}(\widetilde{X} ; F)$.

In knot theory this corollary gives a general relation between the homology of a Seifert manifold of a knot (or link) and its knot (or link) module (associated with an infinite cyclic covering). For a classical knot (i.e., 1-knot) k, this has been recognized as (the genus of $k) \geqq(1 / 2)$. (the degree of the knot polynomial of k). (Cf. H. Seifert [9].)

Next, suppose X is orientable and $H_{1}(X ; \boldsymbol{Z}) \cong \boldsymbol{Z}$. Such a manifold occurs, for example, as the complement of an open regular neighborhood of a closed connected orientable ($n-2$)-manifold imbedded piecewise-linearly in S^{n+2}. By Poincaré duality $H_{n-1}(X$, $\partial X ; \boldsymbol{Z}) \cong \boldsymbol{Z}$.

Corollary 2. If there is a map $f:(M, \partial M) \rightarrow(X, \partial X)$ inducing an isomorphism $f_{*}: H_{n-1}(M, \partial M ; \boldsymbol{Z}) \cong H_{n-1}(X, \partial X ; \boldsymbol{Z})$ and a 0-map $f_{*}=0: H_{1}(M ; \boldsymbol{Z}) \rightarrow H_{1}(X ; \boldsymbol{Z})$, then

$$
\operatorname{dim}_{F} H_{q}(M ; F) \geqq \operatorname{dim}_{F} T_{q}(\widetilde{X} ; F)
$$

for all q and F.
To see this, note that $H_{n-1}(\tilde{X}, \partial \widetilde{X} ; \boldsymbol{Z}) \cong \boldsymbol{Z}$ and t acts trivially on it and the covering projection $\tilde{X} \rightarrow X$ induces an isomorphism $H_{n-1}(\tilde{X}, \partial \tilde{X} ; \boldsymbol{Z}) \cong H_{n-1}(X, \partial X ; Z)$. This follows from [3, Theorem 2.3], (or its topological version [4]) and the Wang exact sequence. So, it suffices to show that f has a lifting to \widetilde{X}. This is clear,
however, by the assumption that $f_{*}: H_{1}(M ; \boldsymbol{Z}) \rightarrow(X ; \boldsymbol{Z})$ is a 0-map.
For the following application, spaces and maps are considered in the piecewise-linear category. Let L be a trivial n-link in S^{n+2} of some $r+1$ components and a collection $\left\{B_{1}, \cdots, B_{r}\right\}$ of $r(n+1)$ balls imbedded locally-flatly and mutually disjointly in S^{n+2} such that for each $i B_{i}$ spans L as 1 -handle i.e., $B_{i} \cap L=\left(\partial B_{i}\right) \cap L=$ the disjoint union of two n-balls. An n-knot K in S^{n+2} is called a ribbon n-knot if it is obtained from such an L and a $\left\{B_{1}, \cdots, B_{r}\right\}$ by doing an imbedded surgery. (Cf. T. Yanagawa [12], R. Hitt [1].) The knot K is often said to be a fusion of the link L along 1-handles $\left\{B_{1}, \cdots, B_{r}\right\}$.

Corollary 3. Let $n \geqq 3$. A ribbon n-knot K is unknotted, if $\pi_{1}\left(S^{n+2}-k\right) \cong Z$.

To see this, note that any ribbon n-knot has a Seifert $(n+1)$ manifold M, homeomorphic to a manifold of the form $\#^{m} S^{1} \times S^{n}$ Int $B^{n+1}\left(B^{n+1}\right.$ is an ($n+1$)-ball.) ([12], [1]). Let $X=S^{n+2}$-Int $N(K)$, $N(K)$ being a regular neighborhood of K in S^{n+2}. The manifold $X \cap M(\cong M)$ gives a generator of $H_{n+1}(X, \partial X ; \boldsymbol{Z})=\boldsymbol{Z}$ and the inclusion $X \cap M \subset X$ induces a 0 -map on H_{1}. By Corollary 2, $T_{i}(\tilde{X}$; $F)=0, i \neq 0,1, n$. (Of course, one can also apply Corollary 1 to obtain this.) But $T_{*}(\tilde{X} ; F)=H_{*}(\tilde{X} ; F)$. As a result, $\tilde{H}_{*}(\widetilde{X} ; F)=0$ by using Milnor duality [8] or [5, Duality Theorem (II)], since \tilde{X} is simply connected. Then by taking $F=\boldsymbol{Q}$, we see that $\tilde{H}_{*}(\widetilde{X} ; \boldsymbol{Z})$ is a torsion group. Next, by taking $F=Z_{p}, p$ prime, and considering the universal coefficient theorem, the torsion product $\operatorname{Tor}_{z}\left(H_{*-1}(\tilde{X}\right.$; $\left.\boldsymbol{Z}), \boldsymbol{Z}_{p}\right)=0$. This shows that $\widetilde{H}_{*}(\widetilde{X} ; \boldsymbol{Z})=0$ and X has the homotopy type of S^{1}. By [6], [10], [11], K is unknotted for $n \geqq 3$.

Note 2. For $n=2$, a corresponding result is proved by Y . Marumoto [7] in the simplest case, that is, the case of L having two components. However, a general case is unknown.
2. Proof of theorem. Let $i: T_{*} \subset H_{*}$. i induces an epimorphism $i^{*}: H^{*} \rightarrow T^{*}$. Let $x \in H^{q}(\tilde{X} ; F)$ such that $i^{*}(x) \neq 0$. By [5, Duality Theorem (II)], the cup product $H^{q}(\widetilde{X} ; F) \times H^{n-q-1}(\widetilde{X}, \partial \widetilde{X}$; $F) \xrightarrow{U} H^{n-1}(\tilde{X}, \partial \tilde{X} ; F)$ induces a nonsingular pairing $T^{q}(\tilde{X} ; F) \times$ $T^{n-q-1}(\tilde{X}, \partial \tilde{X} ; F) \rightarrow T^{n-1}(\tilde{X}, \partial \widetilde{X} ; F)$, also denoted by U. Hence we find an element $y \in H^{n-q-1}(\widetilde{X}, \partial \widetilde{X} ; F)$ such that $i^{*}(x) \cup i^{*}(y)=i^{*}(x \cup$ $y) \neq 0$. By assumption, $f:(M, \partial M) \rightarrow(\widetilde{X}, \partial \widetilde{X})$ induces the following commutative triangle

and $f^{*}: T^{n-1}(\tilde{X}, \partial \tilde{X} ; F) \rightarrow H^{n-1}(M, \partial M ; F)$ is an isomorphism. Thus, $f^{*}(x \cup y)=f^{*}(x) \cup f^{*}(y) \neq 0$, so that $f^{*}(x) \neq 0$. We obtain a (noncanonical) monomorphism $r: T^{q}(\tilde{X} ; F) \rightarrow H^{q}(M ; F)$. Hence, $\operatorname{dim}_{F} T_{q}(\tilde{X}$; $F)=\operatorname{dim}_{F} T^{q}(\widetilde{X} ; F) \leqq \operatorname{dim}_{F} H^{q}(M ; F)=\operatorname{dim}_{F} H_{q}(M . F)$. If $f_{*} H_{q}(M ; F) \subset$ $T_{q}(\tilde{X} ; F)$, then we may replace r by a canonical epimorphism $r^{\prime}: T^{q}(\widetilde{X} ; F) \rightarrow \operatorname{Hom}_{F}\left[f_{*} H_{q}(M ; F), F\right]$ composed with the natural inclusion into $H^{q}(M ; F)$. Since r^{\prime} is an isomorphism, we see that $f_{*} H_{q}(M ; F)=T_{q}(\tilde{X} ; F)$. This completes the proof of the theorem.
3. Alternative proof of Corollary 3. We now describe a different, somewhat geometric proof of Corollary 3. This method, as a matter of fact, has been earlier obtained and is near to the argument of [2]. Let $T(m)$ be an n-manifold homeomorphic to $\#^{m} S^{1} \times S^{n-1}$ and imbedded locally-flatly in S^{n+2}. (The following four lemmas are true when $n \geqq 2$.) For $m=0, T(m)$ is an n-sphere, i.e., an n-knot. Such a $T(m)$ is unknotted if it bounds a manifold locally-flatly imbedded in S^{n+2} and homeomorphic to a disk sum $\square^{m} S^{1} \times B^{n}$. As an analogous argument to [2, Theorem 1.2], we have the following:

3.1 Any two unknotted $T(m)_{1}, T(m)_{2}$ are ambient isotopic.

Thus, the following is obtained:
3.2. If $T(m)$ is unknotted, $S^{n+2}-T(m)$ is homotopy equivalent to a bouquet $S^{1} \vee S^{2} \vee \cdots \vee S^{2} \vee S^{n} \vee \cdots \vee S^{n}$ of one 1-sphere, m 2spheres and m-spheres. [Regard $T(m)$ as the common boundary of $\vdash^{m} S^{1} \times B^{n}$ and $\vdash^{m} B^{2} \times S^{n-1}$ whose union forms an unknotted $(n+1)$-sphere S_{0}^{n+1} in S^{n+2}. Then, $S^{n+2}-T(m)$ is homotopy equivalent to the suspension of $S_{0}^{n+1}-T(m)$.]
3.3. Let $T(m+1)$ and $T(m+1)^{\prime}$ be the manifolds obtained from the same $T(m)$ by surgeries along 1 -handles B^{n+1} and $B^{n_{n+1}}$ on $T(m)$ imbedded locally-flatly in S^{n+2}, respectively. If $\pi_{1}\left(S^{n+2}-\right.$ $T(m)) \cong \boldsymbol{Z}$, then $T(m+1)$ and $T(m+1)^{\prime}$ are ambient isotopic.

This is proved easily as an analogy to [2, Lemma 2.7].
From 3.3 and the definition of ribbon knots, we see the following:
3.4. For any ribbon n-knot K obtained from $(m+1)$ balls and m 1-handles, the surgery along some standard mutually disjoint m 1-handles on K imbedded locally-flatly in S^{n+2} produces an unknotted $T(m)$. Further, if $\pi_{1}\left(S^{n+2}-K\right) \cong \boldsymbol{Z}$, then $T(m)$ is ambient isotopic to a knot sum $K \# T(m)^{\prime}$ for some unknotted $T(m)^{\prime}$.

Now assume $\pi_{1}\left(S^{n+2}-K\right) \cong Z$. In 3.4, let $E=S^{n+2}-K, X=$ $S^{n+2}-T(m)$ and $X^{\prime}=S^{n+2}-T(m)^{\prime}$. Take their infinite cyclic connected covers. We have $\widetilde{H}_{*}(\widetilde{E} ; \boldsymbol{Z}) \oplus \widetilde{H}_{*}\left(\widetilde{X}^{\prime} ; \boldsymbol{Z}\right) \cong \widetilde{H}_{*}(\widetilde{X} ; \boldsymbol{Z})$ as $\boldsymbol{Z}\langle t\rangle$ modules. By 3.2, $\widetilde{H}_{*}\left(\widetilde{X}^{\prime} ; \boldsymbol{Q}\right)$ and $\widetilde{H}_{*}(\widetilde{X} ; \boldsymbol{Q})$ are free $\boldsymbol{Q}\langle t\rangle$-modules of the same rank, so that $\widetilde{H}_{*}(\widetilde{E} ; \boldsymbol{Q})=0$, i.e., $\widetilde{H}_{*}(\widetilde{E} ; \boldsymbol{Z})$ is a torsion group. By 3.2 again, $\widetilde{H}_{*}\left(\widetilde{X}^{\prime} ; \boldsymbol{Z}\right)$ and $\widetilde{H}_{*}(\widetilde{X} ; \boldsymbol{Z})$ are free abelian, hence $\widetilde{H}_{*}(\widetilde{E} ; \boldsymbol{Z})=0$ and E has the homotopy type of S^{1}. By [6], [10], [11], K is unknotted for $n \geqq 3$.

References

1. L. R. Hitt, Characterization of ribbon n-knots, Notices Amer. Math. Soc., 26 (1979), A-128.
2. F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math., 16 (1979), 233-248.
3. A. Kawauchi, A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math., 26 (1975), 437-458.
4. -, A partial Poincaré duality theorem for topological infinite cyclic coverings and applications to higher dimensional topological knots, (unpublished).
5. On quadratic forms of 3-manifolds, Invent. Math., 43 (1977), 177-198.
6. J. Levine, Unknotting spheres in codimension two, Topology, 4 (1966), 9-16.
7. Y. Marumoto, On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ., 5 (1977), 59-68.
8. J. W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds edited by Hocking, Prindle, Weber and Schmidt, Boston, Mass., 1968, 115-133.
9. H. Seifert, Über das Geschlecht von Knoten, Math. Ann., 110 (1934), 571-592.
10. J. L. Shaneson, Embeddings with codimension two of spheres in spheres and H-coborddisms of $S^{1} \times S^{3}$, Bull. Amer. Math. Soc., 74 (1968), 972-974.
11. J. Stallings, On topologically unknotted spheres, Ann. of Math., 77 (1963), 490-503
12. T. Yanagawa, On ribbon 2-knots, Osaka J. Math., 6 (1969), 447-464.

Received September 25, 1979. The authors are both supported in part by National Science Foundation grants.

The Institute for Advanced Study
Princeton, NJ 08540
Current address of the second author: Department of Mathematics, Hiroshima University Hiroshima 730, Japan

