AN ESTIMATE OF INFINITE CYCLIC COVERINGS AND KNOT THEORY

AKIO KAWAUCHI AND TAKAO MATUMOTO

In this paper we estimate the homology torsion module of an infinite cyclic covering space of an *n*-manifold by the homology of a Poincaré duality space of dimension n-1. To be concrete, we apply it to knot theory. In particular, it follows that any ribbon *n*-knot $K \subset S^{n+2}$ $(n \ge 3)$ is unknotted if $\pi_1(S^{n+2} - K) \cong \mathbb{Z}$. We add also in this paper a somewhat geometric proof to this unknotting criterion.

1. Statements of results. Let X be a compact, connected and smooth, piecewise-linear or topological *n*-manifold with nonzero 1st Betti number, i.e., $H^1(X; \mathbb{Z}) \neq 0$. Let \tilde{X} be an infinite cyclic connected cover of X, that is, the cover of X associated with an indivisible element of $H^1(X; \mathbb{Z})$. We denote by $\langle t \rangle$ the covering transformation group of \tilde{X} with a specified generator t. Let F be a field and $F\langle t \rangle$ be the group algebra of $\langle t \rangle$ over F. For $H_* =$ $H_*(\tilde{X}; F)$ or $H_*(\tilde{X}, \partial \tilde{X}; F)$, H_* is canonically regarded as an $F\langle t \rangle$ module. We define $T_* = \operatorname{Tor}_{F\langle t \rangle} H_*$ and $T^* = \operatorname{Hom}_F[T_*, F]$. We assume \tilde{X} is F-orientable. Note that $T_0(\tilde{X}; F) = H_0(\tilde{X}; F) \cong F$ and $T_{n-1}(\tilde{X}, \partial \tilde{X}; F) \cong F$. (Cf. [5, Duality Theorem (II) and Remark 1.3].) Let M be a connected Poincaré duality space with boundary ∂M of dimension n - 1 over F.

THEOREM. Suppose there is a map $f: (M, \partial M) \to (\widetilde{X}, \partial \widetilde{X})$ such that $f_*H_{n-1}(M, \partial M; F) = T_{n-1}(\widetilde{X}, \partial \widetilde{X}; F)$. Then

$$\dim_F H_q(M; F) \geq \dim_F T_q(\tilde{X}; F)$$

for all q. Further, if $f_*H_q(M; F) \subset T_q(\tilde{X}; F)$ for some q, then $f_*H_q(M; F) = T_q(\tilde{X}; F)$. In particular, if $T_q(\tilde{X}; F) = H_q(\tilde{X}; F)$ (e.g., $H_q(X; F) \cong H_q(S^1; F)$) for some q, then the homomorphism

$$f_*: H_q(M; F) \longrightarrow H_q(\tilde{X}; F)$$

is onto.

Note 1. Our proof will imply also that

$$\dim_{F} H_{n-q-1}(M, \partial M; F) \geq \dim_{F} T_{n-q-1}(X, \partial X; F)$$

for all q and, if $f_*H_{n-q-1}(M, \partial M; F) \subset T_{n-q-1}(\widetilde{X}, \partial \widetilde{X}; F)$ for some q, then $f_*H_{n-q-1}(M, \partial M; F) = T_{n-q-1}(\widetilde{X}, \partial \widetilde{X}; F)$.

In case X is oriented and piecewise-linear and \widetilde{X} is obtained

from a piecewise-linear map $g: X \to S^1$, the preimage $X_1 = g^{-1}(p)$ is a bicollared, oriented, proper (n-1)-submanifold of \widetilde{X} for any nonvertex point p of S^1 . Then, we see that the inclusion $i: (X_1, \partial X_1) \subset (\widetilde{X}, \partial \widetilde{X})$ sends the fundamental class of X_1 to a generator of $T_{n-1}(\widetilde{X}, \partial \widetilde{X}; F)$ for any F. [Proof. Let X' be a manifold obtained from X by splitting along X_1 . X' is imbedded canonically in \widetilde{X} so that $\partial X' = X_1 \cup (X' \cap \partial X) \cup -tX_1$. This implies that $(1-t)[X_1] =$ $[X_1] = t[X_1] = 0$ in $H_{n-1}(\widetilde{X}, \partial \widetilde{X}; F)$, i.e., $[X_1] \in T_{n-1}(\widetilde{X}, \partial \widetilde{X}; F)$. $[X_1] \neq$ 0 in $H_{n-1}(X, \partial X; F)$ and hence in $H_{n-1}(\widetilde{X}, \partial \widetilde{X}; F)$, since it is the Poincaré dual of $g^*[S^1] \in H^1(X; F)$. Thus, $[X_1]$ generates $T_{n-1}(\widetilde{X}, \partial \widetilde{X};$ $F) \cong F.$] Let \widehat{X}_1 be the interior oriented connected sum of the components of X_1 . Since \widetilde{X} is connected, we can construct from ia map $\widehat{i}: (\widehat{X}_1, \partial \widehat{X}_1) \to (\widetilde{X}, \partial \widetilde{X})$ such that $\widehat{i}_*H_{n-1}(\widehat{X}_1, \partial \widehat{X}_1; F) = T_{n-1}(\widetilde{X}, \partial \widetilde{X}; F)$. From this observation and the theorem, we see the following:

COROLLARY 1. $\dim_F H_q(X_1; F) \ge \dim_F T_q(\tilde{X}; F)$ for all q and F. If $i_*H_q(X_1; F) \subset T_q(\tilde{X}; F)$ for some q and some F, then $i_*H_q(X_1; F) = T_q(\tilde{X}; F)$.

In knot theory this corollary gives a general relation between the homology of a Seifert manifold of a knot (or link) and its knot (or link) module (associated with an infinite cyclic covering). For a classical knot (i.e., 1-knot) k, this has been recognized as (the genus of k) $\geq (1/2) \cdot ($ the degree of the knot polynomial of k). (Cf. H. Seifert [9].)

Next, suppose X is orientable and $H_1(X; \mathbb{Z}) \cong \mathbb{Z}$. Such a manifold occurs, for example, as the complement of an open regular neighborhood of a closed connected orientable (n-2)-manifold imbedded piecewise-linearly in S^{n+2} . By Poincaré duality $H_{n-1}(X, \partial X; \mathbb{Z}) \cong \mathbb{Z}$.

COROLLARY 2. If there is a map $f: (M, \partial M) \to (X, \partial X)$ inducing an isomorphism $f_*: H_{n-1}(M, \partial M; Z) \cong H_{n-1}(X, \partial X; Z)$ and a 0-map $f_* = 0: H_1(M; Z) \to H_1(X; Z)$, then

$$\dim_F H_q(M; F) \ge \dim_F T_q(\widetilde{X}; F)$$

for all q and F.

To see this, note that $H_{n-1}(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \cong \mathbb{Z}$ and t acts trivially on it and the covering projection $\tilde{X} \to X$ induces an isomorphism $H_{n-1}(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \cong H_{n-1}(X, \partial X; \mathbb{Z})$. This follows from [3, Theorem 2.3], (or its topological version [4]) and the Wang exact sequence. So, it suffices to show that f has a lifting to \tilde{X} . This is clear, however, by the assumption that $f_*: H_1(M; \mathbb{Z}) \to (X; \mathbb{Z})$ is a 0-map.

For the following application, spaces and maps are considered in the piecewise-linear category. Let L be a trivial *n*-link in S^{n+2} of some r + 1 components and a collection $\{B_1, \dots, B_r\}$ of r (n + 1)balls imbedded locally-flatly and mutually disjointly in S^{n+2} such that for each $i \ B_i$ spans L as 1-handle i.e., $B_i \cap L = (\partial B_i) \cap L =$ the disjoint union of two *n*-balls. An *n*-knot K in S^{n+2} is called a *ribbon n-knot* if it is obtained from such an L and a $\{B_1, \dots, B_r\}$ by doing an imbedded surgery. (Cf. T. Yanagawa [12], R. Hitt [1].) The knot K is often said to be a *fusion of the link* L along 1-handles $\{B_1, \dots, B_r\}$.

COROLLARY 3. Let $n \ge 3$. A ribbon n-knot K is unknotted, if $\pi_1(S^{n+2}-k) \cong Z$.

To see this, note that any ribbon n-knot has a Seifert (n + 1)manifold M, homeomorphic to a manifold of the form $\sharp^m S^1 \times S^n$ -Int $B^{n+1}(B^{n+1})$ is an (n+1)-ball.) ([12], [1]). Let $X = S^{n+2}$ -Int N(K), N(K) being a regular neighborhood of K in S^{n+2} . The manifold $X \cap M(\cong M)$ gives a generator of $H_{n+1}(X, \partial X; Z) = Z$ and the inclusion $X \cap M \subset X$ induces a 0-map on H_1 . By Corollary 2, $T_i(\tilde{X};$ $F) = 0, i \neq 0, 1, n$. (Of course, one can also apply Corollary 1 to obtain this.) But $T_*(\tilde{X}; F) = H_*(\tilde{X}; F)$. As a result, $\tilde{H}_*(\tilde{X}; F) = 0$ by using Milnor duality [8] or [5, Duality Theorem (II)], since \tilde{X} is simply connected. Then by taking F = Q, we see that $\tilde{H}_*(\tilde{X}; Z)$ is a torsion group. Next, by taking $F = Z_p$, p prime, and considering the universal coefficient theorem, the torsion product $\operatorname{Tor}_Z(H_{*-1}(\tilde{X};$ $Z), Z_p)=0$. This shows that $\tilde{H}_*(\tilde{X}; Z) = 0$ and X has the homotopy type of S^1 . By [6], [10], [11], K is unknotted for $n \geq 3$.

Note 2. For n = 2, a corresponding result is proved by Y. Marumoto [7] in the simplest case, that is, the case of L having two components. However, a general case is unknown.

2. Proof of theorem. Let $i: T_* \subset H_*$. *i* induces an epimorphism $i^*: H^* \to T^*$. Let $x \in H^q(\tilde{X}; F)$ such that $i^*(x) \neq 0$. By [5, Duality Theorem (II)], the cup product $H^q(\tilde{X}; F) \times H^{n-q-1}(\tilde{X}, \partial \tilde{X}; F) \stackrel{\cup}{\to} H^{n-1}(\tilde{X}, \partial \tilde{X}; F)$ induces a nonsingular pairing $T^q(\tilde{X}; F) \times T^{n-q-1}(\tilde{X}, \partial \tilde{X}; F) \to T^{n-1}(\tilde{X}, \partial \tilde{X}; F)$, also denoted by \cup . Hence we find an element $y \in H^{n-q-1}(\tilde{X}, \partial \tilde{X}; F)$ such that $i^*(x) \cup i^*(y) = i^*(x \cup y) \neq 0$. By assumption, $f: (M, \partial M) \to (\tilde{X}, \partial \tilde{X})$ induces the following commutative triangle

and $f^*: T^{n-1}(\tilde{X}, \partial \tilde{X}; F) \to H^{n-1}(M, \partial M; F)$ is an isomorphism. Thus, $f^*(x \cup y) = f^*(x) \cup f^*(y) \neq 0$, so that $f^*(x) \neq 0$. We obtain a (noncanonical) monomorphism $r: T^q(\tilde{X}; F) \to H^q(M; F)$. Hence, $\dim_F T_q(\tilde{X}; F) = \dim_F T^q(\tilde{X}; F) \leq \dim_F H^q(M; F) = \dim_F H_q(M, F)$. If $f_*H_q(M; F) \subset T_q(\tilde{X}; F)$, then we may replace r by a canonical epimorphism $r': T^q(\tilde{X}; F) \to \operatorname{Hom}_F [f_*H_q(M; F), F]$ composed with the natural inclusion into $H^q(M; F)$. Since r' is an isomorphism, we see that $f_*H_q(M; F) = T_q(\tilde{X}; F)$. This completes the proof of the theorem.

3. Alternative proof of Corollary 3. We now describe a different, somewhat geometric proof of Corollary 3. This method, as a matter of fact, has been earlier obtained and is near to the argument of [2]. Let T(m) be an *n*-manifold homeomorphic to $\#^m S^1 \times S^{n-1}$ and imbedded locally-flatly in S^{n+2} . (The following four lemmas are true when $n \ge 2$.) For m = 0, T(m) is an *n*-sphere, i.e., an *n*-knot. Such a T(m) is unknotted if it bounds a manifold locally-flatly imbedded in S^{n+2} and homeomorphic to a disk sum $\#^m S^1 \times B^n$. As an analogous argument to [2, Theorem 1.2], we have the following:

3.1 Any two unknotted $T(m)_1$, $T(m)_2$ are ambient isotopic.

Thus, the following is obtained:

3.2. If T(m) is unknotted, $S^{n+2} - T(m)$ is homotopy equivalent to a bouquet $S^1 \vee S^2 \vee \cdots \vee S^2 \vee S^n \vee \cdots \vee S^n$ of one 1-sphere, m 2spheres and m n-spheres. [Regard T(m) as the common boundary of $\natural^m S^1 \times B^n$ and $\natural^m B^2 \times S^{n-1}$ whose union forms an unknotted (n + 1)-sphere S_0^{n+1} in S^{n+2} . Then, $S^{n+2} - T(m)$ is homotopy equivalent to the suspension of $S_0^{n+1} - T(m)$.]

3.3. Let T(m + 1) and T(m + 1)' be the manifolds obtained from the same T(m) by surgeries along 1-handles B^{n+1} and B'^{n+1} on T(m) imbedded locally-flatly in S^{n+2} , respectively. If $\pi_1(S^{n+2} - T(m)) \cong \mathbb{Z}$, then T(m + 1) and T(m + 1)' are ambient isotopic.

This is proved easily as an analogy to [2, Lemma 2.7].

From 3.3 and the definition of ribbon knots, we see the following:

3.4. For any ribbon n-knot K obtained from (m + 1) balls and m 1-handles, the surgery along some standard mutually disjoint m 1-handles on K imbedded locally-flatly in S^{n+2} produces an unknotted T(m). Further, if $\pi_1(S^{n+2} - K) \cong \mathbb{Z}$, then T(m) is ambient isotopic to a knot sum K # T(m)' for some unknotted T(m)'.

Now assume $\pi_1(S^{n+2}-K) \cong \mathbb{Z}$. In 3.4, let $E = S^{n+2} - K$, $X = S^{n+2} - T(m)$ and $X' = S^{n+2} - T(m)'$. Take their infinite cyclic connected covers. We have $\tilde{H}_*(\tilde{E};\mathbb{Z}) \bigoplus \tilde{H}_*(\tilde{X}';\mathbb{Z}) \cong \tilde{H}_*(\tilde{X};\mathbb{Z})$ as $\mathbb{Z}\langle t \rangle$ -modules. By 3.2, $\tilde{H}_*(\tilde{X}';\mathbb{Q})$ and $\tilde{H}_*(\tilde{X};\mathbb{Q})$ are free $\mathbb{Q}\langle t \rangle$ -modules of the same rank, so that $\tilde{H}_*(\tilde{E};\mathbb{Q}) = 0$, i.e., $\tilde{H}_*(\tilde{E};\mathbb{Z})$ is a torsion group. By 3.2 again, $\tilde{H}_*(\tilde{X}';\mathbb{Z})$ and $\tilde{H}_*(\tilde{X};\mathbb{Z})$ are free abelian, hence $\tilde{H}_*(\tilde{E};\mathbb{Z}) = 0$ and E has the homotopy type of S^1 . By [6], [10], [11], K is unknotted for $n \geq 3$.

References

1. L. R. Hitt, Characterization of ribbon n-knots, Notices Amer. Math. Soc., 26 (1979), A-128.

2. F. Hosokawa and A. Kawauchi, *Proposals for unknotted surfaces in four-spaces*, Osaka J. Math., **16** (1979), 233-248.

3. A. Kawauchi, A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math., **26** (1975), 437-458.

4. _____, A partial Poincaré duality theorem for topological infinite cyclic coverings and applications to higher dimensional topological knots, (unpublished).

5. ____, On quadratic forms of 3-manifolds, Invent. Math., 43 (1977), 177-198.

6. J. Levine, Unknotting spheres in codimension two, Topology, 4 (1966), 9-16.

7. Y. Marumoto, On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ., 5 (1977), 59-68.

8. J. W. Milnor, *Infinite cyclic coverings*, Conference on the Topology of Manifolds edited by Hocking, Prindle, Weber and Schmidt, Boston, Mass., 1968, 115-133.

9. H. Seifert, Über das Geschlecht von Knoten, Math. Ann., 110 (1934), 571-592.

10. J. L. Shaneson, Embeddings with codimension two of spheres in spheres and H-coborddisms of $S^1 \times S^3$, Bull. Amer. Math. Soc., **74** (1968), 972-974.

11. J. Stallings, On topologically unknotted spheres, Ann. of Math., **77** (1963), 490-503 12. T. Yanagawa, On ribbon 2-knots, Osaka J. Math., **6** (1969), 447-464.

Received September 25, 1979. The authors are both supported in part by National Science Foundation grants.

THE INSTITUTE FOR ADVANCED STUDY PRINCETON, NJ 08540

Current address of the second author: Department of Mathematics, Hiroshima University Hiroshima 730, Japan