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AN ESTIMATE OF INFINITE CYCLIC COVERINGS
AND KNOT THEORY

AKIO KAWAUCHI AND TAKAO MATUMOTO

In this paper we estimate the homology torsion module of
an infinite cyclic covering space of an ^-manifold by the ho-
mology of a Poincarέ duality space of dimension n—1. To be
concrete, we apply it to knot theory. In particular, it follows
that any ribbon w-knot K<zSn+2 (n^3) is unknotted if π ^ S ^ 2 -
K) = Z. We add also in this paper a somewhat geometric proof
to this unknotting criterion.

1Φ Statements of results. Let X be a compact, connected and
smooth, piecewise-linear or topological ^-manifold with nonzero 1st
Betti number, i.e., H\X; Z) Φ 0. Let X be an infinite cyclic con-
nected cover of X, that is, the cover of X associated with an indi-
visible element of H\X; Z). We denote by (t) the covering
transformation group of X with a specified generator t. Let F be
a field and F(t) be the group algebra of (t) over F. For H* =
H*(X; F) or H*(X, dX; F), H* is canonically regarded as an Fφ-
module. We define Γ* = Tor^fl* and ϊ7* = KomF[T*, F]. We
assume X is F-orientable. Note that TQ(X; F) = HQ(X; F) = F and
Tn^(Xf dX; F) ^ F. (Cf. [5, Duality Theorem (II) and Remark 1.3].)
Let M be a connected Poincare duality space with boundary dM of
dimension n — 1 over F.

THEOREM. Suppose there is a map f: (Λf, dM) —> (X, dX) such
that f+H^M, dM) F) = Tn^(X, dX; F). Then

Hq(M; F) ^ dim^ Tq(X; F)

for all q. Further, if f*Hq(M; F) c Tg(X; F) for some q, then
f*Hq(M; F) = Tq(X; F). In particular, if Tq(X; F) = Hq(X; F) (e.g.,
Hq(X; F) ~ Hq(Su, F)) for some q, then the homomorphism

UH9(M;F) >Hq(X;F)

is onto.

Note 1. Our proof will imply also that

dirn^ Hn_q^{M, dM; F) ^ dim,, Tn^λ(Xf dX; F)

for all q and, if f^Hn_q_x{M9 dM; F) c Γ.-ff_1(X, dX; F) for some q9

then ΛflΛ.ff_1(Λf, dM; F) = Tn^λ{Xt dX; F).
In case X is oriented and piecewise-linear and X is obtained
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from a piecewise-linear map#: X —> S1, the preimage Xx = g~\p) is
a bicollared, oriented, proper (n — l)-submanifold of X for any non-
vertex point p of S1. Then, we see that the inclusion i: (Xlf aXJc
(X, dX) sends the fundamental class of Xx to a generator of
Tn^(X9 dX; F) for any F. [Proof. Let X' be a manifold obtained
from X by splitting along X19 Xf is imbedded canonically in X so
that 3X' = Xx U (X' Π 3X) U - tXle This implies that (1 - t)[XJ =
[XJ - t[XJ - 0 in H^iX, dX; F), i.e., [XJ 6 T^(X, 3X; F) . [XJ*
0 in Hn^(Xf dX; F) and hence in Hn^(Xf dX; F), since it is the
Poincare dual of JI+IS1] e H\X; F). Thus, [XJ generates ΪV^X, dX;
F) ~ F.] Let Xx be the interior oriented connected sum of the
components of X^ Since X is connected, we can construct from i
a map ΐ: (X,, 3XJ -> (X, dX) such that ΐ^H^iZ, dZ; F) = ̂ ^(X,
3X; ί7). From this observation and the theorem, we see the follow-
ing:

COROLLARY 1. dim^ H^Xύ F) ^ dim^ Tq(X; F) for all q and

F. If i^Hq{Xλ\ F) c Tg(X; F) for some q and some F, then i*Hq(X{;
F) = Tq(X; F).

In knot theory this corollary gives a general relation between
the homology of a Seifert manifold of a knot (or link) and its knot
(or link) module (associated with an infinite cyclic covering). For
a classical knot (i.e., 1-knot) &, this has been recognized as (the
genus of k) ̂  (1/2)-(the degree of the knot polynomial of k). (Cf.
H. Seifert [9].)

Next, suppose X is orientable and H^X; Z) ~ Z. Such a
manifold occurs, for example, as the complement of an open regular
neighborhood of a closed connected orientable (n — 2)-manifold
imbedded piecewise-linearly in Sn+2. By Poincare duality ίZΛ_1(X,

ax; z) ~ z.
COROLLARY 2. // there is a map f: (M, dM) —> (X, dX) inducing

an isomorphism /*: Hn_x{My dM; Z) = JHΛ_1(X, 3X; Z) and a Q-map
Λ = 0: fli(Af; Z) -> H^X; Z), then

dim,, Hq(M; F) ^ dimF Tq(X; F)

for all q and F.

To see this, note that Hn^{X, dX; Z) ^ Z and t acts trivially
on it and the covering projection X-»X induces an isomorphism
Hn^{X, 9X; Z) ~ B.-xCX, aX; Z). This follows from [3, Theorem
2.3], (or its topological version [4]) and the Wang exact sequence.
So, it suffices to show that / has a lifting to X. This is clear,
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however, by the assumption that /*: HX(M\ Z) -> (X; Z) is a 0-map.
For the following application, spaces and maps are considered

in the piece wise-linear category. Let L be a trivial w-link in Sn+2

of some r + 1 components and a collection {Bί9 , Br} of r (n + 1)-
balls imbedded locally-flatly and mutually disjointly in Sn+2 such
that for each i Bi spans L as 1-handϊe i.e., B€ Π L = (3BJ Π £ =
the disjoint union of two w-balls. An w-knot K in S*+2 is called a
ribbon n-knot if it is obtained from such an L and a {J?x, , Br}
by doing an imbedded surgery. (Cf. T. Yanagawa [12], R. Hitt
[1].) The knot K is often said to be a fusion of the link L along
1-handles {Bly , Br}.

COROLLARY 3. Let n ^ 3. A ribbon n-knot K is unknotted, if

To see this, note that any ribbon w-knot has a Seifert (n + 1)-
manifold M, homeomorphic to a manifold of the form fS1 x Sn-
Int Bn+\Bn+1 is an (n + l)-ball.) ([12], [1]). Let X = Sn+2-Int N(K),
N(K) being a regular neighborhood of K in SΛ+2. The manifold
Xf]M(=M) gives a generator of H»+1(X, dX; Z) = Z and the
inclusion J f l M c J induces a 0-map on i^. By Corollary 2, Tt(j£;
F) = 0, i ^ 0, 1, ^. (Of course, one can also apply Corollary 1 to
obtain this.) But T*(X; F) = H*(X; F). As a result, H*(X; F) = 0
by using Milnor duality [8] or [5, Duality Theorem (II)], since X
is simply connected. Then by taking F — Q, we see that H*(X; Z)
is a torsion group. Next, by taking F — Zp9 p prime, and consider-
ing the universal coefficient theorem, the torsion product ΎoYziH^^iX;
Z), ZP) = 0. This shows that H*(X; Z) = 0 and X has the homotopy
type of S1. By [6], [10], [11], K is unknotted for n ^ 3.

Note 2. For n — 2, a corresponding result is proved by Y.
Marumoto [7] in the simplest case, that is, the case of L having
two components. However, a general case is unknown.

2 Proof of theorem* Let i:T*(zH*. i induces an epimor-
phism i*:H*-*T*. Let xeHq(X;F) such that i*(x) Φ 0. By [5,
Duality Theorem (II)], the cup product Hq(X; F) x Hn-q-\X, dX;

F) ^> Hn~\X, dX; F) induces a nonsingular pairing Tq(X; F) x
Tn-q-\X, dX; F) -> Tn~\X, dX; F), also denoted by U. Hence we
find an element yeHn-q-\X, dX; F) such that i*(x) U ί*(y) = i*(x U
y) Φ 0. By assumption, /: (Λf, dM) ~> (X, dX) induces the following
commutative triangle
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Hn-\X, dX; F)

1 //*
T—\%, dX; F)

and /*: Tn~XX, dX; F) -> H*-\M, dM; F) is an isomorphism. Thus,
f*(x Ui/) = /*(&) U f*(y) Φ 0, so that f*(x) Φ 0. We obtain a (non-
canonical) monomorphism r: TqiX; F)-^HqiM; F). Hence, dim^ Tq(X;
F) — dimF TqiX; F)<^dimFH

qiM; F) — dimFHqiM. F). If f*HqiM; F)a
TqiX; F), then we may replace r by a canonical epimorphism
r': TqiX\ F) -> Horn,, [/*iίg(ikf; ί7), ί7] composed with the natural in-
clusion into HqiM; F). Since rf is an isomorphism, we see that
f*HqiM; F) = TqiX\ F). This completes the proof of the theorem.

3* Alternative proof of Corollary 3* We now describe a
different, somewhat geometric proof of Corollary 3. This method,
as a matter of fact, has been earlier obtained and is near to the
argument of [2]. Let Tim) be an ^-manifold homeomorphic to
y.mSι χ Sn-i a n d imbedded locally-flatly in Sn+2. (The following four
lemmas are true when n 2> 2.) For m = 0, Tim) is an ̂ -sphere, i.e.,
an w-knot. Such a T(m) is unknotted if it bounds a manifold
locally-flatly imbedded in Sn+2 and homeomorphic to a disk sum
fcpS1 x Bn. As an analogous argument to [2, Theorem 1.2], we
have the following:

3.1 Any two unknotted T(m)19 Tim)2 are ambient isotopic.

Thus, the following is obtained:

3.2. // Tim) is unknotted, Sn+2 — T(m) is homotopy equivalent
to a bouquet S1 V S2 V V S2 V Sn V - V Sn of one l-sphere, m 2-
spheres and m n-spheres. [Regard Tim) as the common boundary
of bpS1 x Bn and kΓJ?2 x Sn~ι whose union forms an unknotted
(n + l)-sphere So

n+1 in Sn+2. Then, Sn+2 - Tim) is homotopy equi-
valent to the suspension of So

w+1 — Tim).]

3.3. Let T(m + ΐ) and .T(m + 1)' be the manifolds obtained
from the same Tim) by surgeries along 1-handles Bn+1 and B'n+ι

on Tim) imbedded locally-flatly in Sn+2, respectively. If π"1(Sίλ+2 —
Tim)) = Z, then Tim + 1) and Tim + 1)' are ambient isotopic.

This is proved easily as an analogy to [2, Lemma 2.7].
From 3.3 and the definition of ribbon knots, we see the following:
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3.4. For any ribbon n-knot K obtained from (m + 1) balls and
m 1-handles, the surgery along some standard mutually disjoint
m 1-handles on K imbedded locally-flatly in Sn+2 produces an
unknotted T(m). Further, if ττ1(Sίt+2 - K) = Z, then T(m) is
ambient isotopic to a knot sum K%T(m)f for some unknotted Γ(ra)'.

Now assume πλ{Sn+2 - K) ^ Z. In 3.4, let E = Sn+2 - K, X =
Sn+2 - T{m) and X' = Sn+2 - T(m)\ Take their infinite cyclic con-
nected covers. We have H*(E\ Z) φ H*(X'; Z) gz H*(X; Z) as Z(t)-
modules. By 3.2, H*(X'; Q) and H*(X; Q) are free Q<ί>-modules of
the same rank, so that H*(E; Q) = 0, i.e., H*(E; Z) is a torsion
group. By 3.2 again, ϊϊtχX'; Z) and H*(X; Z) are free abelian,
hence H*(E; Z) = 0 and E has the homotopy type of S\ By [6],
[10], [11], K is unknotted for n ^ 3.
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