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THE BOUNDARY MODULUS OF CONTINUITY OF
HARMONIC FUNCTIONS

ELGIN H. JOHNSTON

Let G be a bounded domain in the complex plane and let
u(z) be continuous on G. In this paper we study the boundary
modules of continuity, ω(δ), of u on dG and the modulus of
continuity, ω(δ), of u on G. We investigate the extent to which
the inequality "ω(δ) <ω(<5)" holds when u is harmonic on G and
show that the precise formulation of such inequalities depends
on the smoothness of dG.

1* Introduction* Let G be a bounded domain in the complex
plane and let u(z) be continuous on G. The modulus of continuity
(MOC) of u(z) on G is the function ωu(δ, G) defined for δ ^ 0 by

ωu(δ, G) = s u p { | u ( z ) - u(z')\: z, z'eG,\z - z'\ £δ] .

Thus ωu(δ, G) is nondecreasing and limδ..0+ ω(δ) = α>(0) = 0. If G is,
say, convex, then ωu(δ) is subadditive and continuous. The boundary
modulus of continuity (BMOC) is denoted ωu(δ, dG) and defined by

ώu(δ, dG) = sup {\u{Q - u(ζ')\: ζ, C e3G, |ζ - ζ'| ^ δ} .

When no confusion should arise, we will simply write ω(δ) and ώ(δ).
It is clear that ώu(δ, dG) ^ ωu(δ, G)(δ ^ 0), and that if u(z) is

simply continuous on G, little more can be said. In this paper we
investigate the extent to which the reverse inequality holds for u(z)
harmonic (or analytic) on G.

Rubel, Taylor and Shields [6, p. 31] have proved the following
result for u analytic.

THEOREM. Let G be simply connected and let φ(δ)(δ ^ 0) be a
continuous increasing, nonnegatίve subadditive function. Then for
u(z) analytic on G, continuous on G,

ώ(δ) ̂  φ(δ) — ω(δ) ̂  Cφ(δ) ,

where C is an absolute constant, independent of G.
It can be shown that C > 1 is necessary.

For u(z) harmonic, it is known that if G = D — J(0, 1) is the
unit disk and uiz) is harmonic on D, continuous on D, then

(1) ω{δ) ^ c(log ψjώ{δ) (o < δ ^ ψj ,
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where C is an absolute constant. This result is best possible on D
in the sense that the log (1/δ) factor cannot be improved [6, p. 34].
We add, however, that (1) can be sharpened for some ώu since
standard techniques for estimating Poisson integrals give

( 2 ) ω(δ) ̂  3ώ(<?) + —

It can be shown that (1) follows from (2). We note that (2) also
gives a result of Hardy and Littlewood [3]: if ώ(δ) <: δa(0 < a < 1),
then ω(δ) ̂  Gδa. More recently Dankel [2] has shown that (1) holds
for a wider class of bounded simply connected domains G. In
particular, (1) holds if dG is an analytic curve or if dG is Dini-
smooth and has bounded arc chord ratio.

In this paper we answer some of the remaining open questions
concerning the relation between ωu(δ) and ώu(δ) for harmonic u. In
§ 2 we show that the relation between the MOC and BMOC is related
to the smoothness of dG, and describe a wider class of domains
G for which (1) and (2) hold. In § 3 we consider a function / =
u + ίv analytic on G and briefly discuss the relationship between
ώu(δ) and cof(δ). In §4 we give a class of examples showing the
results of §2 are best possible and at the same time answer a
question of Dankel [2] by showing (1) is not valid on arbitrary
bounded, simply connected domains.

2* The MOC of harmonic functions* The proofs of the main
theorems in this section use the following result of A. Beurling [1,
p. 55].

THEOREM. Let G be a simply connected domain in the complex
plane, let γ £ 3 G and let zeG. Let d(z, dG) and d(z, 7) denote the
distance from z to dG and 7 respectively, and μ(z, 7, G) denote the
harmonic measure of 7 with respect to z and G. Then

( 3) μ{z, y,G)<i± Arc
π

Arc tan(^Y £ Mψ^T ,
π \ d(z, 7) / π \ d(z, 7) /

where the last inequality follows since Arc tan x ^ x for x ^ 0. We
can now prove the following theorem.

THEOREM 1. Let G be a bounded simply connected domain and
suppose u(z) is harmonic on G and continuous on G. Then
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where \G\ denotes the diameter of G.

Proof. We first observe that

ω(δ) = sup{|tt(s) - u(z')\: z, z' eG, \z - z'\ £ δ}

s p { | ( ζ ) ^ ) | ζ e 3 G , zeG, |s - ζ| ^

This equality is proved in [6, p. 26] for analytic w and the same
proof is valid for harmonic u. We assume z e G, ζedG have been
chosen with \z — ζ| ^ δ and 1^0) — u(ζ)\ = ω(δ). Without loss of
generality, we assume ζ = 0. If z e dG, then ω(δ) = ώ(δ) gives the
desired inequality. We assume zeG. Then

ω(δ) = \u{z) - u(0)\ = 1 \ MC) - ^(0)}^fe dζ, G)

^ ί ώ(\ζ\)μ(z, dζ, G) .
JdG

Let Λ = {ζedG: | ζ | ^ 2δ} and Aκ = {ζ e3G: 2—^ < | ζ | ^ 2"δ) (2 S
n ^ N = 1 + [log21G \/δ] • • • "[ ]" denotes the greatest integer func-
tion). Then

ω(§) ̂  ώ(2δ) + Σ \ ώ(\ζ\)μ{z, dζ, G)

«, A., G)

by (3). Since d(«, dG) ^ δ and dfe An) ^ 2%~2δ, we have

ω(δ) ̂  ώ(2δ) + — Σ ώ

The result follows by substituting s = 2t+1δ in the last integral.
Two useful corollaries follow from Theorem 1.

COROLLARY 2. // ώ(δ) is subadditive, then

ωu(δ) ^ Cδ~ί/2ώu(δ) ,

where C = C(\G\) is a positive constant.

COROLLARY 3. / / ω(δ) ^δa (0 ^ a S 1),
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ω(δ) £ C\

Again, C — C(\G\) is a positive constant depending on \G\.

Corollary 3 follows by integration. Corollary 2 is proved as
follows.

Proof. Since ω(δ) is a subadditive modulus of continuity, we
can find a continuous, nondecreasing concave function X(δ) for which

ώ(δ) ̂  X(δ) ̂  2ώ(δ) (δ ^ 0) ,

[5, p. 45]. Then X(δ)/δ is nondecreasing for δ > 0. Thus,

ωu(δ) £ 2ώ(δ) + Cδι/2

S \G\

s~1/zds

^ C'δ~1/2ώ(δ) .

In § 4 we give an example showing Corollaries 2 and 3 give the best
possible order of magnitude.

Theorem 1 can be improved in some cases. In particular, our
next result relates the global MOC to the BMOC and the smoothness
of 3G. We give a definition to classify boundary smoothness.

DEFINITION 4. For 0 < a < 1 and ε > 0, let

S(a, e) = is: |Arg(z)| ^ ^ and 0 ^ Res ^ el .
V. Ci )

For ζ e C and Θ real,

S(a, ε,ζ,θ) = ζ + eiθS(a, ε) ,

is the "cone" S(a, ε) rotated through angle θ and translated so its
vertex is at ζ. A bounded, simply connected open domain G satisfies
a (exterior) cone condition of order (a, ε) if for each ζedG there
exists a real θ — θ(ζ) such that

, ε, ζ, θ) n G - φ .

THEOREM 5. Suppose G satisfies a cone condition of order (a, ε)
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(0 < a < 1, ε > 0). // u{z) is harmonic on G, continuous on G and
has BMOC ώ(δ), then

( 5 ) ω(δ) ̂  ώ(Cδ)

where β = 2 — a and C, D, E are positive constants depending on
G.

Proof. We may assume ζ = 0 6 3G, z e G with | z — ζ | ^ δ and
\u(z)-u(ζ)\=ω(δ). We further assume 0(ζ) = O, so that S(a, ε, ζ, 0) =
S(α, ε) and S(a, e)Γ\G = φ. Let η > 0 and r > 0 denote, respective-
ly, the center and radius of the circle inscribed in dS(af ε). We
have d(ηf dG) ^ r = ε(l + cscα/2)-1 (see Figure I).

dG

FIGURE I.

Let

(/9 - 2 - α) ,

be a mapping from G in the z-plane to a domain if in the f-plane.
We take the branch cut for Φ(z) along the segment [0, η\. Then Φ
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maps G conformally onto H = Φ(G), with Φ(0) = 0 e dH. It is clear,
in fact, that 3 f) {ζ < 0} = ψ, so Φ is actually one-to-one and con-
tinuous on G. We can now define v(ξ) = uiΦ-'Xξ)) for ζ e H by taking
the branch cut for

along {ξ < 0}. This assures that Φ"1 is analytic on H, continuous
and one-to-one on H, with G = Φ~\H). Thus v(ζ) is harmonic on H
and continuous on 5 . We then have

(7) ωu(8, G) = \u(z) - u(fi)\

= \v(Φ(z)) - v(0)\

^\ \v(ξ)-v(0)\μ(Φ(z),dξ,H)\ \
JdH

=S( ώu{\Φ~\ξ)\, G)μ{Φ{z), dξ, H) .
dH

For ξ 6 H we have | ^ / 2 - 1| ^ 57/(37 + |G|). Combining this with (6)
and (7) gives

(8 ) ω%(δ, G) £ \ &MV +\G\)\ξ\β/*)μ(Φ(z), dξ, H) .

L e t Aι = {ξedH:\ξ\£ {4&lψ)vt} a n d

where N = [log2 ((37 + r)/δ)] ̂  log2 (2η/δ). It then follows that

d{Φ{z),dH)^\Φ{z)\<k[^-) ,

and

d{Φ{z), dH) ^

^ (22/* - l)(2—*-)Vβ (2^n^N) .

From (8) and (3) we obtain

~ V r J π
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where C and D are positive constants depending on \G\, TJ and r.
The desired inequality is obtained by letting s = Cδ2t in the last
integral.

We can now write down corollaries similar to those for Theorem
1.

COROLLARY 6. Assume the hypotheses of Theorem 5. If, in
addition, ώ(δ) is subadditive, then

ω(δ) ̂  Cδ{1~β)/βώ(δ) ,

where C is a positive constant depending on G.

COROLLARY 7. Assume the hypotheses of Theorem 5.
// ώ(δ) ̂  δr (0 < 7 ^ 1), then

< 7 < —

ω(δ) ^ C

Minor adjustments to the proof of Theorem 5 prove the follow-
ing result.

THEOREM 8. Let G be a bounded, simply connected open domain.
Suppose there exists an ε > 0 such that for each ζedG there is a
disk, Dζ, of radius ε with ζedDc and Dζ Γ\G = ψ. If u(z) is
harmonic on G, continuous on G and has BMOC ω(β), then

ω(δ) ̂  ώ(Cδ)

where C, D, E are positive constants depending on G.

For notational convenience, the "disk condition" described in
Theorem 8 will be referred to as a cone condition of order (1, ε).
If G is a bounded, simply connected open domain that does not
satisfy a cone condition of any order (a, ε) (0 < a <̂  1, ε > 0), then
we will say G satisfies a cone condition of order (0, 1). Thus
Theorem 8 shows that if G satisfies a cone condition of order (1, ε),
then our estimates for ω(δ) are essentially those given in (2) for
the unit disk. This analogy with the disk illustrated further in the
following corollaries.
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COROLLARY 9. If G satisfies a cone condition of order (1, ε)
(e > 0), and ώ(δ) is subaddίtive, then

ω(δ) ^ c(log — )ώ(δ) .
\ o '

COROLLARY 10. If G satisfies a cone condition of order (1, έ)
and ώ(δ) ^ δr (0 < 7 ^ 1), then

δr (0 < δ < 1)
co(δ) ̂  C 1

The following corollary improves a result of Dankel [2].

COROLLARY 11. // G is bounded and convex, and u(z) is
harmonic on continuous on G, then

Proof. Since G satisfies a cone condition of order (1, 1), it
suffices, as in the proof of Corollary 2, to show ώ(<?) is bounded
above and below by multiples of some continuous, nondecreasing
concave function λ(<5). The fact that G is a bounded, convex domain
implies dG is rectifiable, and that dG has bounded arc-chord ratio.
For ζ, C' 6 dG, let s(ζ, ζ') be the length of the "shorter" arc along
dG from ζ to ζ'. Then for some constant A > 0 we have

for all ζ, ζ ' eδG. Let

ω(δ) = sup {| w(ζ) - u(C) I, ζ, C G dG, 8(C, C) ^ δ} ,

be the BMOC of u with respect to arc length along dG. Then ώ(<5)
is subadditive and for δ > 0,

ω(<5) ^ ώ(δ) ^ ω(Λδ) ^ (A + l)ω(5) .

We now let λ(δ) be a continuous, nondecreasing concave function

with λ(δ) ^ ω(δ) ^ 2X(δ). This completes the proof.

3* Analytic functions* Let G be a bounded simply connected
open domain and suppose f(z) = u(z) + iv(z) is analytic on G and
continuous on G. Using the results from §2, we obtain results
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relating the MOC of / on G to the BMOC of u or v.
The following well-known result gives a bound on \f'(z)\ in

terms of (ύjβ, G).

THEOREM 12. Let G be a bounded region, let f(z) = u{z) + iv{z)
be analytic on G, and let u(z) be continuous on G. Then for zeG

(10)

where dz denotes the distance from z to dG.

With proper consideration given to the smoothness of dG, we
can estimate ωf(δ, G) from (10). We first require two definitions.

DEFINITION 13. Let λ(ί) (ί ;> 0) be a nonnegative, increasing,
subadditive function with limt-0+ λ(ί) = 0. A domain G is a λ-domain
if there exists a function ψ: R—> R and a positive constant M with

G = {x + iy:y> φ(x)} ,

and

(11) \φ(x)-φ(x')\£M\(\x-x'\),

for all x, xf e R. The smallest M for which (11) holds is the bound
for G. Any rotation of λ-domain is also a λ-domain.

DEFINITION 14. A bounded, simply connected domain G is a
local λ-domain if there exist positive constants ε and M and a se-
quence {Uii i — 1, 2, •} of open sets such that:

( i ) For each ζ e dG there is a U, with J(ζ, e) ^ £/,.
(ii) For each Ut there is a λ-domain Gt with bound not ex-

ceeding M such that:

u< n G< = ̂  n G .
Λί is called a bound for G. If X(x) = Cxα (some 0 < α ^ 1), then G
is a local Lip (α)-domain. Our definition of local Lip (l)-domain
coincides with the definition of a domain with minimally smooth
boundary [7, p. 189].

The following theorem and its corollary is proved in [4].

THEOREM 15. Let G be a local X-domain and let μ(t) (ί ^ 0) be
a nonnegative, increasing, subadditive function with lim^0+ μ(t) = 0.
Suppose f{z) is analytic on G, continuous on G and
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for each zeG. Then there is an Ύ) > 0 such that

(12) ωf(δ, G) £
d t f

t

for all δ ^ η.

In (12), we have assumed λ(t) is concave and so has a non-
negative derivative at all but at most countably many points. This
assumption affects the inequality (12) by at most a constant multiple
[5, p. 45].

COROLLARY 16. Let G be a local Lip {a)-domain and let β
(0 < β ^ 1) be given with a + β > 1. If f{z) is continuous on G,
analytic on G and

for all ZGG, then f(z) satisfies a Lipschitz condition of order a +
β - 1 on G.

Combining Theorems 5, 12 and 15 gives the following result.

THEOREM 17. Suppose G is a local X-domain and that G satisfies
a cone condition of order (α, ε) (0 ^ a <k 1, s > 0). Let f(z) = u(z) +
ίv(z) be analytic on G, continuous on G and suppose u{z) has BMOC
&u(β) on dG. Then there is an η > 0 such that

ωf(δ, G) <; A{\[ψ[ώ(Ct)

where β = z — a and A, C, D, E are constants depending on G.

In Theorem 17, we have again assumed X(t) is concave. The
proof is immediate since the representation (9) for our estimate of
<ou(βf G) is clearly nonnegative, increasing, subadditive and tends to
0 with δ. Corollary 16 can be used to draw analogous conclusions
concerning Lipschitz conditions.

4* Examples and remarks* In this section we first present a
class of examples that shows Corollaries 2 and 6 are best possible
in the sense that the exponents on the S's cannot be improved. Let
1 < β ^ 2 and let φβ(z) = (1 — z)β where, for 1 < β < 2, we take a
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branch cut along z > 1. Then φβ is 1-1 and continuous on D, analytic
on D onto a domain Gβ that satisfies a cone condition of order
(2 — β, 1). Consider the function uβ(ζ), harmonic on Gβ, continuous
on Gβ with uβ(ζ) = | ζ | for ζedGβ. Define vβ(z) on 5 by vβ(z) =

Then ^ is continuous on 5, harmonic on D and uβ(ζ) =
(C e G/0, where ^ ( ζ ) - 1 - ζ1/β is defined with branch cut

along ζ < 0.
Now ώUβ(δ, dGβ) = δ. If δ is given with 0 < δ < 2β, then δ e Gβ

and

ωUβ(δ, Gβ) ^

= - 1 - (*• (eiθ)P(l - d1/β, θ)dθ
2π j - * β

^ i . Γ \l-e

iθ\βP(l - δ1/β, θ)dθ .

For δ1/β ^θ^πwe have 11 - eiθ\β^ (2θ/π)β and P ( l - δι/β, θ)

Thus

= Cδa-β)/βώu(δ, dG) .

The example further shows that the constant in Corollary 6
cannot be taken independent of a = 2 — β. A similar argument,
using φβ(z) = A(l — z)β (A > 0) shows the constants in Corollaries 2
and 6 cannot be taken independent of \G\. If we take 0 < 7 ^ 1
and repeat the above argument with ^(ζ) = | ζ | r (ζedGβ), we obtain
examples that show Corollaries 3 and 7 are best possible.

As a final remark, we note that Theorem 5 actually says some-
thing about were in G \ u{ζ) — u(z) | can achieve the bound given in
(5).

THEOREM 18. Let 0 <̂  aλ < a2 <; 1 and e19 ε2, δ0 > 0 be given (if
ax = 0, take ελ = 1). Let G satisfy a cone condition of order (al9 Sj)
and suppose there is a 7 £ dG such that G satisfies a cone condition
of order (α2, ε2) at each ζ e 7. Suppose u(z) is harmonic on G, con-
tinuous on G and has BMOC ώ(δ). jf, for each 0 < δ ^ δ0 we have
ω(δ) = I u(ζ) — u(z) for some ζ 6 7, zeG, \ ζ — z \ ̂  d, then

ω(δ) ̂  ώ(Cδ) + Dδ1/β*
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where β2 = 2 — α2 and C, D, E are positive constants depending on
a2, ε2 and \G\.

Referring back to the example presented at the beginning of
this section, Theorem 17 gives the following fact. Let {<?J~=1 be a
sequence of positive numbers with δn—>0. Suppose ζn, zn (n = 1, 2, •)
are given wi th ζnedGβ, zneGβ, \ζn - zn\ ^ δn and ωUβ(δn, Gβ) =

\uβ(ζn) - uβ(zn)\. Then lim ζn = lim zn = 0.
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