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ANALYTIC FUNCTIONS IN TUBES WHICH ARE
REPRESENTABLE BY FOURIER-LAPLACE

INTEGRALS

RICHARD D. CARMICHAEL AND ELMER K. HAYASHI

Spaces of analytic functions in tubes in Cn which gen-
eralize the Hardy Hp spaces are defined and studied. In
addition Cauchy and Poisson integrals of distributions in
&Lv are analyzed.

1* Introduction* Bochner ([1] and [2]) has defined the Hardy
H\TC) spaces for tubes Tc = Rn + iC in Cn where Ccz R% is an open
convex cone. Stein and Weiss [11] have studied the HP{TB) spaces
for arbitrary p > 0 and with respect to tubes TB, B being an open
proper subset of R1 [11, pp. 90-91]. Vladimirov [12, §§25.3-25.4]
has considered analytic functions in Tc, C being an open connect-
ed cone, which satisfy the growth [12, p. 224, (64)]. Vladimirov
has stated [12, p. 227, lines 4-5] that the growth which defines the
H2 functions of Bochner is more restrictive than [12, p. 224, (64)].
We show in this paper that the H2 growth is not more restrictive
than [12, p. 224, (64)] by showing that the functions of Vladimirov
are exactly the H2 functions. However, Vladimirov's growth has
led us to define new spaces of analytic functions in tubes which
have growth estimates that are more general than that of the
HP(TB) spaces, and we analyze these new spaces in this paper.
Further, we study Cauchy and Poisson integrals of distributions in

The ^-dimensional notation in this paper is described in [7, p.
386]. The definitions of a cone in Rn, projection of a cone pr(C),
compact subcone, and dual cone C* = {teRn: <ί, y) >̂ 0, y e C} of a
cone C are given in [12, p. 218]. Terminology concerning distribu-
tions is that of Schwartz [10]. The support of a distribution or
function g is denoted supp(βr). Definitions, properties, and relevant
topologies of the function spaces <9*9 2$Lv, & — 2$L<~, and & and
of the distribution spaces S^f and 3tf

LV are in [10]. The L1 and
£f* Fourier and inverse Fourier transforms are defined in [7, pp.
387-388] and [10, p. 250], respectively. The limit in the mean
Fourier and inverse Fourier transforms of functions in Lp, 1 < p <̂  2,
and L\ (1/p) + (1/g) = 1, are in [8] and [3]. JH>(ί); x] {^Λφ&YM)
denotes the Fourier (inverse Fourier) transform of a function in the
relevant sense. If F G ^ ' we denote its Fourier (inverse Fourier)
transform by J^[V] = V ( J^^tF]) . For φeLp, l<p£2, the
Parseval inequality is
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(l.l) I I ^ W ) ; »]IL« ^ II^IU d/p) + d/ί) = l ,

with equality if p = 2, the Parseval equality.

2* The Cauchy and Poisson kernel functions and technical
results* Let C be an open connected cone, C* be the dual cone of
C, and 0(C) be the convex envelope (hull) of C. The Cauchy kernel
function [6, p. 201] is

(2.1) K(z - ί) = ( exv(2πi(z-t, η))dη, z e T0{C) = Rn + iO{C), teRn .

To avoid the triviality of JK"(jδ — ί) — 0 we assume in this section
that O(C) does not contain an entire straight line [12, p. 222,
Lemma 1]. In [6, Theorem 1] one of us proved K(z — t) e &LQ for
all qf (1/p) + (1/q) = 1, 1 < p ^ 2, as a function of £ e Rn for fixed
s e T0{C). But ^Lqc<Φ c ^ o o for every tf, 1 ^ q < oo, by [10, pp.
199-200]. We thus have

LEMMA 2.1. Let z e T0{C). As a function of teRn,

(2.2) K(z - ί) 6 & ΓΊ ^ L /or all q, (1/p) + (1/g) = 1, 1 ^ p ^ 2 .

For an open connected cone G the Poisson kernel function [6,
p. 204] is

(2.3) Q(z; t) = g ( g J$KSZ ^- , « - « + i » 6 T0(C7), ί e i ί % .
K(2ιy)

LEMMA 2.2. Q(z; t ) e & Π ^ ^ / o r αM g, 1 <£ ? ^ oo, as a

ίΐo^ of teRn for arbitrary z e r0(<7).

Proof. Let a be any w-tuple of nonnegative integers. By the
Leibnitz rule

(2.4) D?(Q(z; t)) -
K(2ιy) β+r=

z = x + iye T0{C) .

By (2.2)Dβ

t(K(z - t)) and Dϊ(ίΓ(« - «)) are in L2 n L°° as functions of
t 6 /e%. Thus i3f(Q(2; ί)) 6UΠL°°QL\ l^q^oo. Hence Q(«; t) 6 ^ χ g

1 ^ 9 ^ oo; and Q(z\ t)e& also since S i g c ^ , 1 ^ g < oo.
As a function of x — ΊΆe{z)eRn for yeO(C) arbitrary we also

have

(2.5) Q(x; y) = K{-x + 1 ^ + *»> e ̂  n &» for all
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We conclude this section with two important and useful theorems.

THEOREM 2.1. Let B be an open connected subset of Rn. Let
1 Ŝ P < °° and A ^ 0. Let g(t) be a measurable function on Rn

which satisfies

(2.6) ( Ig{t)\pe~2πp<y^dt ^ Mlge
2πpAl^ , yeB ,

where the constant MAt9 depends only on A and g(t) and not on
yeB. Then

(2.7) F(z) = \ g(t)e2πί<z^dt, zeTB ,

is an analytic function of ze TB and has an analytic extension to

Proof For arbitrary yoeB there is an open neighborhood of
y0, N(y0) c B, and a δ > 0 such that {y: | y - yo\ - δ} c N(y0). There
are k cones Γh j = 1, ••-,&, having the properties as in [11, p. 92,
lines 12-15] and such that whenever two points v and w are in a
JΓJ then (v, w) ^ ( i / 2 /2)| v| | w|. For each i = 1, , fc choose 2/y
such that (ί/0 — yά) e Γ. and l ^ — ί/0| = δ. Then for each p, 1 <; #>< °°>
and all ί e Γ y , i = 1, , &, we have (—2πp(yd — yo,t))^ e\t\ where
e = Λ/~2πpδ > 0. Using this fact, (2.6), and analysis as in [11, pp.
92-93] we have that the function

G{t) = g{t) exp(e|ί |/2p) exp(-2τr<j/0, t>), ί e Λ " , l ^ p < o o ,

is an L1 function. If y — Im(«) is restricted so that | y — y0 \ < (ε/
4πp) then

I g(tyπi«^ I ̂  I G(ί) I , ί e /2W , a? - Re (β) 6 iί^ .

Since y0 e B was arbitrary it follows that F(z) is analytic in TB and
has an analytic extension to TOiB) by [4, p. 92, Theorem 9].

Note the indicatrix function uc(t) of a cone C defined in [12, p.

219]. O(C) may or may not contain an entire straight line in the

next theorem.

THEOREM 2.2. Let C be any open connected cone and A ^ 0.
Let g{t) 6 Lp, 1 <̂  p < °o

( 2 . 8 ) ί I f f W I ' β - 2 * * ' ' ^ * ^ Λ C f i , β e x p ( a r p ( A + e)\y\) , » e C ,

for all ε > 0 where the constant MA>ε,g depends on A, ε, ami
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and not on y eC. Then supp( r̂) £ SA = {t: uc(t) <; A} almost every-
where (a.e.).

Proof. Assume g(t) Φ 0 on a set of positive measure in SΛ =
Rn\SA — {t: uc(t) > A], an open set. Then there exists t0 e SA such that
g(t) ^ O o n a set of positive measure in any open neighborhood of
tQ. Using tQeSΛ and the continuity of the inner product, there is
a point 2/oepr(C)cC, a fixed number σ>0, and a fixed open neigh-
borhood Nv(t0) of t0 such that (~(y0, t))>(A + σ)>0 for all teNv(t0).
Then

(2.9) - <Xy0, t) = -λ<2/0, ί> > λA + λ<τ > 0 , t e NV(Q , λ > 0 .

Since 2/oepr(C)cC and C is a cone then XyoeC for all λ > 0 and
\yQ\ = 1. Using (2.9) and then (2.8) with # = λy0 we have for all
λ > 0 that

(2.10) exp(2τzrp(λA + Xσ)) \ \g(t)\pdt ̂  Mlε,gexv(2πpX(A + e))

and hence

(2.11) exp(2ττpλ(σ - e)) ( | g(t)\»dt ^ Λβ,.^
JNv(t0)

for all ε > 0. By fixing ε > 0 such that a > ε > 0 and letting λ—>°o
in (2.11) we obtain a contradiction. The conclusion follows by not-
ing that SA is a closed set.

3. The analytic functions. The base B of the tube TB =
Rn + i ΰ is an open proper subset of Rn in this section.

Let p > 0 and A ^ 0. Fί = FKT5) is the space of all functions
f(z) which are analytic in ze TB and which satisfy

(3.1) \\f{x + iy)\\LP - ( j Λ J / ( X + iy)\pdxJP ^ MAt

where the constant MAJ depends on A ^ O and / and does not de-
pend on yeB.

yP = vp(TB), v > 0, is the space of all functions f(z) which are
analytic in TB and which satisfy

G \l/p

Jf(x + iy) Ux} ^ Mttfe«™,y e B ,

for every ε > 0 where the constant MS}f depends on the arbitrary
ε > 0 and on / and does not depend on yeB.

The spaces defined above have been motivated by the growth
[12, p. 224, (64)] of Vladimirov; we have denoted them as VI and
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Vp accordingly. Notice that Vp = Γ\ε>0Vε

p

f p > 0; hence Vp <^V%,
A> 0,p>0. The Hardy spaces iP(T β ) = Fo^ϊ75), p > 0, [11, pp.
90-91] satisfy JET* £ F", p > 0; hence JET* £ FJ, p > 0, A ^ 0. There
are tubes TB and values of p such that If*, F p , and VI contain
nonzero functions and such that Vl contains functions which are
not in Hp or Vp.

4* Representations of the analytic functions* Analysis as in
[11, p. 99, Lemma 2.12], the Lp Fourier transform theory, 1 < p ^ 2,
and a proof similar to that in [11, pp. 100-101] yield

LEMMA 4.1. Let B be an open connected subset of Rn and
B'czB such that infil l — y2\: yx e B', y2eB}^ δ for some δ > 0. Let
f(z)e VZ(TB), p > 0, A ^ 0. There exists a constant K which does
not depend on ze TB' such that

(4.1) |/O

// 1 < p ^ 2, then

(4.2)

for all y and yr in B and for almost every teRn where

(4.3) hy{t) = JT-\f{x + iy); t] , yeB,

is the Lq, (1/p) + (1/q) = 1, inverse Fourier transform of f(x + iy),
yeB.

We now represent some Vl{TB) spaces using Fourier-Laplace in-
tegrals.

THEOREM 4.1. Let B be an open connected subset of Rn. Let
f{z) e Vl(TB), 1 < p ^ 2, A ^ 0. There exists a measurable function
g(t), t e Rn, such that

(4.4) (e-

for all yeB,

(4.5) ( Ig(t)I'e-^'Wdt ^ Ml9je**A™ , yeB,

where the constant MA>f depends on A and on f but not on ze TB, and

(4.6) f(z) - ( gϋfrW'W , zeTB.

Proof Define hy(t) as in (4.3) and put
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(4.7) g{t) = e^^hyit) , yeB.

By (4.2) g{t) is independent of yeB. From (4.3) and (4.7) we have

(4.8) e-^ygit) = JT~\f{x + iy); t] , y e B

hence (4.4) holds by the Fourier transform theory. Since f(z)e
Vl{TB\ 1 < p S 2, (1.1) holds for ̂ "'[fix + iy); t]; and by (4.8) and
(1.1) we have

(4.9) We-t^W)^ S \\f(x + iy)\\LP ^ MA>fe>«A^ , yeB,

from which (4.5) follows. The Fourier transform theory and (4.8)
yield

(4.10) f(z) = ̂ "[e-^^gity, x] , z = x + iyeTB .

By Theorem 2.1 the integral on the right of (4.6) is analytic in TB

and is the L1 Fourier transform of (exp(—2π(y, t))g(t)) eL\ ye B.
(4.6) now follows by the Fourier transform theory and (4.10).

COROLLARY 4.1. Let C be an open connected cone. Let f(z) e
VP

A(TC\ 1 < p S 2, A ^ 0. There exists a function g(t) e L\ (l/p) +
{Ijq) = 1, with supp(#) Q {t: uc{t) ̂  A} a.e. such that (4.4), (4.5), and
(4.6) hold.

Proof. The existence of a measurable function g{t) such that
(4.4)? (4.5), and (4.6) hold corresponding to G follows from Theorem
4.1. Let k > 0 be arbitrary. For any yeC

(4.11) ( \g{t)\qdt
Jltl^fc

since g{t) satisfies (4.5). Choose yk = {yo)/{A + fc), y0 e pr(C), the pro-
jection of C. Then ykeC, k> 0, since C is a cone and ̂ 4 ̂  0. By
(4.11) with y^yk

(4.12) ( 10(t) \qdt S AfIf/exp(2πg(A

since y0 e pr(C). From Theorem 4.1 g{t) is independent of y e C, and
the right side of (4.12) is independent of the arbitrary k > 0. Hence
(4.12) proves g{t)eLq. Theorem 2.2 now yields supp(g)£{£: uc{t) ^A)
a.e.

The next result follows by the techniques used to prove Theorem
4.1 and Corollary 4.1 together with the facts that {t: uc{t) ̂  0} = C*
and measure (C*) = 0 if O(C) contains an entire straight line [12,
p. 222, Lemma 1].
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COROLLARY 4.2. Let C be an open connected cone. Let f(z) e
VP(TC), Kp^2. There exists a function g(t) e L\ (1/p) + (1/q) = 1,
with supp(#) £ C* a.e. such that

(4.13) ( \g(t)\qe~2πq<^>dt ^ Mε

q

>fe
2πqεlyl , yeC,

for every ε > 0 where the constant Mε>f depends at most on e and
/; and (4.6) holds for z e Tc. Further, if O(C) contains an entire
straight line then f(z) = 0, z e TG.

If we assumed that g(t)eLq in Corollary 4.2 satisfies g(t) =
; t] for some heLp then we can prove

(4.14) f(z) =

in Corollary 4.2. If p = 2 the assumption of such a function feeL2

is redundant [3].
Since H*{TB) Q V*{TB\ p > 0, and HP(TB) £ Fi(Γ£), 3? > 0, A ^ 0,

Theorem 4.1 and Corollaries 4.1 and 4.2 hold for f(z)eHp(TB\

COROLLARY 4.3. Let C be an open connected cone. We have
V\TC) = H\TC).

Proof. Given f(z)eV\Tc)f Corollary 4.2 yields g(t)eL2 with
supp(#)£C* a.e. such that (4.13) and (4.6) hold. The Parseval
equality (1.1) for p = 2 yields

hence f(z)eH\Tc). The proof is complete since HP(T°) ^VP(TC),
p>0.

The proof of the preceding corollary combined with the repre-
sentation [12, p. 225, (67)] and the properties obtained for g(t) there
show that the analytic functions of Vladimirov in [12, §§25.3-25.4]
are exactly the H\TC) = V\T°) functions.

5* Converse and dual theorems* We now prove a dual re-
sult to Theorem 4.1.

THEOREM 5.1. Let B be an open connected subset of Rn. Let
1 < P ^ 2 and A ^ 0. Let g(t) be a measurable function on Rn

which satisfies (2.6). Then the function F(z), z e TB, defined by (2.7)
is an element of Vq

A(TB\ (1/p) + (1/?) = 1.
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Proof. F{z) is analytic in TB by Theorem 2.1, which also
implies (exp( —2π(y, t))g(t))eL\ yeB; and by (2.6) this function is
in Lp also, yeB. Thus (1.1) and (2.6) yield

\\F(x + iy) \\L9 ̂  \\e-*«'»g(t)\\LP ^ MA>ge*«Λ^ , yeB,

and F(z)e Vq

A{TB) as desired.

COROLLARY 5.1. Let C be an open connected cone. Let
and A ^ 0. Let g(t) be a measurable function on Rn which satisfies
(2.6) for every yeC. Then g(t) e Lp, supp(sθ£{ί: uc(t) <̂  A} a.e., and
the function F(z),zeTc, defined by (2.7) is an element of Vq

A(Tc),
(1/p) + (1/g) = 1.

Proof. Theorem 5.1, the proof of Corollary 4.1, and Theorem
2.2 yield the results.

If p = 2, Theorem 5.1 and Corollary 5.1 are converses of Theorem
4.1 and Corollary 4.1, respectively. Similarly the next corollary is
a converse of Corollaries 4.2 and 4.3 together with (4.14) for p = 2.

COROLLARY 5.2. Let C be an open connected cone. Let l<p<*2.
Let g(t) be a measurable function on Rn such that (4.13) holds with
q replaced by p and M£tf replaced by Mε>g. Then g(t) e Lp;
supp(βf) £ C* a.e.; the function F(z),zeTc

f defined by (2.7) is an
element of H9(TC), (XIp) + (1/tf) = 1; and there exists a function
heLg such that F(x + iy) —>h(x) in Lq as y->0, yeC, with this
boundary value being obtained independently of how y —> 0, y eC.
Further, if p = 2 then F{z) has the representation (4.14); and if
O(C) contains an entire straight line then F{z) = 0, z 6 Tc.

Proof. Because of previous analysis the only new idea is the
boundary value property. Since g eLp there exists heLq such that
h(x) = ̂ [flf(ί); x] in Lq. Then (F(x + iy) - h(x)) = ̂ [(exp(-2π<», ί>)
g(t)) — g(t); x] in Lq, y eC. Using (1.1) and the Lebesgue dominated
convergence theorem the proof is completed.

6* Generalized Cauchy and Poisson integrals* Throughout

this section C is an open connected cone such that 0(0) does not

contain an entire straight line.
Let Ue 3f'Lv, 1 ̂  P ̂  2. By Lemma 2.1, the generalized Cauchy

integral of U

(6.1) C(U; z) - <C7, K(z ~ t)>, z e T0^ ,

is a well defined function of zeTOiC).
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Using similar proofs we see that [6, Lemma 4] holds for p — 1,
and the convergence in [6, Lemma 5] holds in the topology of έΦ'.
The analysis used to prove [6, Theorems 2, 9, and 10] can be adapted
where necessary to show that these results hold also for p = 1, and
we have the following extension of these results.

THEOREM 6.1. Let Ue&'Lvf 1 ̂  p ̂  2, and let C be an open
connected cone. C(U; z) is an analyic function of zeT0{G) which
satisfies [6, p. 202, (8)] for z e Tc\ C" being any compact subcone of
O(C). For any ΦeS^ we have

(6.2) lim O(C(U; x + iy\ φ(x)) = <^[/c*(^X^~W]L Φfrϊ>
yeO{G)

with the transforms being in the £^' sense. IfU— V where
with supp(F)GC*, then V= Σι«i£ *βΛβ(t), ha(t)eL\ (1/p) + (1/g) = 1,
for some nonnegative integer m; we have

(6.3) C(U; z) = <F, ete<<e'*>> , z 6 Γ 0 ( C ) ,

as elements of 6^r\ and

(6.4) lim O(C(U; x + ij,), ^ ) > = (U, φ) , ^ 6 ̂  .
3/eC"cO(C)

[6, Corollary 1, Theorems 11, 12, and 15] hold for p = 1 also.
[6, Theorem 16] can now be extended to include p = 1 and to con-
clude the analyticity of C(U z) in TOiC\ the growth [6, p. 202, (8)]
for zeTc\ C'cO(C), and the convergence (6.2) in each of the con-
nected components O(Cλ),\eΛ. The restriction of z e T0{C)\{z: y =
Im(2) e O(C), ίfy = 0 for any j = 1, , n) in [6, Theorem 16] is un-
necessary.

Now let Ue &'LP, 1 ̂  p ^ oof and C be an open connected cone.
By Lemma 2.2 the generalized Poisson integral of U

is a well defined function of zeT0{G). In general P(U z) is not
analytic. However, if z is in a generalized half plane in Cn then
P(U z) is w-harmonic by a proof as in [5, Theorem 7].

We now extend and generalize slightly [6, Lemma 8]. The
proof is the same for all p, 1 <; p <; °o, and for φ e 3fLγ as that in-
dicated for [6, Lemma 8].

LEMMA 6.1. Let Ue £&'LP, 1 <^ p <; ©o, and z e T0{C), C
open connected cone. For yeO(C) we have
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(6.6) (P(U; x + iy), φ(x)} = (Ut (Q(x + iy; t\ φ(x)}), φe^L^.

LEMMA 6.2. Let C be an open connected cone and z = x + iy e
T0{C). We have

(6.7) lim \ Q(x + iy; t)φ{x)dx = φ(t) , φ e
y—*o

yeO(C)

in the topology of ££?Lq for all q, 1 ^ q 5̂  °°, and in the topology
of &.

Proof. For yeO(C) and any tι-tuple a of nonnegative integers

(6.8) D?((Q(x + ίy; t\ φ(x))) = \ D?(φ(x + t))Q(x; y)dx, φ e &L2,

where Q(x;y) is defined in (2.5). φe&Li implies ψa(t) = Dΐ(φ(t)) e
&LiQ&Lq for all q, 1 <* q ^°°. Using [6, Lemma 6, (50)], (6.8), and
the analysis of [6, p. 214, (55)] and [6, Lemma 7] we have for any

lim Df(\ Q(x + iy; t)φ(x)dx) - Dΐ(φ(t))
LQ

yeO(C)

(6.9) = lim
y—*o

yeO(C)

\ (ψa(x + ί) - fa(t))Q(x; y)dx = 0

which proves (6.7) in the topology of £&Lq for all q, 1 ^ q < <χ>. Now
0 e 3F& c ^ c ^^cx, implies ψa(t) = Dl(Φ(t)) e 3fLι c ^ c ^Loo. The
definition of ^ implies that ^α(ί) is uniformly continuous and
bounded on Rn; hence the proof of [9, Proposition 3, (b)] yields

limim \ ψa{x + t)Q(x; y)dx = ψa(t)
-+0 J Rny-+0

yeO(C)

uniformly for t e Rn. Because of this, (6.9) holds also for q — °°
which proves (6.7) in the topology of &f and in the topology of

We now extend and generalize [6, Theorem 14].

THEOREM 6.2. Let Ue £&'LP, 1 ^ p ^ °°. Let C be an open con-
nected cone and z = x + iyeT0{C). We have

(6.10) lim (P(U; x + iy), φ(x)) = (U, φ) , φ
yeO{C)

Proof The proof follows by (6.6), (6.7), and the continuity of U.
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Using Theorem 6.2, [6, Theorem 17] can be extended and gen-
eralized for Ue&'Lp, 1 <: p <̂  °o, where 0{C) contains no entire
straight line. One concludes the existence of P(U z), ze T0{C), and
the convergence (6.10) as y -> 0, y e 0{Cλ\ λ e A. The restriction of
z 6 T0{C)\{z: y = Im(z) 6 O(C), yά = 0 for any j = 1, , n} in [6,
Theorem 17] is unnecessary.
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