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ALTERNATIVE RINGS WHOSE SYMMETRIC ELEMENTS
ARE NILPOTENT OR A RIGHT MULTIPLE IS A

SYMMETRIC IDEMPOTENT

G. P. WENE

Osborn characterizes those associative rings with involu-
tions in which each symmetric element is nilpotent or
invertible. Analogous results are obtained for alternative
rings. The restriction is further relaxed to require only
that each symmetric element is nilpotent or some multiple
is a symmetric idempotent.

Introduction* J. M. Osborn [10] [11] proved a series of theo-
rems concerning the structure of associative rings with involution
such that any symmetric element is either nilpotent or invertible.
Many generalizations of his results have appeared in the literature
for associative rings (a good single reference is Herstein [4]). We
begin with a discussion of involutions in the Cayley-Dickson algebras.
Then Osborn's results are generalized to alternative rings. Our final
result shows that if R is an alternative ring with involution *
such that (a) each symmetric element s is either nilpotent or some
right multiple of s is a symmetric idempotent and (b) each set of
pairwise orthogonal symmetric idempotent has n or less elements,
then the quotient ring i?/RadJ? has d.c.c on right ideals. Since a
radical free alternative ring with d.c.c. on right ideals is the direct
sum of Cayley-Dickson algebras and simple artinian associative rings,
we have a nice description of these quotient rings.

l Preliminaries* Let R be a nonassociative ring. As is usual
for x, yf z in R we denote the associator (xy)z — x(yz) by (x, y, z)
and the commutator xy — yx by [x, y]. R is alternative if (x, x, y) =
(x9 y9 y) = 0 and is Jordan if (x2, y, x) = [x, y] = 0. The alternative
and Jordan rings are flexible in the sense that (x, y, x) — 0 for all
x9 y. If R is an algebra over a field Φ not of characteristic two,
and A a subset of R, then A+ will denote the set of elements of R
generated by the elements of A under the addition of R and Jordan
product a o b = l/2(αδ + ba) where ab denotes the product as elements
of R. A~ is defined similarly except that the product is now [α, 6] =
ab — δα.

The radical, Rad7?, of an alternative ring is the maximal ideal
consisting entirely of elements z which are quasi-invertible in the
sense that 1 — z is invertible. A ring is called a radical ring if
R = Rad R, If Rad R = 0, then R is said to be radical free.
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An ideal / i n a ring R with involution * is a *-ideal if I* = I.
R is *-simple if the only *-ideals of R are R and 0 and R is not
trivial (R2 Φ 0). R is *-simple if and only if R is simple or R is
the direct sum of a simple ring and its opposite.

LEMMA 1. If R is an alternative ring with involution and each
symmetric element is nilpotent, then R is a radical ring.

Proof. The proof that Osborn [11] uses in the associative case
works here.

REMARK. The converse of the lemma is false. Golovena [2]
constructs radical subrings of the ring of rational numbers. Since
these rings are commutative, the identity map is an involution. But
no nonzero element of the rational numbers is nilpotent.

We use the fact that Cayley-Dickson algebras are quadratic. An
algebra <%f with identity e over a field Φ not of characteristic 2 is
called quadratic if ^ Φ Φe and for each x in <%f

(1) x2 - 2t(x)x + q(x)e = 0

where t(x) and q(x) are in Φ and t(ae) = a for all aeΦ. In what
follows Φ has more than 2 elements. The quantities t(x) and q(x) in
equation 1 are called the trace and norm of x, respectively. The
trace is a linear functional on <%s (see Schafer [14], p. 49). The
norm q(x) defines a symmetric bilinear form q{x, y), the norm form,
on %f via

q(x, y) = q(x + y) - q(x) - q(y) .

Say q(x) is nondegenerate if q(x9 y) is nondegenerate.
A quadratic algebra ^ will be flexible if and only if the trace

t(x) is associative; that is, t((x, y, z)) = 0 for all x9 y, z in ^ . ^ +

will always be a Jordan algebra; ^ + will be simple if and only if
t{x) is associative and q(x) is nondegenerate (Braun and Koecher [1],
p. 217). If ^ possesses a symmetric bilinear form f(xf y) such that
f(xy, z) = f(x, yz) (an invariant form) and f(x, y) is nondegenerate
on ^ , then ^ ° = ^~\Z{^-), Z{&~) = {x e %f-\[x, y] = 0 for all
y e ^~}, is simple (Sagle [13]). Any Cayley-Dickson algebra has a
nondegenerate invariant form given by f(x, y) = tτace(RxRy) (Schafer
[14], p. 44).

Every flexible, quadratic algebra ^ has an involution x —> x where

x = 2t(x)e — x .

Furthermore x —> x is the unique involution * such that
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( 2 ) (ae)* = ae, x + x* e Φe and xx* = x*x e Φe

for all aeΦ and xe άf. Clearly any algebra ^ with involution *
satisfying (2) is quadratic. Call this involution satisfying (2) the
standard involution.

REMARK. If ^ is quadratic and x -+x = 2t(x)e — x is an involution
in ^, <%s does not need to be flexible (see Braun and Koecher [1],
p. 217).

2* Involutions in Cayley-Dickson algebras* A simple alternative
ring, which is not associative, is a Cayley-Dickson algebra over its
center, Z (Kleinfeld [8]). The involutions in simple artinian associative
rings are determined in Jacobson and Rickart [7]. We now determine
the involutions in Cayley-Dickson algebras.

Let ^ be a Cayley-Dickson algebra not of characteristic two
with involution *. S will denote the set of symmetric elements and
K will denote the set of skew elements. Let Z denote the center
of <&. As in the associative case, an involution * is said to be of
the first kind if Z Q S; otherwise * is of the second kind. W has
a vector space decomposition over Z Π S, ^ = S + K.

LEMMA 2. Let cέ? have an involution * of the first kind. Then
one of the following is true:

(a) * is the standard involution — in ^, S — Z, S+ is isomorphic
to Z, and K~ is a simple 7-dimensional algebra over Z.

(b) S+ is a simple, ^-dimensional algebra over Z and K~ is a
simple, Z-dimensional Lie algebra over Z.

Proof. Let * be an involution of the first kind. Then f(x) =
x* is a ϋΓ-linear automorphism of ^ , f(x) = x*9 and f(x) = 2t(f(x))e —
f(x) = f(2t(x)e — x) = f(x), since automorphisms preserve the trace.
Hence x* = f(x) = f(x) and (x*)* = fζfψ)) = /(/(a?)) = x. That is, /
is an automorphism of period two.

If / is the identity map, then * is the standard involution —.
The set S of symmetric elements is the center Z and S+ = Z+ = Z is
a field. Since K~ is isomorphic to ^°, it is simple. We note for
later use that K = [9f, <£f ] = [[9f, ^ ] , [^, <%>]].

As in Jacobson [5], we call an automorphism of period two a
reflection if it is not the identity map. If / is a reflection in ^
then there is a nonisotropic, quaternion subalgebra &, where
<gf = & + <^h, h e ^ \ q(h, h) Φ 0 and f(βQ + βjb) = β0 - βji for
each /30, βλ in &. Since x* = f(x)f we have (β0 + βjή* = β0 — βji =
β0 + βji. That is S = Ze + &h and the dimension of S over Z is
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five. Since the norm form is nondegenerate on S, S+ is a simple Jordan
algebra. if~, being generated by a subset of the (necessarily asso-
ciative) quaternion algebra &, is Lie. Since the invariant form of
^ restricted to & is nondegenerate, «^° is simple and if~, being
isomorphic to ^ ° , is simple.

LEMMA 3. Let * be an involution in ^ of the second kind.
Then there is an element X,XΦθ,XeZ such that λ* = — λ, ^ =
S + XS and S+ and K~ = (λS)~ are simple.

Proof. As in the associative case, there is X Φ 0, X 6 Z such that
λ* = -λ, K =XS and i f = S+λS. Since ^ = ^ ® F L is quadratic
over L if and only if ^ is quadratic over F (Schafer [14], p. 50)
and the fact that the norm form is nondegenerate on c^+ = S+ ®Z o Z,
the norm form is nondegenerate on S+. Hence S+ is simple.

Let k = X-1. Then i f = if + kK and [if, i f ] - [if, if] + &[#, if] +
k\K, K] and since ¥ e Zo, k\K, K] = [.fiΓ, ίΓ]. Thus [if, K] + fc[JBΓ, if] =
[if, ^ ] = [[ΐf> ^ ] , [if, ^ ] ] = [[if, if], [if, *]] + *[[*, i^], K K]]. Since
[[if, if], [if, if]] is contained in [if,if], we have [[if, if], [if, K]] = [K, if].

Let / be an ideal of [if, if]. Then / + ZIcz [&, rέf] and [/ + ZI,
[ΐf, ^ ] ] c [I+ZI, [if, K\] + [I+ZI, k[K, if]c[/, [if, if]] + k[I, [if, K] +
Z[I, [if, if] + Zk[I, [if, if]] aZI+ I. Thus / + ZI is an ideal of
[if, i f ] . But by the proof of Lemma 2, [if, i f ] is simple. If 1+ ̂ / = (0),
then / = (0). On the other hand, suppose I+ZI = [if, i f ] = [if, if] +
k[K, if]. But I+ZI=I+ZJ+kZ0I. Hence J+£0Z=[if, if] and /=>[/,
[if, if]] = [/,/+ £,/]=>[I, 7] + Z0[I, / ] , and [JΓ, if] = [[if, if], [if, if]] =
[I + ZJ, I + ZJ] c [I, I] + Z0[I, I] c I. Hence I = [if, if].

We note that the set S is a vector space over Zo and has a basis
{Ui\i — 1, , 8} such that uleZ0 and ?(%<, %) = 0 if i Φ j . The u/s
will also be a basis for ^ over Z.

REMARK. if~ is necessarily Malcev since it is a subalgebra of
the Malcev algebra ^~. When the involution is standard, K~ is a
simple non-Lie-Malcev algebra; when it is nonstandard, if" is a simple
Lie algebra (Sagle [12]).

LEMMA 4. If R is a *-simple alternative ring with identity
element and 1/2 e R, then S+ is a simple Jordan ring.

Proof. A *-simple ring is either simple or the direct sum of a
simple ring B and its opposite, Bop, under the exchange involution.

If R is simple, it is either associative and S+ is simple by Herstein
[3], or it is a Cayley-Dickson algebra and is simple by Lemmas 2
and 3.
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Suppose now R = Bφ Bop under the exchange involution. Then
S+ is isomorphic to B+. If B is associative, B+ is simple by Her stein
[3]. If B is a Cayley-Dickson algebra B+ is simple since the norm
form is nondegenerate on B.

3* When symmetric elements are invertible or nilpotent* An
alternative division ring is either an associative division ring or a
Cayley-Dickson division algebra. Obviously any nonzero symmetric
element is an alternative division ring with involution is invertible.
More can be said.

THEOREM 1. Let R a *-simple alternative ring with identity
element e and 1/2 e R. Each nonzero symmetric element is invertible
if and only if R is one of

( i ) an alternative division ring,
(ii) the direct sum of an alternative division ring and its

opposite, with the involution interchanging the summands,
(iii) the ring of 2 x 2 matrices over a field with the symplectic

involution, or
(iv) a split Cayley-Dickson algebra with the standard involution.

Proof. If R is associative, then each nonzero symmetric element
is invertible in the nucleus and Jacobson [6], Theorem 8, p. 170,
applies.

If R is not associative and is *-simple it is either a Cayley-
Dickson algebra or the direct sum of a Cayley-Dickson algebra with
its opposite under the exchange involution. If R is a division algebra
or the direct sum of a division algebra and its opposite under the
exchange involution, clearly any nonzero symmetric element is inver-
tible. If R is a split Cayley-Dickson algebra, the involution must
be the standard involution.

To see this note that if <& is split and Z Q S, then by Lemma
2, S is a five dimensional subspace of ^ over Z. Since ^ is split,
a nonisotropic subspace has dimension at most four by Witt's theorem,
so S cannot be nonisotropic, hence there must be some 0 Φ seS such
that q(s, s) = 0. That is, S must have a noninvertible element.
Hence, if * is of the first kind, it is the standard involution.

For an involution of the second kind, we use a different approach.
Since ^ is split, it has a pair of orthogonal idempotents, et and ez,
where eγ + e2 = e and the subspace ^ 1 2 = {x12 \ eλx12 = x12, x^ = #12} is
nonzero. If x e^ 1 2 , then x2 = 0. Let x be a nonzero element of ^ 1 2 .
If xx* were invertible, then x would have a right inverse, z. Then
x2 = 0 implies x{xz) = xe = x = 0, a contradiction since x Φ 0. Likewise
x*x = 0, x + x* = 0, and then, x* = —x. If 0 ΦXeZ and λ* = —λ,
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then Xx would be symmetric, nonzero and non-invertible. So * is
not of the second kind.

Since the direct sum of a split Cayley-Dickson algebra and its
opposite under the exchange involution would have symmetric divisors
of zero, we rule this possibility out.

THEOREM 2. Let R be an alternative ring with identity element
e and 1/2 eR with involution *. Then every symmetric element of
R is nilpotent or invertible if and only if the following two condi-
tions both hold:

(a) Radi? is a *-ideal in which every symmetric element is
nilpotent.

(b) The quotient ring i?/Rad R is isomorphic to one of the four
possibilities of Theorem 1.

Proof. Rad R is invariant under all automorphisms and antiauto-
morphisms, hence Radi? is a *-ideal. Since there are no invertible
elements in Rad R, the symmetric elements in Rad R must all be
nilpotent and condition (a) holds.

Let P be the set of symmetric elements of the center of i2/Rad R.
Then P is a subring which contains no nilpotent elements since iϋ/Rad R
contains no nonzero nilpotent ideals. Hence the nonzero elements of
P are invertible, and so P is a field since the inverse of an element
of P is clearly in P again. Since 1/2 eR, 1/2 remains in R/R&dR.
Since the nonzero homomorphic image of a nilpotent (invertible)
element is nilpotent (invertible) it is clear that iϋ/Rad R satisfies the
same hypothesis as R. Thus it suffices to establish condition (b)
under the added hypothesis that R is radical free.

Suppose now that B is a proper *-ideal of R. Since B can contain
no invertible elements and still be proper, the symmetric elements
of B are all nilpotent. By Lemma 1, B is a radical ring, BQ Radiϋ;
but this last is zero.

Thus R is *-simple. By Lemma 4, S+ is a simple Jordan algebra
with identity whose elements are either nilpotent or invertible. By
simplicity, S+ contains no nonzero nil ideals, so we may conclude by
Osborn [11] that S+ contains no nonzero nilpotent elements. Hence
R is a *-simple alternative ring with identity such that each non-
zero symmetric element is invertible. The result now follows from
Theorem 1.

Conversely, let R be an alternative ring with involution and
with identity satisfying conditions (a) and (b). We wish to show
that every symmetric element s of R is either nilpotent or invertible.
Since s e S, s is a symmetric element of iϋ/Rad R under the induced
involution. If s = 0, then seRadϋ? and is nilpotent by (a). If
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s ^ O , then s is invertible in R/R&dR by (b). But s is invertible
in R if and only if s is invertible in R/N for any quasi-invertible
ideal N.

As in Osborn [11], we get

THEOREM 3. If R is an alternative algebra with involution over
an uncountable field such that every symmetric element is nilpotent,
then R is a nil-algebra.

4* Radical free alternative rings* In this section R is a radical
free ring with identity e and 1/2 e R and with involution * such that
each symmetric element s is either nilpotent or some (right) multiple
of s is a symmetric idempotent. Furthermore, R has a set {ej^i of
pairwise orthogonal, symmetric idempotents whose sum is one and
if {/JiLi is any such set of idempotents whose sum is one, then
m ^ n.

Let R — ΣίRij, (if j = 1, 2, , n), be the Pierce decomposition
of R relative to the set {eJΓ=i of pairwise orthogonal symmetric
idempotents.

LEMMA 5. Riit (i = 1, 2, , n), is ίsomorphic to one of the four
possibilities of Theorem 1.

Proof. Ru, (i = 1, 2, , n), is radical free since R is (McCrimmon
[9]). Ru is a *-invariant subring of R. Each symmetric element s
of Ru is either nilpotent or there is some peR such that sp is a
nonzero symmetric idempotent. Since Ru is radical free, not all
s6Ru are nilpotent, so there are some peR and seRu with sp =
e = e* nonzero symmetric idempotent. Furthermore sp e Ru since
sp = β = e* and β = ee* = (sp)(p*s) = s(pp*)seRsaRu by the Moufang
identities. If e = sp is not e*, we would have

n

e = Σ e* + (βi — sp) + sp

and R would have n + 1 pairwise orthogonal symmetric idempotients.
Hence sp = e*, the identity of the ring Ru. That is each symmetric
element of Ru is either nilpotent or invertible and Theorem 2 applies.

LEMMA 6. Each nonzero ideal of R contains a minimal (nonzero)
ideal and has nonzero intersection with some Ru.

Proof. Any ideal / of R such that I £ Σ**i Ru is t ^ e z e r o ideal.
Let x be a nonzero element of an ideal contained in Σt*i R*y Then
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% = *Σiχij a s ίn Zorn [17] and [18]. xk is a sum of products
xhHxhhxhu ' " χik*k+ι (parenthesis unnecessary — the xti generate an
associative subalgebra since in an extension it is contained in the
subalgebra generated by the two elements x and y = Σ aΦi for
distinct, nonzero at) where no ia = ib(l <; a tS- 6 ^ k + 1) or else
aJ«β<β+1»<.+ι*β+« ' * *<»-!«» w o u l d b e i n I^Kib = * n Λ,β*β = 0 and the
product is zero. Thus all ilf , ik+1 are distinct and k + 1 <> n, k <ί
n, xn = 0. Hence J would be a nil-ideal. But .K is radical free and
hence / = 0.

Let J be a nonzero ideal in R and let ^ be the family of all
nonzero ideals of R contained in /. We claim that if A is a nest
in J?, then Παe^α Φ 0.

For each i, i = 1, 2, - - -,n, the family {af]Ru\a eA} is a nest of
ideals in the ring Rtt. By Lemma 5, each of the rings Ru has d.c.c.
for right ideals; that is, there is some at e A such that at Π Ru is a
minimal ideal in Ru. Pick α0 minimal in the set {αJJU, α0 Π -#« cannot
be zero for all ί, otherwise α0 would be zero. Hence U?=i (αo Π JR^) ^
0 and is contained in each aeA, that is, Παe^α Φ 0.

The minimal principal applies and the ideal / contains a minimal,
nonzero ideal.

LEMMA 7. R does not contain an infinite descending chain of
direct summands.

Proof. Let {IJΓ=i be a set of ideals of R such that I5 f] It = 0
if and only if i Φ j . Then n0 <; 2w.

Any ideal of i2 intersects i244, i = 1, 2, , ti, in an ideal. By
Lemma 5, each Ru has at most two nonzero ideals L and if such
that L Π if — 0. Then at most two of the ideals {IJ?=i can intersect
Ru nontrivially. Since each Ik must intersect some Ru nontrivially
by Lemma 6, there can be at most 2n ideals in {InYlii

Let R = Ro 13 i?! ZD R2 ID ZD Rm be a finite descending chain of
direct summands of R. Thus R — Rt ©it!' for each i = 1, 2, , m.
By the modular law for ideals,

i?ί = i?i+i φ (i?ί Π R'i+ι) '

Then i? is a direct sum of m + 1 ideals:

jβ = jβw φ Σ (Rm-i Π i?m+i-ί)

That is, JS has a set S of m + 1 nonzero ideals {IjΓJί1 such that
J. fj j^. == 0 if I* ^ /j. Hence m + 1 ^ 2w.

COROLLARY 1. R has d.c.c. o% rior/̂ ί ideals.
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Proof. Since R is semiprime, does not contain an infinite des-
cending chain of direct summands, and every ideal contains a minimal
ideal, the hypothesis of Slater [15], Theorem C, is met and

-K> — & i v37 <^2 Vl7 \Π &m \jy «-̂ «

where each ^ is a Cayley-Dickson algebra and ^f, the maximal
nuclear ideal of R, is associative. *$/ is a *-ideal, has an identity,
1/2 e j ^ and by Wene [16], Jzf has d.c.c. on right ideals.

5* Main result*

THEOREM 4. If R is an alternative ring with unit element and
1/2 6 R having an involution such that each symmetric element s is
either nilpotent or some right multiple of s is a nonzero symmetric
idempotent and there is a positive integer n such that each set of
pairwise orthogonal symmetric idempotents summing to the identity
has n or less elements, then Radi? is a *-ideal in which every
symmetric element is nilpotent and R/r&άR can be expressed,
uniquely up to order, as a direct sum of *-simple rings Rλ 0 φ
Rm where each Rt is either

(a) & © ̂ op for a Cayley-Dickson algebra under the exchange
involution,

(b) a Cayley-Dickson algebra & with any involution,
(c) i φ A o ί for a simple artinian associative ring A with the

exchange involution,
(d) a simple artinian associative ring with involution.

Proof. Since Rad R cannot contain nonzero idempotents any s e
S Π Rad R is nilpotent.

In i?/Radiϋ any element s that is symmetric under the induced
involution is either nilpotent or some right multiple of s is a nonzero
idempotent. If {ejLi is a set of pairwise orthogonal symmetric
idempotents where sum is the identity of R, then {ej?=1 is a set of
pairwise orthogonal symmetric idempotents in R/R&dR whose sum
is the identity. On the other hand, any set of pairwise orthogonal
symmetric idempotents in i2/Rad R can be lifted to a set of pairwise
orthogonal symmetric idempotents of R. The Jordan ring

is isomorphic to the Jordan ring
Radi2+

and by Jacobson [7] p. 149, idempotents can be lifted since S+ Π
Radi?+ is nil.

Thus iϋ/Rad = R is radical free and has a set of n pairwise
orthogonal symmetric idempotents whose sum is one and any such
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set of pairwise orthogonal symmetric idempotents has n or less
idempotents. By Corollary 1, R has d.c.c. on right ideals. But then
R is a direct sum of *-simple rings each with d.c.c. on right ideals.
R is a direct sum of simple rings. Suppose R = R1φR2f where Rx

and R2 are simple rings. Then R = R? © Rζ and R, = {Rx Π Rί) 0
(Rx Π Λ2*). If Ri Π #? = 0, R? c i? 2 and R = Rt®R? =Rλ@R?. On
the other hand, if R, Π JBf Φ 0 then # 2 Π .#* = 0. Otherwise # ί ==
{Rt Π i?i) θ (-R* n JB2). Thus we have ^ = i2x φ i22 and i2f = Rx and
iί* = R2. An induction argument on the number of direct summands
of R now gives the desired result.

The author wishes to thank Professor Robert H. Oehmke for
the suggestion of the problem and for his helpful criticism. Part of
these results are contained in the author's doctorial dissertation at
the University of Iowa.
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