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ON BISIMPLE WEAKLY INVERSE SEMIGROUPS

S. MADHAVAN

A regular semigroup S with a commutative subsemigroup
of idempotents E is called weakly inverse if for any a€S
the set E, of inverses a’ of a for which a’a € E is nonempty
and for all, a,b€S,E,<E,E, and E,= E,=a =>b. In this
paper we show that in a weakly inverse semigroup S with
partial identities the “#-class R which contains the partial
identities is a right skew semigroup and conversely, every
right skew semigroup R may be so represented. If R
satisfies the condition that for every a,bc R there exists
a c€ R such that RaNRb = Rc, then our considerations lead
to a construction of bisimple weakly inverse semigroup with
partial identities.

The weakly inverse semigroups have been introduced and in-
vestigated by B. R. Srinivasan [5] and the results we have obtain-
ed generalize same results of Reilly [4] concerning bisimple inverse
semigroups.

2. Preliminaries. We assume that the reader is familiar with
some of the basic results of [2].

Let S be a semigroup. An idempotent ¢ of S is called a
principal idempotent of S if fef = fe for every idempotent f of S
An element a of S is called a principal element of S if there exists
an inverse a’ of S such that aa’ is a principal idempotent of S. It
is easy to show [5] that these two definitions are consistent. If a
is any element of S, then an inverse a' of S will be called a
principal inverse of a if a’a is a principal idempotent of S. If
a €S, then E, will denote the set of the principal inverses of a.
Following [1] and [5], a semigroup S is called a weakly inverse
semigroup if for every acS, E, =[], and for every a,bcS we
have

(1) E,SEE,

(ii) E, = E, implies a = b.

The following lemma summarizes some of the results of [5].

LEMMA 2.1. If S is a weakly inverse semigroup, then

(i) the principal idempotents of S form a semilattice,

(ii) E.,a consists of a single idempotent e, for every a €S,

(iii) every principal left ideal of S has a unmique principal
wdempotent gemerator,
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(iv) the set I of the principal elements of S forms an inverse
subsemigroup of S;

(v) an element a €S is a principal element of S if and only
if a has a unique principal inverse;

(vi) for every a,beS, we have E,, = E¢E,, where

E% = {b' € E,: e,bb’e, = e,bb'} .

If a is any element of the weakly inverse semigroup S, then
a’, aj, --- will denote principal inverses of a, whereas a” will denote
the unique principal inverse of o' € E,.

The semigroup 7(X) of the partial transformations on the set
X is a weakly inverse semigroup. An element acT(X) is a
principal element of T(X) if and only if it is a one-to-one partial
transformation on the set X. The Semigroup 7T(X) will be called
the symmetric weakly inverse semigroup on the set X [5]. Let us
recall the main theorem of [5]:

LEMMA 2.2. Let S be a weakly inverse semigroup. For any
a €8 let p, be the partial transformation on S where dom +p, = SE,,
and where for every xcdom 4, i, = xa. The mapping S — T(S),
a — r, embeds S isomorphically into the symmetric weakly inverse
semigroup T(S) in such a way that an element a €S is principal
wn S if and only if 4, is principal in T(S).

With the notation of Lemma 2.2 we now have the following

LEMMA 2.3. Let S be a weakly inverse semigroup, and let a
and b be elements of S. The following conditions are equivalent:

(i) E.b = e},

(ii) for every o' € K, there exists a b € E, such that o' <b" in I,

(iii) 4. S .

Proof. (i)= (ii). Let o' be any element of E,. By Lemma 2.1
(vi), there exists a b’ € E, such that b’a”’ € E,,,. Since a’b = ¢, = a’a”’
we have b'a” = a’a”, and so o’ < b in I.

(ii) = (i). Ler o’ be any element of E,, and let ' be an element
of E, such that o’ < b in I. Then a'db = a'b”"b’b = a'd” = d'a” = e,.
Therefore (i) holds.

(i) = (ii) = (iii). Let x be any element of domr,. Then there
exists a o’ € E, such that © = x2a”a’. Let b be any element of E,
such that «' <0 in I. Then x = xa”a’ = xa”a’d"d’ = xb"'b’ € dom +,;

e 1. rn n_r

moreover xb = xb"b'b = xb” = xa’a’d”’ = xa"a'a”’ = xa'a’'a = xa. We
conclude that +, & 4.
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(iii) = (i) = (ii). Let o’ be any element of F,. Since E,Sdomq, <
dom +p,, we have e, = a’a = a’y, = a'yr, = a'b. Hence E,b = {e,}.

It follows from Lemma 2.2 and Lemma 2.3 that the relation<
on the weakly inverse semigroup S which is defined by a < b if
and only if a and b satisfy the equivalent conditions of Lemma 2.3,
must be a partial order on S which is compatible with the multi-
plication. We shall call this partial order the natural partial order
on the weakly inverse semigroup S. The natural partial order<
induces the usual natural partial order on the inverse subsemigroup
I. However, <does not induce the usual natural partial order on
the idempotents of S in the general case; indeed, if f = f? is an
idempotent of S which is not principal in S, then f + ¢;, f ¢, and
e; < f, whereas ¢, cannot be below f for the usual natural partial
order on the set of idempotents of S. The above defined natural
partial order on the weakly inverse semigroup S. The above defin-
ed natural partial order on the weakly inverse semigroup S will
henceforth be denoted by <.

LEMMA 2.4. If S is any weakly itnverse semigroup, then I is
an order ideal of S, <.

Proof. Let b be any element of I, and suppose that ¢ <b in I.
Clearly E, = {b'} is a singletion. If o/, a; are any elements of E,,
then a < b implies that o’ <%’ and a] < b in I. Since ¢’ “Za] in the
inverse semigroup I, we must have a’ = a]. Hence E, is a singleton,
and by Lemma 2.1 (v) it follows that a e [.

LEMMA 2.5. If e 1s a principal idempotent of the weakly in-
verse semigroup S, and a €S, then ea < a and ae < a.

Proof. Any element of E,, is of the form a’e for some element
o’ € E, by Lemma 2.1(vi). Hence (a'¢)a = (a’¢)(ea) = e,,. Thus E,,=
{e..}, and so ea < a.
~ Any element of E,, is of the form ea’, where o’ € E, by Lemma
2.1. (vi). Then ea’a = ea’ae = e,,, thus E,.a = {e.,}, and so ae < a.

LEMMA 2.6. Let S be a weakly inverse subsemigroup of the
symmetric weakly inverse semigroup T(X) on the set X. Let us
suppose that for every a €S and for every xcdom a there exists a
principal inverse @ of a in S such that xaa’ = x. Then the
natural partial order on S coincides with the inclusion relation
for partial transformations.
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Proof. Let a and B be any elements of S such that a < g,
and let us suppose that xedom a. There exists a’€ K, such that
zaa' = 2. From a < g it follows that a’g8 =ca'a, and so za =
zac'a = xaa'l = 8. Hence a=B. Let us conversely suppose that
a and B are elements of S such that a=B. Let &' be any element
of E,. Clearly dom a’a = doma’g. If xcdom a’B, then x edom o’ =
dom a’a, and so doma’a = doma’s. From a< g it now follows
that o’'a = a’8. Hence E.x = {¢,}, and we conclude that o < 3.

The following alternative characterization of weakly inverse
semigroups will be used later in this paper.

THEOREM 2.7. For a regular semigroup S the following condi-
tions are equivalent:

(i) S is a weakly inverse smigroup.

(ii) There exists a commutative subsemigroup E of idempot-
ents of S such that

(@) for every a€S the set C, of imverses a’ of a for which
a'a € B is nonempty,

b) C,,=C,C, for all a,be s,

(¢) C, = C, implies a = b for all a,beS.

Proof. That (i) implies (ii) is immediate. Let us now suppose
that (ii) holds. Let ¢ be any element of K, let f = f* be any
idempotent of S, and suppose that f'e€C;. Then

fef = f(f' Nlef = fe(f')f = fe(f'f) = F(f'fle = fe ,

and so ¢ is a principal idempotent of S. Let f = f* be any
principal idempotent of S, and suppose that f’e€C;. Then f'f is
the idempotent which belongs to E, and which is & -related to f.
Using the fact that f is principal we have

F' =) = FFGEEE) = FFF =17

Thus C; is the singleton which consists of the element f'f = f’
which is & -related to f; clearly C; = {f'} and so C; = C;.. Hence
f=f'eE. We conclude that FE is precisely the set of principal
idempotents of S. Consequently, S is a weakly inverse semigroup.

3. Right skew semigroups. A semigroup R is called a 7ight
skew semigroup if for all z,y,a e R, xa = ya implies that there
exists a left identity e of R such that x = ye.

If a is any element of the right skew semigroup R, then a® = a*
implies that a = ae for some left identity e of R. This already
indicates that the set of left identities of R is nonempty. If f is
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any idempotent of R, and e any left identity of R, then ef = f
implies that there exists a left identity g of R such that f =eg = g.
We conclude that the set of idempotents of R coincides with the
set of left identities of R. It is then obvious that the set of idem-
potents of R forms a right zero semigroup.

We shall now provide an example of a right skew semigroup.
Let X be a set, and ¢ an equivalence relation of X. Let .9 .(X)
be the set of transformations of the set X where

(i) Kera =,

(ii) (za, ya) €t implies (x, y) € ¢ for all z, y € X.

In the terminology of [4] .~ .(X) is the semigroup of all
L-transformations with domain X.

THEOREM 3.1. v «(X) is a subsemigroup of the full transfor-
mation semigroup on the set X which is a right skew semigroup.
Every right skew semigroup R can be represented faithfully by a
semigroup of p-lransformation with domain R.

Proof. It follows from [4] that .. .(X) is a subsemigroup of
the full transformation semigroup on the set X. Let us now sup-
pose that pa = ya for some @, 4, a € 7 (X). Since X+ intersects
every p-class in at most one element we can choose an idempotent
€€ v (X) such that Xy & Xe. From Kere = Ker a = ¢ it follows
that ¢ and a are “#-related in the full transformation semigroup
on the set X. Therefore pa = ya implies Pe = e, Where e =
since X4 & Xe. Obviously ¢ is a left identity of 7 .(X). We con-
clude that 7.(X) is a right skew semigroup.

If R is a right skew semigroup, then

p={ y)e RXR: za =ya for some acR}
={(x, y) e RXR: 2za = ya for all a € R}

is a congruence relation on R, and the right regular representation
of R provides a representation of R by a subsemigroup of .7 .(R).
Since R contains left identities, the right regular representation of
R is faithful.

A right zero subsemigroup E of a weakly inverse semigroup S
will be called a system of partial identities of S if the following
conditions are satisfied.

(i) If ¢ in any nonprincipal element of S, and ec E, then
ea = a.

(ii) If f = f* is any idempotent of S, then there exists an
e € F such that f =< e.

We remark that < always denotes the natural partial order on
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the weakly inverse semigroup S, as defined in §2. If S is an in-
verse semigroup, then F must be a singleton. Conversely, if E is
a singleton, then F = {¢}, and E, must be a singleton; by Lemma
2.1 (v) it then follows that e is a principal idempotent; since f < e
for every idempotent feS, we conclude that f must be principal
by virtue of Lemma 2.4; Hence S is an inverse semigroup with
identity e. Consequently, a weakly inverse semigroup S with a
system E of partial identities is an inverse monoid if and only if E
is a singleton.

THEOREM 3.2. If S is a weakly imverse semigroup with a
system E of partial identities, then the FH-class R of S which
contains the partial identities s a right skew subsemigroup of S.

Proof. Let a and b be any elements of R, and let ¢, be the
principal idempotent which is ~-related to a. There exists an
ec E such that e, <e. This condition implies that E,e = {e.} or,
e.e = e,. Consequently ae = a. Since e is .“Z-related to b, there
exists a b’ € E, such that b0’ =e¢. Then abb’ = ae = a implies that
ab is . “A-related to a, hence abe R. We conclude that R is a sub-
semigroup of S. Let ¢ be any other element of R, and suppose
that ac = be. Let ¢'c€ E,, where c¢’ =e. Then ac = bec implies that
be = ae = a, where e ¢ R is a left identity of R. Thus, R is a right
skew subsemigroup of S.

We now proceed to show the converse for Theorem 3.2. We
shall show that, given any right skew semigroup R, we can con-
struct a weakly inverse semigroup with a system of partial ident-
ities in such a way that the “Z-class which contains the partial
identities is a right skew semigroup which is isomorphic to R.

In the remainder of this section R will denote a right skew
semigroup, and E the set of idempotents of R. We know from
Theorem 3.1, that the right regular representation o maps R iso-
morphically into the symmetric weakly inverse semigroup T(R).
For any ae T(R), let E, denote the set of principal inverses of «
in T(R). Define

(Rpo) ={a’e E;:acRp and aa’€Rp},
and let
(Ro)" = {a"eE,:a'"c(Ro)} .
Let 3, be the subsemigroup of T(R) which is generated by the
elements of RoU (Rp)’' U(Rp)”’. We shall show that the semigroup 3,

is a weakly inverse semigroup with a system of partial identities, and
that Rp is the “H-class of >, which contains the partial identities.



ON BISIMPLE WEAKLY INVERSE SEMIGROUPS 403

LEMMA 3.3. For every acRp and every ¢ = ¢’ ¢ Rp there exists
an o' ¢ E,N(Rp) such that aa’ = ¢-Rp is an F-class of 3.

Proof. Let acRp, and ¢ =¢*cRp. Then a =ap and ¢ = ¢p
for some a, e =e¢*€ R. The mapping a': Ra — Re, xa — xe is a well-
defined one-to-one partial transformation on the set R, and it is
easy to see that a’'e E, N (Rp)’ and aa’ =¢. This already indicates
that Rp is contained in an Z-Class of ..

If a € Ro then obviously doma = R, and « is a right transla-
tion of R. Let a be any element of Rp, and let o’ c E,, where
aa’ e Ro. Let sedoma and sa’ =q. Since a’a is the restriction
to dom a’ of the identity mapping, we have sa’a = qa =s. For
any r € R, (rq)a = r(qa) = rs, and so rsedom a’. Moreover, (rs)a’=
(rQ)aa’ = r(qaa’) = r(sa’’) and so we may conclude that, whenever
scdoma’, then rsedoma’ for all reR, and (rs)a’ = r(sa’). In
other words, a’ is a partial right translation for all a’ € (Rp)’. Let
a” € (Rp)”, where a” € E,., with o’ ¢ E, and aa’ € Rp. Since a”a’e
E,., where aa’ € Rp and (aa’)(a”a’) € Ro it follows that a”a’ c (Rp)
is a partial right translation of B. Thus a” = (a”"a’)a being a com-
position of partial right translations of R must also be a partial
right translation of R. We showed that every element of RoU
(Rp)' N(Rp)" must be a partial right translation of R. Thus, all
elements of X are partial right translation of R. If & is any ele-
ment in the “Z-class which contains Rp as a subset, then dom ¢ = R,
and so & must be a right translation of R. If £ is any fixed left
identity of R, then fp is an idempotent of Rp, and there exists a
g e X such that &&' = fo. If g is any left identity of R, then gé=
g&f's = gf& = f& If r is any element of R, then there exists a left
identity e of R such that re = r, and then 7& = (re)é¢ = r(e€) = »(f§).
We conclude that & = (f&)oe Rpo. Thus Rp is an FH-class of 3.

LEMMA 3.4. If acRp and B c(Rp), then Ba = B'a’, where
a" e (Ro)" N E, for some o' € (Rp) NE, for which aa’ e Ro. If g€
(Ro)", then B"a = p"al, where o)’ € (Rp)" N E,; for some a; € (Ro) NE,
for which aa;e Rp.

Proof. There exists a BeRp such that g e(Rp) N E, and
{8} = Ep. By Lemma 3.3 there exists aa’ in E, N (RBp)’ such that
aa’ = BB'. Let a” be the unique element of E,. Clearly a” e (Rp)".
From aa’ = g@' it follows that 8/~ o’ ¥ a"’a’, and so f'a = S'a’a’a’ =
ga’.

Since Rp is a right skew semigroup, there exists a left identity
¢ of Rp such that 8 = Be. By Lemma 3.3, there exists aaj in E,N
(Ro)" such that aal=c. Let a be the unique element of E,..
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Clearly ai’ € (Rp)” and p"a = g"acja=p"aaia!’=3"ca=6"3"Rea) =
B"B,Ba;, — 6”a{'.

LEMMA 3.5. Let I be the subsemigroup of 3 which is gemerated
by the elements of (Rp) U(Rp)”. Then I is an inverse subsemigroup
of 2, and all the elements of I are principal in Y. Moreover 3=
(Ro)I U I.

Proof. It is clear that I consists of elements which are principal
in T(R), and so must be a subsemigroup of the symmetric inverse
semigroup on the set R, i.e., the semigroup of all one-to-one partial
transformations on the set R. Since I is generated by a set of elements
together with their inverses, I must be an inverse subsemigroup of
the symmetric inverse semigroup on the set B. Since all the idem-
potents of I are principal in T(R) we must have all the elements
of I are principal in ¥. That ¥ = (Rp)I U I follows immediately
from Lemma 3.4.

LEMMA 3.6. For any £e2X, let G, denote the set of imverses &
of &£ im XY such that &¢ecl. Then G. = E.NY #=[]. For every
acRo and every (el we have Gy = GG,

Proof. If ¢eX, then el or £e(Rp)I. If zel, then G, = E.=
E. N2 is the singleton {&'} where & is the unique inverse of £ in I.
Let us now suppose that ¢ = a{, where ¢ ¢ Rp and {€I. By Lemma
3.3 G, #[]. If U is the unique inverseof {in I anda’' G, S E,N2,
then {'a’ is an element of I which is an inverse of af, where {'a’al
is an idempotent of I. Consequently [] # G:G. S G S E,NY. Let
us now suppose that (al)’ is any element of E,,N2. Since E, C
E.E,={E, where (' is the unique inverse of { in I, we must
have that (al)’ is of the form {'a for some ae E,. Obviously
(@) (Cap) e X, and so all’'a; =B, --- B., Where B, Ro U (Rp)'U (Rp)"
forall i =1, ---,n. Since all’a’e (Rp)IUI we may suppose that
B.€(Rp) or B,c(Rp)’. In both cases 8,3 for some g€ Rp.
There exists a left identity ¢ of Rp such that Be = 3, and then
all’aie = all’a;. Let af be any element of (Rp) N E, such that
aa; =¢. Clearly aeG, and all'a) = allale = all’alaa; = all al.
Since also {'ajc E,.: we have ('ajal = {'alal, and we conclude that
@) =Ca;=Ca;eGG,. Thus [+ GG, =G, =E,.NZ.

LEMMA 3.7. X 1s a weakly inverse semigroup.

Proof. Let & 7 be any elements of Y. If & % el, then it is
clear that G.. = G.G.. If & ne(Rp)l, then & = al and 7 = B0 for
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some «, B€Rp and {,0cl by Lemma 8.4, there exists a g€,
with G, C Gy, such that {3 = (3", and so

Ger = Gacpo = Gupro = GeproGa = GpirgGGe
= GﬂGﬂ”GatgGﬁGﬂGal = GwGac = GvGe ’

by Lemma 8.6. The two other cases may be dealt with in a
similar way, hence it follows from ¥ = (Rp)IUI that G, < G,G. for
all g, pel.

Let ¢ =al,acRp,Lcl, be any element of (Rp)l, and let us
suppose that G. is a singleton. If zal = yal for some =z, yeR,
then xa = ya since { is a one-to-one partial transformation. Put-
ting @ = ap, we then have xa = ya, and since R is right skew this
implies # = ye for some left identity ¢ of R. If ¢ = ¢p, then Lemma
3.3 guarantees that there exists a a’€G, such that aa’ =¢. If
is the unique element of G, then {'a’'e€G,. If u = yall'a’, then
wall'a' = yall'a’, hence ual = yal. Again we may conclude that
y = u\ for some left identity N of Rp, and that there exists a a] e G,
such that aal = A. Since both {'a’ and {'a] belong to G,;, and since
G.: is a singleton, we must have {'a’ = {'a]. Therefore

y = urn = yall'a'n = yallalaa, = yall'a; = yall'a' = u

and so

U = uaa' = ue = ye = x,
from which we have that x = y. Thus & = a{ is a one-to-one partial
transformation on R, which implies that ¢ is a principal element of
T(R).

If £ and 7 are any elements of X such that G. = G,, and if
nel, then G.=G,= E, is a singleton. By the foregoing this
implies that { must be principal in T(R), hence G, = E.. Since
T(R) is a weakly inverse semigroup E. = E, then implies that
§=7.

Let us now suppose that & = al and 7 = g0, where «a, B€ Rp
and {,0ecl, and G, = G,. Every element of G, is of the form
o' =¢ with {'eG, &’ €G,. Thent €@, and so ') = £’4. Sinece aa’
is a left identity for Rp we also have aa'py = aa’86 = 86 = 7. Since
{’C is the restriction of the identity transformation to dom {'( we
have &' = all'a’ C aa’. Therefore

E=&t=¢1Caayp=7.

One can show dually that » S ¢&, and thus & =7. Since XY = (Rp)
IUI we may conclude that G, = G, implies & = 7 for all ¢ neX.
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By Theorem 2.7 and Lemma 3.6 we have that 3 is a weakly
inverse semigroup.

We shall call 3 the weakly inverse hull of the right skew semi-
group R.

LEMMA 3.8. The set of tdempotents of the SP-class REp of form
a system of partial identities of X.

Proof. Let & =al,acRp,cl, be any element of (Rp)I, and
let xedomal. If ¢ is any left identity of R such that x = xe.,
then there exists a a’ € G, such that aa’ = ¢ =¢p. If {’ is the uni-
que element of G, then {'a’' e G, and xall'a’ = xaa’ = x¢' = xe = .
Hence for every &£e(Rp)l and every xcdomé there exists a
principal inverse & of £ in Y such that xz&’ = x. Clearly if ¢el,
and xedom &, then also x = x£¢” where & is the unique element of
G;. Since ¥ = (Rp)IUI we conclude from Lemma 2.6 that the
natural partial order on ¥ coincides with the inclusion relation for
partial transformations.

Since every idempotent of the “Z-class Rp is a left identity for
Rp, it must also be a left identity for the elements of the set (Rp)
I which contains all the nonprincipal elements of 3.

Every idempotent of X is of the form &’ where &e(Rp)l or
feland &'eG.. If ¢ =al where acRp and (eI, then ¢ is of the
form {'a’ where o' € G, and {'eG,. Clearly

g =all'a’ c aa’ e Rp

in this case, and so &’ < aa’e Rp. Let us now suppose that sel.
Then z£'el, and & is of the form &' =4, ---, 8., Where B;¢€
(Ro) U(R0)',i=1,---,n. In all cases B,<RB for some BecRp.
Since Rp is a right skew semigroup there exists an idempotent ¢
in Rp such that B¢ = 3. Then &&'e = £&'. Since &&'el is the re-
striction of the identity transformation to dom &£, we must have
g =zfeCe, and so & < e€ Rp.

We conclude that the set of idempotents of Rp forms a system
of partial identities for .

We summarize the results of Lemmas 3.3, 3.4, 3.5, 8.6, 8.7 and
3.8 in the following theorem.

THEOREM 3.9. Let R be any right skew semigroup and let 3
be the weakly inverse hull of R. Then X is a weakly inverse semi-
group which contains R as a subsemigroup and as an FZ-class, and
the set of idempotents of R forms a system of partial identities
for 3.
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4. Bisimple weakly inverse semigroups with partial identities.
In this section we characterize the right skew semigroups whose
weakly inverse hull is a bisimple weakly inverse semigroup.

THEOREM 4.1. Let S be a bisimple weakly inverse semigroup
with a system of partial identities. Then the F-class R of S
which contains the partial idemtities is a right skew subsemigroup
of S, where for every a, b€ R there exists a ¢ € R such that RbN Rb =
Re.

Proof. It follows from Theorem 3.2 that R is a right skew
subsemigroup of S. Let @, beR, and let {¢,} = E,a, {¢,} = E,b. The
principal idempotents form a commutative subsemigroup of S, and
so SanNSb = Se,NSe, = Se,e,. Since R is an #-class of the bisimple
semigroup S, there exists a ¢ € R such that Se,e, = S¢ and thus San
Sb = Sc¢ for some ceR.

Let x¢cRNSa. Then x = sa for some seS. Since S is bisimple
there exists a teL,N R, and since R is a right skew semigroup,
there exists an idempotent ¢ of R such that te =t. Then se = s,
with e =e¢*c R. Let @’ be any inverse of ¢ in S such that aa’ = e.
Then = = sa and xa' = saa’ = se = s imply that se R. Thus z ¢ Ra,
and so SeNRERa. From this follows that Se N R = Ra. Similarly
ShbNR=Rb and SeN R = Rc. Hence from Sa N Sb = S¢ we have
Ra N Rb = Re.

THEOREM 4.2. Let R be a 7ight skew semigroup such that for
every a,be R, RaNRb = Rc for some cc R, and let Y be the weakly
wnverse hull of BR. Then X 1s a bisimple weakly inverse semigroup
which contains R as a subsemigroup and as an FH-Class, and the
set of itdempotents of R forms a system of partial identities for X.

Proof. From Theorem 3.9, it follows that we only need to show
that Y is a bisimple semigroup.

Let @ and 3 be any elements of Rp, and let 3’ € (Rp)’NE;. Let
v be an element of Rp such that (Rp)a N(Ro)B = (Rp)y. Putting
G.a = {e,}, G;58 = {e;} and Gyv = {e;} the foregoing implies that
e.0; = e; since then e;[resp. e, ¢;] is the identity mapping on Rv =
RaNRB [resp. Ra, RB]. If (a5'R) is any element of G,:s = 5'8G.,
then (@5’'B)al’ B = ese.es = e-. Therefore ap Fas'B3.~7v, and so af’
belongs to the Z-class which contains Ro as an .“Z-class. Let o’
be any element of (Ro)'N E, such that aa’ = B3’; then B’ s'a’ and
RBazraara, and so B'a belongs to the &Zr-class which contains
Rp. If o) is any element of (Rp)' N E,, then a3’ ~(aa))s’, where
aaj e Rp, and by the foregoing we can again conclude that a3’
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belongs to the =2-class which contains Ro. We showed that the
products of any two elements of Rp U (Rp)" belongs to the Z-class
which contains Rp. Let & be any element of this Z-class, and let
¢ be any element of Ro U(Rp)’. If v is an element of L. N Rp, then
v{ belongs to the Z-class which contains Rp. Since &{.v( this
implies that also £ belongs to this <-class. By induction we can
then easily show that the subsemigroup of ¥ which is generated by
the elements of Ep U(Rp)" is contained in this &-class. If aecRp,
o' e (Ro)NE, and {a"} = E,, then a” = a"a’'a, where a"a’ € E,,., and
so a” is a product of elements of RoU(Rp)’. Hence 3 is generated
by the elements of Rp U (Rp)’, and so 3 is bisimple.

ExAMPLE. Let A be a right concellative semigroup with an
identity e, and let us suppose that<is a total order on the set A
where for any acA, Aa ={rceAda <2x2}. Let B be a semigroup
which is isomorphic to A, and let p: A— B be an isomorphism of
A onto B. We shall suppose that there exists a ke A such that
z@ = x for all x € Ak, and that AN B = Ak. On R = AU B we de-
fine a multiplication which extends the separations on A4 and on B
by

ab=(ap)b if acA and beB
=(ap™b if ac€cB and beA.

It is easy to check that R is a right skew semigroup which satisfies
the conditions of Theorem 4.2.
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