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ON DETERMINING REGULAR BEHAVIOR
FROM THE RECURRENCE FORMULA

FOR ORTHOGONAL POLYNOMIALS

DANIEL P. MAKI

Ullman and Erdδs and Freud have studied the distribu-
tion of the zeros of certain classes of orthogonal polynomials.
Among other results they have shown that for a wide class of
weight functions the associated orthogonal polynomials all
have the same limiting zero distribution. We show, in a re-
lated result, that in certain cases one can deduce the limiting
distribution of the zeros of the orthogonal polynomials without
explicitly knowing the weight function (or the distribution
function) of the orthogonal polynomials. In particular, for
polynomials with certain types of triple recurrence formula we
show that the limiting zero distribution is always the one
studied by Ullman and Έrdδs and Freud. Polynomials with this
limiting zero distribution are said to have "regular zero be-
havior".

In §2 we give the basic definitions and notation needed
for our result. Our main theorem is in § 3, and § 4 contains
some related comments and examples.

2* Definition and notation* We adopt the notation of Erdδs
and Freud in [3].

Let da(x) be a nonnegative measure on (—°°, °°) for which all

moments

S +oo

xmda(x)

exist and are finite and μQ{da) — 1. We consider the orthonormal

polynomials

(2.1) Pn(da; x) = Ύn(da) Π [x - xkn(da)]
fc=l

S + o o

pnpmda = δnm, where δnm is t h e
— oo

Kronecker delta. We are also interested in the monic polynomials

{qn(x)} defined by qn(x) = pn(da; x)/yn(da), n ^ 0. The polynomials

{qn(x)} are orthogonal with respect to da(x), and thus they obey a

triple recurrence formula of the following form (see [6]):

qn(x) = (x - en)qn^ - Xnqn-2

(2.2) q^x) = 0 , qo(x) = 1

cn real, λΛ + 1 > 0 , n = 1, 2, 3, .
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The zeros xkn(dά) of pn(da; x) (and hence also of qn(x)) are real and
simple, and we assume that they are ordered so that xln(da) >
x2n(da) > > xnm(da). To simplify notation we write xkn for xkn(da).
Let us denote by Nn(da, t) the number of integers k for which

xkn - xnn ^ t[xln - xnn] (0 ^ t ^ 1)

holds. The distribution function of the zeros, when it exists, is
defined to be the limit.

(2.3) β(t) = lim N^da^ , 0 ^ ί ^ 1 .

In [8] and [3] it is shown that for a wide class of measures
da(x)t β(t) does exist; and, moreover, β(t) is given by

(2.4) βo(t) = JL - i - arcsin (2ί - 1) .
2 7Γ

In this case the values θkn — arcsin xkn are equidistributed in the
sense of Weyl, the measure da(x) is said to be an arcsine measure,
and the polynomials pn(da, x) are said to have regular zero behavior.

In [4] Erdos and Turan considered polynomials orthogonal on
[ — 1, +1], They showed that if da(x) = p(x)dx, where p(x) is a
nonnegative integrable function on [ — 1, +1] such that p(x) > 0
except for a set of Lebesgue measure zero, then da(x) is an arcsine
measure. In [8] Ullman gives a quite complete discussion of arcsine
measures which are absolutely continuous, and in [3] Erdos and
Freud establish a number of results in cases where da(x) is not
absolutely continuous. In particular, they obtain the following:

THEOREM 2.1 (Erdos and Freud). The condition

(2.5) lim sup [ 7 , - J 1 7 - 1 ^ . - xnn] £ 4
n-*oo

implies that da is an arcsine measure. Moreover, (2.5) implies
that

(2.6) lim [ 7 , - J 1 7 - 1 ^ - xnn] = 4 .
n-*oo

We are interested in relating regular zero behavior to the
recurrent formula (2.2). Thus, if a polynomial set is given by (2.2),
is it possible to decide if the polynomials have regular behavior
using only (2.2) (i.e., without knowledge of da(x) or of any of the
zeros of pjda, x))Ί We give a partial answer to this question,
exhibiting a class of polynomials which have regular zero behavior,
and also noting a class which does not. To obtain our results, we
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need the following results by Blumenthal and Chihara:

THEOREM 2.2 (Blumenthal, see [1]). Let the polynomials {qn(x)}
be given by (2.2) and suppose lim^^ cn — c, l iπv^ Xn = λ > 0, where
c and X are finite. Also, let X = {xkn; 1 :g k ^ n, n = 1, 2, •}.
Then X is dense in the interval [σ, τ] where

σ = c - 2l/λΓ , τ = c + 2l/λΓ .

To state the Chihara result we need two definitions.

DEFINITION 1. The true interval of orthogonality of the
orthogonal polynomials {p%(da, x)} is the smallest interval which
contains in its interior all zeros of these polynomials.

DEFINITION 2. A sequence {an}n=19 0 ^ an ^ 1, is called a chain
sequence if there are numbers gn, 0 <^ gn <*1, such that a% =

THEOREM 2.3 (Chihara, [2]). Leέ (α, 6) denote the true interval
of orthogonality of the polynomials {qn(x)} defined by (2.2). Then a
is the maximum value of c for which cn> c and {Xn+1/(cn — c)(cn+1 — c)}
is a chain sequence and b is the minimum value of d for which
d > cn and [λn+J(d — cn)(d — cn+1)} is a chain sequence. If such a
(b) does not exist, then a (b) is — co(+oo).

3* Determining regular behavior* We are now ready to prove
our result about determining regular behavior from the recurrence
formula (2.2). We first point out that the condition cn = 0, n ^ 0,
is well known to be equivalent to having a measure da(x) which is
symmetric about x = 0. In such a case the zeros of pn(da, x) are
also symmetric about x — 0.

THEOREM 3.1. Let the polynomial sequence {qn(x)} be defined by
(2.2) and suppose c^ — 0, n ^ 0. Also, suppose that {λj satisfies
0 < Xn S λ, n ^ 1 and lim^^ λΛ = λ. Then the polynomials {qn(x)}
have regular zero behavior.

Proof. By Theorem 2.2 we know that the zeros of the poly-
nomials {qn} are dense in the closed interval [—2τ/λ, 2l/~λ~]. Also,
by Theorem 2.1 we know that if lim^^ (Ύn-i)17*"1!^ — xnn] = 4, then
the polynomials {qn(x)} have regular zero behavior. Let da(x) be
the probability measure for which the polynomials {qj are orthogo-
nal. That such a measure must exist was established by Favard.
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Also, from the general theory of moments and orthogonal poly-
nomials, it is known that da(x) is essentially unique, and it has
bounded support which is symmetric about x — 0 (see [7]). Let the
true interval of orthogonality of the polynomials {qn} be (—A, A).
Then, by the definition of a true interval of orthogonality x%%-+ —A
and xln —> A as n -» °o. Thus our proof is complete if we can show
that

(3.1) lim[7..J1 /-1 = ^ - .
«-oo 2A

We establish (3.1) in two steps, first showing A = 2l/ X and then
showing

To show that A = 2λ/~X we use Theorem 2.3. Thus, if ( - A, + A)
is the true interval of orthogonality for {qn(x)}9 then —A is the
largest value of c such that c < 0 (recall cn = 0) and {Xn+Jc2} is a
chain sequence. Equivalently, A is the smallest value of d such that
d > 0 and {Xn+1/d2} is a chain sequence. Now, since 0 < Xn <; λ, for
all w ^ 1, and lim^*, Xn = λ, we know from the general theory of
chain sequences (see [9]) that {λ%+1/4λ} is a chain sequence. This
follows because 0 < λ%+1/4λ <£ 1/4 and λ%+1/4λ —> 1/4, as ^ —> oo. More-
over, if A is any number less than 2]/~X9 then Xn+1/A2 —> X/A2 > 1/4,
and hence Xn+1/A would not be a chain sequence. Thus A = 2l/λ
is the smallest positive number such that Xn+1/A2 is a chain sequence,
and therefore the true interval of orthogonality is ( — 2l/~λ~, 2l/λ).

Next, we note that from (2.1), (2.2) and the fact that the
polynomials pn(da, x) are orthonormal, we have

Γ l Ί 1 / 2

LX2λ/3 Xn+ι -1

Therefore,

The proof will be complete if we can show that [T^-J 1 7 ^"" —> 4/2A =
4/4l/λ = 1/l/λ as % —• oo. Equivalently, we must show that

[Λ — 1 Πl/(Λ-1)

Π λ<+1 - λ .
But λt > 0 for all i and λt —> λ > 0 as i —> oo so (3.2) follows direct-
ly from basic results about limits of products. Thus our proof is
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complete and we see that the zeros of the polynomials {qn} (and
hence pn(da, x)) have regular behavior.

4. Remarks and examples*
1. In Theorem 3.1 the hypothesis λ > 0 is necessary for regular

zero behavior. This follows because if in (2.2) cn = 0 for n ^ 0 and
λ%—>0 w—>°°, then, by Theorem 2.2, σ = τ = 0 and the interval
[σ, ί] where the zeros are dense reduces to a single point, the origin.
Since regular zero behavior requires that the zeros be dense over
the entire true interval of orthogonality, we see that regular zero
behavior cannot occur when cn = 0 and λw -» 0.

2. In Theorem 3.1 if the hypothesis cn = 0 is replaced by cn = c,
the result still holds. The only change which occurs is that the
true interval of orthogonality is translated from [ — 2l/~λΓ, 2i/"λΓ] to
[c - 21/Ύ, c + 2l/λΓ].

3. From Ullman's results on weight function [8] it follows that
many classical polynomial sets such as the Jacobi polynomials have
regular zero behavior. Theorem 3.1 also shows that the Jacobi
polynomials (and many other known sets) have regular zero behavior
because they satisfy (2.2) with cn = 0, 0 < λΛ g 1/4 and Xn —> 1/4 as
%-> co. Moreover, from Theorem 3.1 we also know that rather
"simple" (but not well known) sets have regular zero behavior, but
we do not know if they correspond to a measure which is absolutely
continuous and hence has a weight function. It would be of interest
to know (in terms of 2.2) when regular zero behavior is associated
with a weight function and when it is not.

4* In [5], using different methods, Nevai obtains a great deal
of information relating the support of the measure da(x) to
properties of the coefficients in the three term recurrence formula
(2.2). In particular (using the notation of §1), he shows the
following:

THEOREM (page 23, Theorem 7 [5]). Let the support of da(x)
he compact and suppose liπv^c,, = c exists. Then support da(x) =
AUB, A Π B — 0 , where A is a closed subset of the interval

( * ) [c — 2 lim sup τ/λn+1 , c + 2 lim sup τ/λw+1 ] ,
n—>co n—+oo

B is finite or denumerable, isolated, and the only two possible limit
points of B are the endpoints of the interval (*). Moreover, if
xeB, then aac + as is constant near x and a has an isolated jump
at X] in addition,
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B c [inf cn — 2 sup τ/λ^ , sup cn + 2 sup
n n n n

In the special case of Theorem 3.1 B = 0 , αwd A = [ — 2v/"λΓ, 2i/"λΓ],
as noted above.
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