
PACIFIC JOURNAL OF MATHEMATICS
Vol. 91, No. 1. 1980

THE RADIUS OF STARLIKENESS FOR A CLASS
OF REGULAR FUNCTIONS DEFINED

BY AN INTEGRAL

V. KARUNAKARAN AND M. R. ZIEGLER

Let F(z), f(z), and g(z) be regular in the unit disc
E = {z: z < 1}, be normalized by F(0) = /(0) = 0(0) = 0 and
F'(0) = /'(0) = flr'(O) = 1, and satisfy the equation zc'\c +
D/(z) = [F(z)#(z)c]', c ̂  0. This paper is concerned with
studying relationships between the mapping properties of
these functions. The principle result is the determination
of the radius of /3-starlikeness of f(z) when F(z) and g(z) are
restricted to certain classes of univalent starlike functions.
Conversely, a lower bound for the radius of /3-starlikeness
of F(z) is obtained when f(z) and g(z) satisfy similar con-
ditions.

Problems of this nature were first studied by Libera [9], where
he showed that if f(z) is a convex, starlike, or close-to-convex uni-
valent function and F(z) is defined by

(1) F(z) = -[f(t)dt,
Z Jo

then F(z) is also convex, starlike, or close-to-con vex, respectively.
Livingston then considered the converse of this problem and deter-
mined that if F(z) satisfies one of these geometric conditions in E
and f(z) = (F(z) + zF'(z))/2, then f(z) satisfies the same condition in
{z:\z\ < 1/2} [11]. Refinements of Livingston's results can be found
in [l], [2], [10], [12], and [13], while results dealing with generali-
zations of (1) appear in [3], [4], [5], [6], [7], and [8]. Most recently,
Lewandowski et al have shown that if f{z) is starlike in E and F(z)
is the solution of

( 2) cF{z) + zF\z) - (1 + c)f(z) ,

then F{z) is starlike whenever Rec ^ 0 [8].
Before proceeding any further, it will be convenient to introduce

the following notation. Let S*(a) denote the collection of functions
f(z) which are regular in E, are normalized by /(0) = 0 and /'(0) = 1,
and satisfy Re [zf'(z)/f(z)] ^ a for z in E. Such functions are said
to be starlike of order a. Normally one only considers a in the
interval [0, 1), however, in order to relate the results presented here
to earlier works, it is advantageous to allow a = 1, with the under-
standing that S*(ϊ) consists only of the function f(z) = z.
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In this paper we continue the investigation of a generalization
of (1) which was introduced by the first author in [7]. Let

, 7, c) denote the family of functions F(z) which satisfy

( 3 )
[g(z)]c

where f(z) is in S*(ά)9 g(z) is in S*(y) and c ^ 0. Let ^I(α, 7, c)
denote the family of functions f(z) which satisfy

(4 ) (c + l)f(z) = c[g{z)lzγ-'g\z)F{z) + [g(z)/z]czF'(z)

for F{z) in S*(a)9 g(z) in S*(y) and c ^ 0. Theorem 1 provides a
lower bound for the radius of /3-starlikeness of ^Γ(α, 7, c) and Theo-
rem 3 gives the radius of /3-starlikeness of <^(α, 7, c).

We begin by stating a slight generalization of the result obtained
by Lewandowski et al mentioned above. Since our result follows
directly from the techniques used in [8], the proof will be omitted.

LEMMA 1. // F(z) and f(z) satisfy (2), f(z) is in S*(a) and c ^ 0,
then F{z) is in S*(a).

This lemma now enables us to determine a lower bound for the
radius of /3-starlikeness of <^Γ(α, 7, c).

THEOREM 1. If F(z) is in J^ia, 7, c), then F(z) is β-starlike
for \z\ < σ = σ(a, β, 7, c), where σ is the least positive root of the
equation

( 5 ) 1 - β - r[2(l - a) + 2c(l - 7)]

- r\2a - 1 - β + 2c(l - 7)] = 0 .

Proof. If Λ(s) = [(c + l)/«β]Γίβ-1/(t)dί then F(z) = [z/g(z)]ch(z)
Jo

and Lemma 1 implies h(z) is in S*(a). Differentiating logarithmically
and applying the usual inequalities we obtain

Re - 7)r

F(z) ) ~ 1 + r 1 - r

Thus Re {zF\z)/F(z)} ^ /3 whenever 131 < 0- where ί7 is the least posi-
tive root of (5).

Before turning our attention to the principal result of this paper,
we state without proof two lemmas which appear in [7] and are
fundamental to what follows.

LEMMA 2. // ω(z) is analytic and satisfies \<o(z)\ ^ \z\ in E and
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if p(z) = (1 + Dω(z))/(1 + Bω(z)), -1^ D < B ^
r < 1 we have

, then for \z

Re z(ύ\z)
Dω(z))(l + Bω(z))

r-\Bp(z) - Z)|2 - \p(z) - I f ] B + D
I J (B - Df

LEMMA 3. // p(z) and a)(z) satisfy the conditions of Lemma 2,
then for any K ;> B we have on \z\ — r

Re \κp(z)
1 ^

p(«)ί

(P^r) /or Ro ^ R,

(P2(r) for Ro ^ Λj

where

PM = P^r, K, B, D) =

P.2{r) = P,{r, K, B, D)

2

1 + Dr'

(1 - r 2)
•[(1

Rl = [(1 + D)(ί -

K -(B- + K

2(1 - BDr2)
1 - r 2 '

+ K)-(K +
and

R1 = (l + Dr)/(1 -

The above estimates are sharp.

THEOREM 2.

min min Re ,
:„(«,,•,.> l«|=r ( f{z)

( 6 )

( 7 )

2Z? - - K)

1 — D H 1

K-1 + 2D
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(8) Rl = [(1

(9)

8 = (a + β7)/(l + e), D = 2§ - 1, and K = 1 + (c + 1)(1 - -D).

Proo/. Let β(«) = z[F(z)/z]ιn°+1)[g(z)/z]°n°+1) where in each multi-
valued expression we choose the branch which has value 1 at z = 0.
Combining this with (4) yields

(10) /(*) = [s(z)/z]°zs'(s) .

Since

s'jz) = 1 Γs^'OO , gg'(s) Ί
(«) (l + c)L F(s) fir(2) J f

β(z) is in S*(β) for δ = (α + cτ)/(l + c), p(z) = zs\z)/s(z) is analytic
in E, j>(0) = 1 and Re [p(z)] ^ δ, z in E. Consequently, there exists
a function ω(z) analytic in E and satisfying \ω(z)\ ̂  \z\, zeE, such
that

(11) P(z)=\+Dω^ , D = 2δ-1.

Now differentiating (10) and making use of (11), we have

+
p(z)

= (β + l)p(z) + z ω ^ D ~ 1 } - c
K T )PK } T ( 1 + D ω ( m i + ω { z ) )

and Lemma 2 now yields

Π _ _ 1
J 1

where B = 1 and JBΓ = 1 + (c + 1)(1 — Z)). An application of Lemma
3 now completes the proof. Sharpness follows directly from the
sharpness of Lemma 3.

In [7] the radius of /3-starlikeness of ^2{a, y, c) is determined
in the case c — 1 and a + y <; 1. The following result extends this
to include all permissible values of a, y and c.

THEOREM 3. Let r* = r*(a, y, c, β) be the radius of β-starlike-
ness of J^2(a, y, c). Let D = 2d - 1, δ = (a + cy)/(l + c), c ^ 0, 0 ^
α < 1, αm£ 0 ^ 7 ^ 1. i^or eαc/̂  ^ e d c in [0, 00), Ze£ r{D) be the



THE RADIUS OF STARLIKENESS 149

unique solution in (0, 1] of the equation

(12) (2 + c) - (4 - 2Z) - 2Dc + c)r - D(5 - D + 2c - Dc)r2

- D - Dc)rz = 0 .

If Qάr) and Q2(r) are defined by (6) and (7) and μ(D) =
ίftew ίfte equation μ(D) — 0 &αs α unique solution Do in ( — 1,1).
Furthermore, if D satisfies Do < D < 1 αwώ 0 ^ / 3 ^ j"(-D), ίftew r*
is ί/̂ e unique root in (0, 1) o/ ίfee equation Q2(τ) = β. For all other
values of D, r* is the unique root in (0, 1) of the equation Qλ(r) = β.

Proof. Let I(r) = min/eJr2(«,r,c) minu,=rRe {zf'(z)/f(z)} and let i?0

and iϋx be defined by (8) and (9). A differentiation shows Ro is a
decreasing function of r and i^ is an increasing function of r, hence
the equation Ro = ϋ?! has a unique solution r(D, c) which is the unique
root in (0, 1] of (12). Thus

Qλ(r) 0 ^ r < r(D, c)

with the understanding that the second inequality holds vacuously
when r(D, e) = 1. An examination of (12) shows this happens only
when D = — 1, in which case r* is the solution of Qλ(r) — β. Since
a < 1 implies D < 1, we can now restrict our attention to De ( — 1, 1).

It follows from the minimum principle and the compactness of
^l(af 7, c) that I(r) is a continuous, decreasing function of r. [In
fact one can show Q[{r(D, c)) = Q£(r(7), c)) so that 7(r) is differentiate
and 7'(r) < 0 on (0, 1).] Since r(D, c) < 1 for 7) > - 1 , Iim7(r) (r ->
1~) = limQ2(r) (r —• 1") = — oo, and, since 7(0) = 1, the equation
I(γ) = β will always have a unique solution r* in (0, 1). Clearly r*
is always the solution of either Q^r) = β or Q2(r) = /3, depending on
the relationship between the roots of these equations and r(Z), c),
or equivalently, on the relationship between 7(r(D, c)) and y8. The
remainder of this argument is concerned with determining this
relationship.

Let ce[0, oo) be fixed, let r(D) = r(D, c) and let JM(D) = Qx{r{D)) =
Q2(r(D)). We will show μ(.D) is a strictly increasing function of 7)
mapping ( —1, 1) onto (—°°, 1). Now

> 0
" dD

if and only if

(13)
(1 + c)(l + Dr(D))- + 1 - Z>r(ί>)2
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Since the second factor in the right hand side of (13) is clearly greater
than 1, it is sufficient to show

(14) r\D) < r(D)(l + r(D))/(l - D) .

Differentiating (12) implicitly yields

(15) τ\D) = [2(1 + c)r(D) + (2JD - 5 - 2c + 2Dc)r(D)2

+ (1 - 2D - 2Z)c)r(Z))3]/[(4 -2Ό- 2Dc - c)

+ 2D(5 - D + 2c - Dc)r(D) - 3D(1 - D - Dc)r(D)2] ,

and, before substituting (15) in (14), we must determine the sign of
the denominator in (15). Let

p(r) = (1

—

+ K
+ c)

D(5

- ( 4 -

- D-

r)(l +
-2D-

-2c -

r)\Rl
-2Dc

De)r2

—

+
+

Rl)
c)r

DO

so that p(r(D)) — 0 and the denominator in (15) is —p'(r(D)). Since
RQ is decreasing and Rt is increasing, p(r) changes sign at r(D) and
must have a zero of order 1 or 3 at r(D). If r(D) is a root of order
3 then p"(r(D)) — 0 which implies

r(D) = (5 + 2c - D - De)/(3(1 - D - Dβ)) .

However this last expression is not in (0, 1) for D e (— 1, 1) and c e
[0, oo), hence r(D) is a root of order 1 and, since P(r) is decreasing
at r(D), p\τ{D)) < 0. Thus the denominator in (15) is positive and
substituting (15) in (14) then shows that (14) is equivalent to

(16) (2 - c) + (9 + D + 3c - 2Dc)r(D)

+ (6Dc - D2c + 10D - 1 - D')r(D)2

- D - Dc)r{Df > 0 .

Using the fact that r{D) satisfies (12) to elminate τ{Df in (16), we
find that (16) is equivalent to

- 5r(D))(D + 1) + (8 - 10r(jD) +

+ 2D2r(D)2 + 2c(l + Dr(D))2 > 0 ,

which is obviously valid for r(D) in (0, 1), D in ( — 1, 1) and c ^ 0.
Thus μ(D) is increasing on ( — 1, 1).

An examination of (12) shows r(D) —>1 when 2?—»1 or D—> — 1,
hence μ(D)—> —°° as Z>—> — 1, μ(D)-+l as Z>—> 1, and the equation
μ{D) — 0 has a unique solution Do in ( — 1, 1). If — 1 < D ^ Z)o, then
μ(D) = QMD)) ^ 0 and ?% is the root of QL(r) = /3. If Do < D < 1,
then r* is the root of Qι(r) = /3 when ^(D) ^ /5 and r* is the root
of Q2(r) = β when β ^ μ(D). This completes the proof.
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If we take c = Ύ = 1 and a = β = 0, then we obtain as a special
case Livingston's result [11]. If we let y — 1 and a = /3 = 0, then
we obtain Theorem 1 in [4]. Letting c = y = 1 yields results found
in [1], [2], [10], [13] and, as we have already noted, the case c = 1
and a + 7 ^ 1 appears in [7].
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