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COHOMOLOGY OF DIAGRAMS AND EQUIVARIANT
SINGULAR THEORY

R. J. PlACENZA

The purpose of this paper is to define a cohomology
theory for diagrams of simplicial sets that specializes to
Illman's equivariant singular cohomology for discrete G.
We show that such a theory is representable by a suitable
Eilenberg-Maclane object. The paper concludes with a com-
parison of equivariant singular cohomology and equivariant
sheaf cohomology.

We adopt the category theory of Maclane as formulated
in "Categories for the working mathematician" and use the
framework of Quillen's "Homotopical Algebra."

!• Preliminaries* We let Δ be the category of finite ordered
sets and SS the category of simplicial sets as in [11]. If A is any
category cA will denote the category of cosimplicial objects in A,
i.e., cA = Funct {A, A).

If J is a small category JS denotes the small complete and
cocomplete functor category Funct (Jop, SS) and JA the category of
abelian group objects in JS. Furthermore, if FeJS and KeSS we
define F® K and Fκ pointwise by F®K{j) = F(j)xK and Fx(j) =

JS may be enriched in SS by the functor Nat: JSop xJS-+ SS
defined by Nat(#, F)n = Nat(j?(g)4tt], F) where A[n] is the standard
w-simplex in SS. Thus JS is a simplicial category in the sense of
[14], Chapter II. We note that JS is tensored over SS via ( ) <g> JBΓ
and cotensored over SS via ( ) κ .

A strict homotopy is a morphism of the form F ® A[l] —> E and
gives rise to the strict homotopy relation on morphisms of JS. We
let the homotopy relation on morphisms of JS be the equivalence
relation generated by the strict homotopy relation. We denote the
homotopy category of JS by hJS with Horn sets feNat(2£, F) ab-
breviated h(E, F).

A morphism f: E-> F is called a fibration, respectively weak equi-
valence, if f(j) is a fibration, respectively weak equivalence, for each
j eJ. A cofibration is a morphism that has the left lifting property
with respect to all trivial fibrations. We have the following result
of Quillen-Bousfield-Kan [1], pg. 313:

THEOREM 1.1. JS equipped as above is a closed simplicial model

category.
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We let HoJS denote the localization of JS at the weak equi-
valences as in [14]. Note that if EeJS is cofibrant and F i s fibrant
then h(E, F) = HoJS(E, F), [14], Chapter I, Corollary 1, 1.16.

II* Cohomology theory* Let Ab* be the category of non-
negative chain complexes of abelian groups with chain maps as
morphisms and L: SS —> Ab* the free chain complex functor as in
[11], pg. 5.

By a covariant system of coefficients on J we mean a covariant
functor J[:J-^Ab. Fixing a covariant system Π and FeJS there

lyTw TT" 7" V 1 (5^

are functors Jop xJ • SSx Ab • Ab* x Ab > Ab* and thus a com-
posite functor Fπ: JopxJ-> Ab*. Define C*(F; Π) as the coend of
the functor Fπ, denoted C*(F; Π) = \FΠ{J, j). Let H*(F; Π) be

the associated homology, i.e., Hn(F; Π) = Hn[Cn(F; Π)]. Clearly C*
and H* are natural in both variables.

By a contravariant system of coefficients on J we mean a
functor Π: Jop-^ Ab. Fixing a contravariant system Π and FeJS

we have Jx Jop —--^ SSop x Ab ~±± Ab%p x Ab ̂  Ab* where Ab* is
the category of cochain complexes. We let Fπ: JxJop —> Ab* be the
composite of the above functors. Define C*(F; Π) as the end of the

functor Fπ, denoted [ Fπ(j, j). Let H*(F; Π) be the associated

cohomology, i.e., H\F\ Π) = Hn[C*(F; Π)]. Clearly C* aud H* are
natural in both variables, contravariant in the first and covariant
in the second. H*( Π) gives rise to a cohomology theory on JS
called singular cohomology with coefficients Π.

For the remainder of this paper we restrict our attention to
cohomology theories.

We start by giving an explicit description of Cn(F; Π) and its
coboundary δn. A cochain φ e Cn(F; Π) is a family of functions
&: FU)* -> Πti), i 6 J satisfying for each /: i -> j, Π(f)φά = φ,F(J).
δnφeCn+\F;Π) is defined by dφά = Σ f c (-1)VΛ where dk is the fcth
face operator. We let Zn(F; Π) be the group of ^-dimensional cocy-
cles, i.e., Ker(3%).

Let i: F-+E be an inclusion. One may easily check C*(i):
C*(£;; Π) -> C*(i^; J7) is an epimorphism. We define C*(£?, F; Π) =
Ker C*(i) and relative cohomology by Jϊ (j0, F; Π) = Hn[C*(E, F; Π)].

We omit the proofs of the following four propositions as they
are standard.

PROPOSITION 2.1. Each inclusion F—>E induces a long exact
sequence in cohomology.

PROPOSITION 2.2. /// , g are homotopic in JS then H*(f) = H*(g).
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PROPOSITION 2.3. If E = D\JF then the inclusion (D, FnD)—>
(E, F) induces an isomorphism in cohomology.

PROPOSITION 2.4. If E = ie

L

Λ Eλ then H*(E) ~ ΠλH*(Eλ).

Let j e J. Define M3 e JS by Mά{i)n = J{i, j) with identities as
face and degeneracy maps. One may use Yoneda's theorem to show:

PROPOSITION 2.5. Hn(Md; 77) = 0 if n > 0 and H\Md; 77) = Π(j).

Now let 77 be a fixed contravariant coefficient system and K(Π, n)
the object of JA formed by composing 77 with K( , n): Ab -» &i,
i.e., the nth Eilenberg-Maclane functor as in [11], §23, pg. 101.
Using the explicit description of cochains the results of [11], § 24
generalize to the following theorem.

THEOREM 2.6. There are natural isomorphisms of group valued
functors Zn( 77) ^ Nat( K(Π, n)) and Hn( 77) ~ h{ , K(JI, n))
for all n^O.

There is an obvious free abelianization functor Lab: JS —> JA and
we are in the situation of [14], Chapter 2, § 5. Clearly we have:

COROLLARY 2.7. If E is cofibrant than H*(E; 77) coincides
with Quillen's homotopical cohomology as defined in [14] Chapter
II, 5.1.

We close this section with two examples.

EXAMPLE 2.8. Let D: J—>cTop be a functor where Top is the
category of compactly generated spaces in the sense of [16]. For
example D could be a diagram of generalized intervals in the sense
of [13]. Define a functor Top -> JS by Xh^X = Top(75( ), X) and
7)-singular cohomology by H;f(X; 77) = H*(X; 77). We observe that
by 2.2 H% satisfies the 73-homotopy axiom, i.e., /, g in Top are
TXhomotopic if /, g are homotopic in JS.

EXAMPLE 2.9. Let MeSS. Define Mr eJS to be the constant
diagram with value M, i.e., M'(j) = M and M\f) — 1M. From our
description of cochains we have C*(ilf'; 77) ^ C*(M, lim 77) where

the right side is the ordinary cochain complex of M with coefficients
in the abelian group lim 77. One may also check that 7Γ(lim 77, n) ~

lim7Γ(77, n). Compare with [1], Chapter XI iii, pg. 288.
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III* Equivariant singular theory* Throughout this section G
is a fixed group, discrete unless specified otherwise. G-Set is the
category of left G-sets and J is the full subcategory of G-Set deter-
mined by G/H as H varies over all subgroups of G.

By a G-complex we mean a simplicial set with G acting on the
left as automorphisms. We let G-SS be the category of left G-com-
plexes with the obvious morphisms. If XeG-SS and KeSS we may
form X® K6G-SS by taking XxK with G acting in the left co-
ordinate. Thus G-SS is tensored over SS.

We denote by G-Top the category of left G-spaces.
If X is in any of the above categories and H is a subgroup of

G we let XH = {x e X\ hx = x for all ft e H). We note the following
adjunctions: G-SS(G/H ®K,X)^ SS(K, XH) and G-Top(G/iϊx K, X) s
Top(iΓ, XH) where G/HxK has G acting in the left coordinate only.

We define functors /: G-SS -* JS by I(X)(G/H) = G-Set(G/iϊ, X) =
X* e SS and Γ: JS-> G-SS by Γ(F) = F(G) provided with its natural
G-action acquired from G-Set(G, G) = G.

Let /: T(F) -> X be a morphism in G-SS. Define /': F-*I(X)
by f'(σ) = fF(q)(σ) for σeF(G/H)n and q:G->G/H the natural
quotient map. It is routine to check that / ' is natural.

Furthermore if h; F-*I(X) then h(σ) = h*F(q)(σ) where /Λ F{G)-+X
is the G-component of fe, i.e., ft is determined by ft*. We have thus
established:

PROPOSITION 3.1. I is full and faithful and right adjoint to
T. Furthermore T preserves limits and both T and I preserve
tensor products over SS.

Using / we view G-SS as a subcategory of JS.
A morphism f:E-+ F of G-SS is said to be a fibration, respec-

tively weak equivalence if /(/) is a fibration, respectively weak
equivalence of JS. A cofibration in G-SS is a morphism of G-SS
that has the left lifting property for all trivial fibrations in G-SS.
We have:

PROPOSITION 3.2. G-SS equipped as above is a closed model cate-
gory. Furthermore each monomorphism of G-SS is a cofibration
and thus any object of G-SS is cofibrant.

Proof. G-SS is the category of simplicial objects in G-Set hence
a closed model category by [14] Chapter II, Theorem 4. The second
assertion follows from a simple lifting argument and induction over
the skeletons.

We note that for E e G-SS9 I(E) may not be cofibrant in JS.
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Consider the adjoint pair U: Top —> SS where U(X) is the singu-
lar complex of X and | !:££—> Top is the geometric realization (see
[7], [11], and [17], pg. 36). These functors yield by naturality an
adjoint pair UG: G-Top -> G-SS and | \G: GSS -> G-Top with natural
isomorphism G-Top(\F\βf X) = G-SS(F, UG(X)). We note by [17],
Lemma 3.2.4, pg. 40 that \F\σ is a G-CW complex in the sense of
[17], pg. 10; see also [2].

PROPOSITION 3.3. The counit of the above adjunction ψ: \UGX\G->
X is a weak G-equivalence.

Proof. ψH:\UGX\S->XH is just the counit \UXH\-*XH and
thus a weak equivalence by [11], Thm. 16.6, pg. 65.

COROLLARY 3.4. If X is a G-CW complex then ψ is an equi-
variant homotopy equivalence.I

Proof. A direct application of 3.3 and [17], Corollary 1.3.4, pg.
12.

Let HoG-SS be G-SS localized at the weak equivalences and
iϊoG-Top be G-Top localized at the weak G-equivalences.

PROPOSITION 3.5. UG and \ \G preserve weak equiavlances and
induce an equivalence of categories iϊoG-Top = HoG-SS.

Proof. Follows from the Adjoint functor lemma of [4], pg. 426
together with 3.3.

COROLLARY 3.6. Let hG-KS be the homotopy category of fibrant
objects in G-SS and hG-CW the equivariant homotopy category of
G-CW complexes then UG and \ \G induce an equivalence of categories
hG-KS ~ hG-CW.

We define equivariant singular cohomology as follows: Let Δ*
be the standard cosimplicial space with An the topological ^-simplex.
Define a functor D: J-^cG-Top by D(G/H) = G/HxJ* with G acting
in the left coordinate and D(f) = fx 1 for / a morphism of J. _As
in Example 2.8 we have a functor G-Top->JS defined by X—>X =
G-TopGD( ), X). We define Q(X; Π) by C$(X; Π) = C*(X; Π) and
equivariant cohomology by H%(X;Π) = ίP(X; Π). Because G is dis-
crete an equivariant map T: GjHxAn -* G/KxJn covering the identity
of Δn is of the form / x l for a unique equivariant map f:G/H-+
G/K. This implies:
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PROPOSITION 3.7. H$( Π) is isomorphic to Illman's equivari-
ant singular cohomology as defined in [8] and [9].

In [9] Illman shows that equivariant singular cohomology satis-
fies all the equivariant Eilenberg-Steenrod axioms. In addition we
have in our setting:

PROPOSITION 3.8. The theory H$( Π) satisfies the wedge axiom
and the strong homotopy axiom, i.e., if f: X —>Y is a weak equival-
ence in G-Top then H%(f) is an isomorphism.

Proof. 2.4 implies the wedge axiom. Because f:X-+Ϋ is a
weak equivalence in G-SS and X, Ϋ are both fibrant and cofibrant
in G-SS, f is a homotopy equivalence by results of [14]. The result
then follows from 2.2.

As in [14] Chapter II, 5.3, Example 1, we have for Π a left
G-module that H$( Π) is isomorphic on G-SS to Quillen's homoto-
pical cohomology. The relationship between 22"*( Π) and homoto-
pical cohomology in general is unclear. (When is HoJS(E, K(Π, n)) =
hJS(E, K(Π, n))Ί) We leave this an as open question.

If G is only a semigroup much of what we have done may be
carried through by replacing J by a small subcategory of G-set.
We leave this for the reader.

Before going further we point out a close relationship between
equivariant cohomology and prestack cohomology, as defined in [5]
and [6].

Let FeG-SS with natural projection p .F-^F/G. Let Π be a
fixed contra variant coefficient system. Note that F — ]LX&F/GP~\^)'
Define a prestack Π of abelian groups on F/G as follows: If σe
(F/G)n, Π(σ) = Nat(p~1(o ), Π) where the G-set p~\o) is viewed as a
functor Jop —> Set. Now a face map 9 of F/G gives an equivariant
map p~\σ) —> p~\dσ) and thus a natural homomorphism 77(3): Π{dσ) —>
Π(σ).

Now there is clearly an isomorphism of cochain complexes
/: C*(JF; Π) -> C*(F/G; Π) where the right side is the complex defined
in [6], pg. 602. Thus we have an isomorphism of equivariant coho-
mology with prestack cohomology.

The isomorphism / is the simplicial analogue of Eilenberg's clas-
sical result relating the equivariant cohomology of the universal
cover of a complex to local cohomology. See [18] Chapter VI, Thm.
3.4*.

We now generalize the classical result of Eilenberg by replacing
a universal covering space by a G space and a left G-module by a
coefficient system Π. We formulate this result for any topological
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group G.
Let G be a topological group and &~ an orbit family for G as

in [9], pg. 3. Let J be the full subcategory of G-Top with objects
G/H with H e &~. A contra variant coefficient system Π on / is
said to be homotopy invariant if Π(f) = Π(g) whenever /, g: G/H-+
G/K are homotopic by an equivariant homotopy.

Let XeG-Top and Π a homotopy invariant coefficient system.
We let Io(X; Π) be the group of equivariant singular cochains as
defined by Illman in [9] Def. 4.3, pg. 21. Note that I$(X;Π)Q
C*(X; 77) where X is defined just as before. Observe that I$(X; Π) =
C*(X; Π) if G is discrete and ^ is the set of all subgroups of G.
We let H§(X; Π) be the cohomology of I%(X\ Π) which is in general
distinct from H*(X; Π).

Let Π be a fixed homotopy invariant coefficient system on J
and J?e(?-Top with its natural quotient q:X->X/G.

Define a cochain complex of presheaves S* over X/G by setting
Sn(U) = I%(q-\U)\ Π) with its natural coboundary. Note that Sn

for all n Ξ> 0 satisfies condition S2 of [3] pg. 6 and S° is a sheaf.
Thus we obtain a short exact sequence of complexes 0 -> £0* —> £* ->
^ * ->0 where ^ % is Sw sheafied and S* - > ^ * is the natural epi-
morphism. (Compare [3] pg. 19.)

PROPOSITION 3.9. For each n^O Sn is a fine presheaf in the
sense of [15] pg. 330.

Proof. The argument of [15] Example 2, pg. 330 may easily be
adapted.

Now consider the cochain complex S*(U) of locally zero cochains
on an open set U £ X/G. We may use [9] Proposition 6.4, pg. 35
to show:

PROPOSITION 3.10. S*(U) is an acyclic complex.

Let Π be the presheaf on X/G defined by the formulae: Π(U) =
Ha{q"\U)\ Π). Using a simple subdivision argument one may easily

check that Π is a sheaf. Furthermore the sequence 0 —> Π -» ^ ° ->
S^1 is exact, i.e., J7 = Ker(δ°).

An XeG-Top is said to be G cohomologically locally connected,
abbreviated (r-cle if the complex of sheaves 0->/7-><P^* is exact
for any homotopy invariant system Π.

Consider the following conditions on XeG-Top.
( i ) For each x e X/G the orbit q~\x) is isomorphic to G/H for

some
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(ii) X is G-locally contractable, i.e., each orbit q~\x) is an
equivariant neighborhood deformation retract of an arbitrarily small
G-invariant neighborhood.

If XeG-Top satisfies (i) and (ii) then X is G-clc. This follows
from the dimension axiom and homotopy axiom for equivariant
singular cohomology. (See [9].)

We now have the comparison theorem:

THEOREM 3.11. // XeG-Top is G-clc with X/G paracompact
then there is a natural isomorphism H$(X; Π) = H*(X/G, Π) where
the right side is sheaf cohomology and Π is any homotopy invariant
coefficient system.

Proof. By 3.10 So* is an acyclic complex and by 3.9 S^n is a
fine sheaf in the sense of [3]. Therefore 0->/7-><5^* is a fine re-
solution of Π and the result follows.

The proof of the following corollaries are left to the reader.

COROLLARY 3.12. Suppose XeG-Top satisfies the assumptions
of 3.11. // dimCX/G) ^ n then H5(X; Π) = 0 for all k> n (dim is
defined as in [3], pg. 73).

Compare 3.12 with [18], Chapter VI, Corollary 4.2.

COROLLARY 3.13. Let G be discrete and X a principal G bundle
with X/G paracompact and locally contractable. If M is a left
G-module then H%{X; M) ~ H*(X/G; M) where M is the locally trivial
sheaf on X/G determined by X and M.

Compare 3.13 with [18], Chapter VI, Thm. 3.4.*

Finally I would like to thank Professor M. Mielke for his many
helpful suggestions.
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