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A MULTIPLE SERIES TRANSFORMATION OF

THE VERY WELL POISED 2k+iΨ2W

STEPHEN C. MILNE

A multiple series generalization of the ^-analog of
Whipple's theorem is derived for 2*+4^+4 by applying recent
analytical techniques of Askey and Ismail to Andrews' mul-
tiple series transformation of a well poised 2k+^2k+S'

1* Introduction* The bilateral basic hypergeometric function
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Hence we see that to insure convergence we must require n <i m.

Also 6A ̂  ^~^, αΛ ̂  g^+1 for any nonnegative integer JV. Finally if
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Bailey's sum of the very well poised 6Ψ6 is

qV a , — qi/~a, b, c, d, e

(1.5)
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The identity (1.5) is probably the most general summation identity
known for bilateral basic hypergeometric series. Andrews [1, §3]
deduces many important diverse results in number theory from (1.5).
Other ^-series identities that follow from the QWQ summation are
given by Slater [11].

There are five known proofs of (1.5). Bailey's original proof
[6, §4] relies on ingenious combinations of various transformation
formulas he had developed for ordinary and basic hypergeometric
series. Slater [12] uses an analog of the Barnes-type integral,
Lakin [12] combines a g-difference equation technique with Carlson's
theorem on entire functions, and Andrews [1, §3] provides a more
elementary proof which utilizes g-difference equations together with
the uniqueness of a Laurent series expansion about the origin. In
obtaining (1.5) directly from the 6Φ5 summation formula, Askey and
Ismail [5] have recently given the most elementary proof of all.

The QΦ* summation formula is:

(1.6)

a, qV a , — qV a, b, c, d

^ / — T / — aq aq aqVa,-Va,—,—,—
aq

= π
aq,

aq aq aq
be' bd' cd

where

_ K - ,bn

aq aq aq aq
b ' c ' d ' bed

ff.t = Σ -



A MULTIPLE SERIES TRANSFORMATION 421

To the end of proving QΨG Askey and Ismail first make the key
observation that both sides of (1.5) are analytic functions of z — a/e
is a disk of positive radius about the origin. They then show that
the 6Φδ summation formula in (1.6) is equivalent to the statement
that these two analytic functions agree when z — qm, m = 0, 1, 2,
Thus they must be identically equal since 0 is an interior point of
the domain of analyticity. The identity in (1.5) follows.

This proof is motivated by the fact that when e = q the series
(1.5) becomes the series in (1.6) since l/(?; ί) Λ =Ό when n— —1,
— 2, - . Ismail [8] has used the above analytical method to extend
another result for a power series to a Laurent series.

In this paper we make use of Askey and Ismail's proof of (1.5)
and Andrews' [2] transformation of a terminating well poised

2k+β2k+3 to prove:

THEOREM 1.7.
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where

(1.12) (M\

l ^ i ^ f c — 1, Ni a fixed positive integer.

Note that for k = 1, Theorem 1.7 reduces to Bailey's sum of
the very well poised βΨQ given in (1.5).

The condition given by (1.12) for the parameters 6* and ct only
applies when k ̂  2. In these cases the series on the left hand side
of (1.8) does not terminate while the series on the right hand side
in (1.11) does. When the series in (1.11) does not terminate there
are additional terms on the right hand side. For k = 2 M. Jackson
[9] has proven the nonterminating form of Theorem 1.7.

Andrews [1, §3] has introduced the Laurent series Kλtk>i(aQ, - - , aλ;
z q) = Kλtkti((a); z; q) which generalizes bilateral basic hypergeometric
series. As summarized in [4, chapter 7] the function Kx>kfi((a); z; q)
plays a key role in the proof of numerous partition identities of
Rogers-Ramanujan type.

It turns out that the sum on the left hand side of (1.8) is
K2k+Uk>1((a); z; q). This suggests it may be possible to discover a
multiple series transformation for Kχtktt((a); z; q) that is similar to
Theorem 1.7. Furthermore, Kχlktt((a); z; q) should be regarded as a
function of z/aλ rather than z.

2. Proof of Theorem 1 7* In order to prove Theorem 1.7 we
need the following result of Andrews [2, §2] which generalizes the
terminating case of the 6Φ5 summation in (1.6), as well as Watson's
[13] ^-analog of Whipple's theorem.

THEOREM 2.1 (Andrews). For k ί> 1 and N a nonnegative
integer:

α, qV a, -qV a, b19clf- •• ,bk_19ck_19bk,ckiq
 N

akQk+N
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Observe that if we set e = q~N in (1.14) then,

(2.3) (aq)N(aq/bkck)N =

aq aq aq
aq, , ~-—, —

cke υφ okck

aq aq aq aq

bk ck e bkcke _

Noting (2.3) it is not hard to see that both sides of (2.2) are analytic
functions of z — 1/e in a disk of positive radius about the origin
provided that

(2.4) ^

Condition (2.4) terminates the sum on the right hand side of
(2.2) but not the sum of the left. If the right hand sum did not
terminate then 0 would not be an interior point of the domain of
analyticity of the above two functions.

The analytic functions representing both sides of (2.2) are equal
when z = qN, N = 1, 2, . Hence, since 0 is an interior point of
the domain of analyticity, both sides of (2.2) are equal when q~N

is replaced by the parameter e. That is, we have the following
extension of Theorem 2.1 in which the left hand side converges, but
does not terminate, and the sum on the right hand side terminates:

T H E O R E M 2 . 5 . For k ^ l and

aq/bfii — q~Ni , 1 ̂  ί <Ξ| k — 1 ,
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V

φkcke/a)mi+.. .

Making use of Theorem 2.5 and Askey and Ismail's proof of
(1.5) we now prove Theorem 1.7.

Just as in the proof of Theorem 2.5 it is not hard to see that
both sides of the identity in Theorem 1.7 are analytic functions of
z = a/f in a disk of poitive radius about the origin provided that
(2.4) holds. To complete the proof of Theorem 1.7 we show that these
two analytic functions are equal when z = qm, m — 1, 2, . This
will be accomplished once we show that Theorem 1.7 is true with
/ = aq~~m. (The key idea here is the "right" choice of the variable
z. Earlier attempts at this type of proof of (1.5) were made with
the variable z = a.)

We are now ready to use Theorem 2.5 to show that Theorem
1.7 is true with / = aq~m.

Observing that

)(qvj) _ α)j ={1 α<
(V α ) . ( - V α ) .

we see that the left hand side of (1.8) with / = aq~m is:
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Note that (1.2) and (1.3) imply that

(2.9) (α; q)n-m = {aq)_Jaq~m; g)» .

For example,

(2.10) (a<rw)*-m = (α<Γm)
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and

(2.11) (qm+X-m = (<Γ+1)-™(g; Q)n .

Using (2.9), (2.10), and (2.11) we rewrite (2.8) as:

gg\ /α?\ ίMλ (M.) Λ^

x

(1 - α)

χ | , (1 - aq(1 - aq~2m) (j£_\ ( a q ) ( a q

(2 13) x ^ ^
/ α g \ ( ? ) « ^ i 6 Λ ••- ckc

\eqmln

Note that the sum in (2.13) is the sum on the left hand side
of (2.6) with a replaced by aq~2m, bt by &i<rm, et by Cίg~m, and e by
βg~m. In addition we have,

aq~2rnq = _α^ g~2m

 = £g_ = - .
biq-

mciq-
m biCi ' q~2m b^

Thus we can replace the sum in (2.13) by the right hand side
of (2.6) with a replaced by aq~2m, 6* by b^*™, d by c^™, and e by
eq~m. When this is done the product of the products in (2.12) and
the sum in (2.13) become:

(2 14) (&i)-m fa)-* (bk)_m (cfe)_m (e)-m (aq-m)-m
''' ' ' 'ί aq\ I aq\ ί aq \ (aq\ /αgλ

V b1 1-in \ d 1—m \ bk 1—m \ Ck 1 —m. \ β / —it

(215) x ( 6 i hfι^ c"ey

(2.16) X ( 1 ~ α g " 2 m ) ( (
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(aq/b2q
m)

m i + w , 2

X
(bkcke/aqm)mi+...+mk_1

X Λ*gV
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It is not hard to see that the sum in (2.19) is the sum in (1.11)
with / = aq~m. All that is left in the proof of Theorem 1.7 is to
show that the product of the terms in (2.14) through (2.18) is
nothing but the products in (1.8), (1.9), and (1.10) with f=aq'm.

When the products in (2.14) are simplified using (1.3) and then
combined with (2.15) we obtain:

/2 20)

(2 21} x

( 2 22) x

(2.23) x ((f+Yα)-1 = (-l^α-g-v^+υ . ( l - ^ ) " ' . . (l

(2.24) x

(2.25) X (g).

(2.26) X (q/bk)-\q/ck)-\q/e)^

Observe that

and

Thus (2.21) can be rewritten as:

(2.28) x -(k-l)m
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After some algebraic simplification we find that (2.16) can be
rewritten as

(2.29) (aqUq/a)m

(2.30) x (- l )»α ϊ" 1 / 2 w ( m + 1 )

and that (2.18) can be rewritten as

(2.31) (,aqlbk)

(2.82) x .
(bkla)Jfikla)Jfila)m

The product of the terms in (2.17), (2.25), (2.26), (2.29) and (2.31)
is:

(2.33)

(2.34) x

The product of the terms in (2.20) and (2.7) is:

(2 35) {ΦJa)m • • •

{ΦJqM){ΦJqM)m ( W g - U {(gM). (g/β*_i).} '

A routine algebraic simplification shows that the product of the
terms in (2.22), (2.32), (2.23), (2.30), (2.24), and (2.28) is 1.

Using (1.2) to rewrite the products in (2.34) it is not hard to
see that the product of terms in (2.33) and (2.34) is simply (1, 8)
with / = aq~m.

Similarly, (1.2) implies that (2.35) is the product of (1.9) and
(1.10) with f=aq-m.

This completes the proof of Theorem 1.7.

3* Applications* As an application of Theorem 1.7 we give a
new proof of the following partition identity due to Andrews [3,
§6].

THEOREM 3.1 (Andrews).

1

(αi)βo(α2)co (α*-i)oo
^σ1(m1>. .,mA._1)2_<72(m1, .,mA._1)-<τ1(ί»1, ,mί._1)
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X

where a^mu

the mlf ,
^ ) is tfee ith elementary symmetric function of

Recalling MacMahon's formula for ττfc(m) the number of plane
partitions of m with fc rows [10; p. 243], Andrews [3, §6] has
observed that if at is replaced by q* in (3.2) then,

"SΓϊ

In order to prove (3.2) we choose the parameters in Theorem
1.7 as follows:

(3.3)
ct = aq/atq

N'

bk> f̂c> β are nonzero constants independent of N.

This choice of parameters satisfies the terminating condition in (1.12)
since aqjbfii — q~N.

Observe that

(3.4) lim bi — 0 and lim ct =

since \q\ < 1.
Now 6̂  and c* contribute

(3.5)
(aq)n (aq/cX (1 - ft^αg) .. (q^1 - bjaq)

to the sum on the left hand side of (1.8).
If we fix n and let JV-> °o then (3.4) implies that (3.5) tends to

gg) _ 1
(aqY

(3.6)

An appeal to Tannery's Theorem [7; 49] immediately implies
that the sum on the left hand side of (1.8) converges to:

a, -tf\/a, bk, ck, e, f ak+ιqk

V a , — l / α , aq/bk, aq/ckf aq/e, aq/f ' (aq)k ι - bkckef

qV~a, -qV~a, bk, ck, e, f

Va, -Va, aq/bk, aq/ck, aq/e, aq/f H'bkckef_

a2q



A MULTIPLE SERIES TRANSFORMATION 429

(3.7) = π
aq aq aq aq aq

7 9 Ί 9 j ~^t t j.9 „

okck oke bkf cke ckf ef a
a(ίQ Q aQ a(i

9 ^-^f 9 9 9 f

e f bk ck e f okckef

by Bailey's 6Ψ6 summation in (1.5).
Note that the products in (3.7) are exactly the same as those

in (1.8), and thus may be cancelled from both sides on (1.8).
When the parameters in (3.3) are used and we let iSΓ—><*>, an

application of Tannery's Theorem for products [7; §49] implies that
the products in (1.9) and (1.10) become:

(3.8) ( α ^ α X (α -̂Joo .

When the parameters in (3.3) are substituted into the sum in
(1.11) we obtain:

(3.9)
*-i*o (q)mi(q)m

x

x

X

X

By making use of the relation

.+mje__L

(a; q)m = ( -
α

to rewrite the products involving g~ ,̂ we find after some algebraic
simplification that when N—> oo the general term of the sum in
(3.9) becomes:

X

An application of Tannery's Theorem now implies that when N—> co,
the sum in (3.9) converges to the sum in (3.2).

Putting everything together we find that 1 equals the products
in (3.8) times the sum in (3.2). This finishes the proof of Theorem
3.1.
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Note that we have obtained Theorem 3.1 as a limiting case of
Theorem 1.7.
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