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DIMENSION MODULES

VICTOR P. CAMILLO AND JULIUS M. ZELMANOWITZ

M i s called a dimension module if d(A + B) = d(A)+d(B) —
d(AnB) holds for all submodules A and B of M, where d{M)
denotes the Goldie (uniform) dimension of a module M. We
characterize these modules as the modules which have no sub-
modules of the form X@X/Y with Y an essential submodule
of X. As a test, the structure of a completely decomposable
injective dimension module is determined.

A sum A + B of submodules of a module M need not satisfy
the usual vector space dimension formula d(A + B) — d(A) + d(B) —
d(A Π B), where d(M) denotes the Goldie dimension of M (that is,
d(M) is the number of components in a longest direct sum of sub-
modules contained in M, and is °o if no such direct sum exists).
This was noted by the authors in [1], where the following substitute
formula was proved for arbitrary modules.

THEOREM (Dimension Formula I). Let A and B be submodules
of a module M. Let C = A Π B and let lc denote the identity map
on C. Let g be a maximal monic extension of lc considered as a
partial homomorphism from A to B, and let D be the domain of g.
Then

d(A + B) = d(A) + d(B) - d(D) + d(D/C) .

In this paper, we study modules whose submodules satisfy the
usual vector space dimension formula itself; these we call dimen-
sion modules. This class turns out to be somewhat larger than we
had originally anticipated. It includes, for instance, all nonsingular
modules and all modules whose lattice of submodules is distributive.
These examples are obtained in § 1 from a characterization of
dimension modules which arises, in turn, from a revision of the
dimension formula. In § 2 we show that maximal essential dimen-
sion extensions of dimension modules exist. The article concludes
in § 3 with a study of injective dimension modules and direct sums
of dimension modules. In an appendix, d(M) is compared with
the reduced rank p(M) of a module M over a right noetherian ring
(p does satisfy the classical dimension formula).

1* Dimension modules* We begin with some notation and
definitions. All symbols A, B, M, N, X, Y, . indicate modules over
an arbitrary ring R. A <̂  B means that A is a submodule of B,
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and A 2̂ B indicates that A is an essential submodule of B. A
partial homomorphism from A to B is a homomorphism from a
submodule of A to B. By a uniform module we means a module
of dimension equal to 1; alternatively, a uniform module is one in
which any two nonzero submodules have nonzero intersection. For
N a submodule of M, we let N denote a maximal essential exten-
sion of N in M. Although N is not necessarily unique, this will
cause no ambiguity in the sequel. When N = N, we say N is closed
in M.

Perhaps the simplest example of a module which is not a
dimension module is the abelian group M — Zp

2 0 Zv. The subgroups
A = ZP2 and B = {(m, m)\0 ^ m < p2} = Zpz are both uniform, and
A + B = M,AΠB = pZv\ But d(A + B) = 2 while d(A) + d(B) -
eZ(.A Π5) = 1 + 1 — 1 = 1. The surprising fact is that this example
is generic, as the next proposition reveals.

PROPOSITION 1. A module M is a dimension module if and
only if for every partial endomorphism f: A —> M with fA ίlA = 0,
kernel f is closed in A.

In the example M = Zp

2@ Zp above, the partial endomorphism
f: Zj? —> M via /(α, 0) = (0, a) is the culprit that causes M to fail
to be a dimension module. The following rephrasal of the proposi-
tion puts the situation in a clearer perspective.

COROLLARY 2. M fails to be a dimension module precisely when
it has a submodule isomorphic to I 0 I / 7 for some Y<3 X.

Before proving Proposition 1 we state a revision of the dimen-
sion formula, which contains a more explicit error term, as com-
pared to the dimension formula for vector spaces. Our proof of
the revised formula utilizes the original version.

THEOREM. (Dimension Formula II.) Let A and B be sub-
modules of a module M. Let 1AΩB denote the identity map on AΓ\
B considered as a partial homomorphism from A to B, and let
f:E-+B be a maximal extension of lAί]B such that Af] B^QE <; A.
Then

d(A + B) = d(A) + d(B) - d(A Γi B) + d(E/A n B) .

Proof. Such a pair /, E exists by a standard application of
Zorn's lemma; and / must be a monomorphism because A Π B ^ E.
Now choose a maximal monic extension g of / considered as a
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partial homomorphism from A to B, and let D ̂  E be the domain
of g. From the original dimension formula we have

(1) d(A + B) = d(A) + d(B) - d(D) + d(D/A Π B).
Next, Lemma 3 of [1] asserts that for any modules X ^ Y
(2)_ d(Y/X) = d(Y)~ d(X) + d(X/X),

where X is any maximal essential extension of X in Y. In our
situation, E is a maximal essential extension of A Π B in D; else
we would violate the choice of E. Hence applying the preceding
formula we get

( 3 ) d(D/A f]B) = d(D) - d(A n B) + d(E/A n 5).
Finally, putting (1) and (3) together yields

d(A + B) = d(A) + d(5) - d(A n B) + d(JS/A Π 5) .

Proof of Proposition 1. In view of the revised dimension for-
mula, ikf will be a dimension module if and only if for every A,
B ^ M, A Π B is closed in the domain of any monic extension of
1A n B regarded as a partial homomorphism from A to B.

Now suppose that M is a dimension module and let /: A -> Λf
be a partial endomorphism of ilf with /A flA = 0. Setting # = 1 —
/: A -> M, we have A Γ! 0-A = kernel / ; so # = 1 on A Π #A, and g
is monic because fA n A = 0. # is therefore a maximal monic ex-
tension in A of lAf]gA: A Π gA -• #A. By hypothesis then, A Π #A =
kernel / is closed in A.

Conversely, assume the stated condition holds, and let / be a
maximal monic extension in A of lAf]B: A f] B -> B with D = domain
/, A and B submodules of M. We must show that A Π B is closed
in ΰ . Set # = 1 - / : D -> ikf. Now #Z> Π -D = 0. (For if gd = d'
for some dy d' e D, then fd = d — d' e A f) B, so fd = lAC]B(d — df) =

f(d — d'). Then d = d — d' because / is monic, and so d' = 0.) By
hypothesis kernel g is closed in D, and we are done since kernel
g = A Π J5.

COROLLARY 3. jPor J? α rrn^, every R-module is a dimension
module if and only if R is semisimple artinian.

Proof. It suffices to prove that no module has a proper essen-
tial submodule. So let B ^2 A and consider M = A φ A/B. By
Corollary 2, ikf cannot be a dimension module unless B = A.

We remark that the above proof actually shows that if AφA/i?
is a dimension module for every B 53 A then A is a semisimple
module.

The rest of this section will be devoted to producing examples
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of dimension modules. Recall that an j?-module is called nonsingular
if the annihilator of each nonzero element is not essential in R.

PROPOSITION 4. A nonsingular module is a dimension module.

Proof. We use Corollary 2. Suppose that M is nonsingular
and contains a submodule A 0 A/B with B ̂ 3 A. Then each element
of A/B has an essential annihilator in R. So A/B = 0, and M is
therefore a dimension module.

PROPOSITION 5. An abelian group is a dimension group if and
only if it is one of the following types: torsion-free, or a torsion
group whose p-primary component for each prime p is isomorphic
to either a subgroup of Zp™, or a direct sum of copies of Zp.

Proof. The question is, which abelian groups do not contain
subgroups of the form A 0 A/B with B ̂ 3 A? Now any mixed
group contains copies of Z and Z/nZ for some n > 1, and these
have zero intersection. Hence a dimension group must be either
torsion or torsion-free. Since the torsion-free groups are precisely
the nonsingular groups, we need only discover the torsion dimen-
sion groups.

So assume that A = φ p A9 is a torsion group with p-primary
component Ap. Since B = φp (B Π Ap) for any subgroup B of A we
may assume that A — Ap is p-primary. Let A(p) be the subgroup
of elements of order p in A; A(p) is an essential subgroup of A,
if I A(p)\ — p, then A is isomorphic to a subgroup of Zp°°> a uniform
group, and so is trivially a dimension group. If A{p) = A then A
is a dimension group since A{p) is a vector space over Zp. So we
are left with the possibility that | A{p) \ > p but A{p) Φ A. Choose
any element aeA\A(p); a has order pn for some n > 1. Then Zaf]
A(p) has order p, so we may choose an element 6 6 A{p), b $ Za.
Then Za Π Zb = 0 and Zb ~ Za/pn~1Zai so A fails to be a dimension
group by Corollary 2.

Our final source of examples is the class of distributive modules,
where a module is called distributive if for any trio of submodules
A, B, C, A n (B + C) = (A n B) + (A n C).

PROPOSITION 6. A distributive module is a dimension module.

Proof. Without loss of generality we may assume that we
have a distributive module of the form M = A 0 A/B with B ̂ 2 A,
and our task is to prove that then necessarily B = A. Set N = A/
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B φ A/B, which being a homomorphic image of M is also a distri-
butive module. On the other hand, define the following submodules
of N: L = {(x + B, x + B) \ x e A}, A, = A/B 0 0 , A2 = O 0 A/B. Then

(Lfi A,) + (Ln Λ) = 0, and so B = A.

2* Maximal dimension modules* Our basic result here shows
that an ascending union of dimension modules is a dimension
module. Thus every module contains maximal dimension submodules.

PROPOSITION 7. Let Mi be an ascending chain of dimension
modules. Then M — U Mt is also a dimension module.

Proof. Let / : A —> M be a partial endomorphism of M with
fA Π i = 0, and suppose kernel f ^Q B for some submodule B of A;
we must show that then kernel f — B. For any b e B, choose Mt

so that 6 and fb are in Mt. Then set A* = (kernel / Π Mt) + Rb C
Λ^ /< = /Ui is a partial endomorphism of Λfo and kernel /< ̂  .A*.
So by hypothesis, kernel /< = At. It follows that fb = 0, and since
6 6 J5 was arbitrary, kernel / = B.

We can now give a characterization of the essential extensions
of a given module which are dimension modules. For a module M
we let E(M) denote the injective hull of M, and we define S^{M) —
{X^E(M)\iΐ Y^ X, feEndE(M), fYf] Y = 0 and f(Yf] M) = 0,
then fY= 0}.

THEOREM 8. (1)

( 2 ) ^(Λί) has maximal elements.
(3) If M is a dimension module and XeS^(M) then X is a

dimension module.
(4) If X^3E(M) and X<£<9*(M) then X is not a dimension

module.

Proof. (1) is trivial.
For (2), suppose Xx ^ X2 <; is an ascending chain of ele-

ments of Sf. Set X= ΌXi and let f e End E(M), Y ^ X, with
/ Γ n 7 - 0 a n d / ( 7 n i l ί ) - 0 . Let Γ ^ Γ n l , . Then fY.ΠY^
0 and /(Y, n ΛΓ) = 0, so /(Y,) = 0 since X, eS^. But Y = U Yif so

Suppose that XeS^(M) is not a dimension module. Then there
is a submodule Z of Xand a homomorphism / : Z—>X with fZΓiZ=0
and kernel/ not closed in Z. Without loss of generality we may
replace Z by kernel / in Z, and assume that kernel f ^QZ. Now
fZ D M is an essential submodule of fZ. So the restriction of
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/ : f~\fZ Π Af) -> fZΠM is a nonzero map. It then follows that
f(f~\fZ n l ) n l ) ^ θ because f~\fZ Π M) ^ X and l e y ( J l ί ) .
Setting g equal to the restriction of / to N = f~\fZίll)fll,
we have that gN Π N = 0 and kernel g ^2N. So Mis not a dimen-
sion module. This proves (3).

Now let X be as in (4). Since X$£f(M) we may choose fe
EndE(M) and Y ^ X with / Γ n Γ = 0 , /(ΪTlΛf) - 0, but fYφO.
Now consider / as a homomorphism: Y—>fY, and let /,. be the
restriction of / to X, = f~\fYt\M). fx Φ 0 because /ΓΠ Λf^ 0.
Now XiΠ-M^ ΓflM^ kernel/, and X.nM^X,, so kernel/x<]Xx.
Since /i-X̂  Π Xι = 0 we learn that X is not a dimension module.

We now present an example to show that maximal essential
dimension extensions of a module need not be unique; that is, the
sum of two essential dimension extensions need not be a dimension
module.

EXAMPLE 9. Choose R to be a commutative local ring with
radical J, where J 2 = 0 and dimension J = 2. Then J = Socle i?, so
we may write J — & 0 S2 where each S< is a simple module, iϋ is
itself a dimension module because each proper ideal of R is semi-
simple. Observe that for any x e J and reR, rx = 0 if and only
if x = 0 or r e J; and from this it is clear that S± and S2 are iso-
morphic iϋ-modules. We let /: Sλ —> S2 and #: S2 —> S± denote a pair
of mutually inverse isomorphisms.

Set E = #(/) == E{SX) 0 #($>). Now consider the monomor-
phisms iu i2: J -> E defined by ix — 1, %2{βx + s2) = gs2 + /s^Si 6 St), and
extend these to monomorphisms ilf i2: R -^ E. Let as = ^(1), ?/ =
ΐ2(l). Then JBCC = ί?τ/ = R are both dimension essential extensions
of J in E. We claim, however, that their sum is not a dimension
module.

First note that in Rx + Ry, R(x + y) Π Sx = 0. (For if iί(a +
y)ΓiS1Φθ then JΓ(α? + |/) n ^ ^ 0 because J(x + y)^ R{x + y).
Choose 0 Φ s = («! + β2)(sc + y) with s, sx 6 S^ s2 6 S2. Then s = βx +
s2 + fsi + 9S2> so s — sx — βrs2 = s2 + /βi e Sx Π S2 = 0. Hence /sx = — s2

and so gs2 = —sx. But then s — sx + gs2 = 0, a contradiction.) Next,
Rx + i2̂ / has dimension 2 so iϋ(# + y) must be uniform. We have a
nonzero homomorphism h: R(x + y)-^>Rx + Ry defined by h(r(jx + y)) = T81

for sλ fixed in Sλ. Also h(R(x + y))ΠR(x + y)SίS1nR(x + y) = 0, and
kernelfc^J?(α?+y) because J(x + y)Qkernels. Hence by Proposition
1, Rx + Ry fails to be a dimension module.

An interesting question, for which we do not have the answer,
is whether a maximal essential dimension extension is unique up to
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isomorphism.

3* Injective modules* It is our intention in this section to
develop conditions which force an injective module to be a dimen-
sion module. The first step is to give a condition based on possible
direct sum decompositions of the injective as a sum of two sub-
modules. We state an elementary lemma that will be used for
this characterization.

LEMMA 10. ί / A g 5 = I 0 Γ then X f] A is closed in A.

Proof. If I n A ^ A ^ i , then X+ A1 = X®Y1 where Y>
(X + Λ) n Y. Next Y, n A £ (X + A,) n'A = (XΠA) + A1 = A,. If
YΊ Φ 0, then 0 Φ Yx Π A £ Au so 0 Φ (Yt Π A) Π (X Π A) because
I n A ^ A i . But (Γx Π A) Π (X Π A) £ F Π X = 0, a contradiction.
Hence Fx = 0, and Ax £ X. So I n i = Λ and I f l i is closed in
A.

THEOREM 11. Let E be an injective module. E is a dimension
module if and only if, whenever E = I φ Y and h: X—*Y then h
splits.

Proof If E is a dimension module then by Proposition 1,
kernel h is closed in X, hence is injective. So kernel h is itself a
direct summand.

Conversely, let a partial endomorphism of E be given, / : A->E
with fAnA = 0. Choose B, C ^ E injective hulls of A and fA,
respectively. Then also ΰ ί l C = 0, so £ = β φ C 0 ί ) for some
submodule D. Let / : β - ^ C be an extension of /. Regarding / as
a map: B—> C 0 D, f must split by hypothesis; write B = kernel
/ 0 Bλ. Now apply Lemma 10 to learn that kernel / Π A — kernel
/ is closed in A. By Proposition 1, E is a dimension module.

COROLLARY 12. // E is an infective module and Had End E=0
then E is a dimension module.

Proof As is well known [3; 19.27], Rad EndE = {feEndE\

kernel f^E}. Suppose E=XφY and h:X-+Y. Write X =

kernel h φ Xx and define h e End E by h = h on kernel h and

0. Then kernel h^E, so h = 0; that is, kernel & = kernel ft, and
we are done by Theorem 11.

The previous corollary generalizes Proposition 4 in view of [3;
19.29].
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Now over a Noetherian ring, every injective module is a direct
sum of indecomposable modules. So we ask, what conditions must
be placed on indecomposable injective summands in order that their
direct sum be a dimension module? We can in fact answer this
question for direct sums of arbitrary modules.

THEOREM 13. Let M — Σ«e/0 Ma. Then M is a dimension
module if and only if each Ma is a dimension module and every
partial homomorphism between two distinct Ma has a closed kernel.

The proof of this theorem is in fact quite complicated. We
have therefore divided its proof among three lemmas.

LEMMA 14. The following conditions are equivalent.
(a) Partial homomorphisms from X to Y have closed kernels.
(b) IfAnX^K^A^ X© Y, then K/A f]X^A/Af]X.

Proof, (a) => (b) Assume that partial homomorphisms from X
to Y have closed kernels and that there exist submodules A f i l ^
K^ A<> Xζ&Y. Suppose further that there is a submodule A Π
X^Ao^A with AJ(AΠX)ΓίK/(AnX) = 0; that is, Aof]K = Af]
X. We prove that K/(A n X) ̂  A/(A Π X) by showing that neces-
sarily Ao = A Π X.

Set Xo = {xeX\ there exists yxeY with (x, yx)eAQ}. We first
claim that the assignment f(x) = yx is a homomorphism from XQ to
Y. To see this it clearly suffices to prove that / is well defined;
and this, in turn, is established provided we can show that Ao n Y—
0. But if Λ ί l Γ ^ O , then K Π Ao n Y Φ 0 because K^A; and
then using the fact that Ao Π K = A Π X, we would have 0 Φ K Π
A n Y ^ Xf) Y = 0, a contradiction.

Next observe that k e r n e l f = A o n X = AoΓ\Ks3Ao because
K<QA; and it then follows that kernel / <3 Xo Since partial homo-
morphisms from I to 7 have closed kernels by hypothesis, we
have that kernel / = Xo. Hence A0 = AQΓ)X^AΓ\X and therefore

Λ = Ani.
(b) => (a) Assume (b), and let / be any partial homomorphism

of X into Y. Choose Xo to be a maximal essential extension of
kernel/ in the domain of /. Our task is to prove that Xo = kernel/.

Set A = {(x, f(x))\xeX0}, a submodule of 1 0 7. Then An
X = kernel / ^ A £ 1 0 Y, with kernel / ^ A because kernel / ^
-Xo. So from (b), with K = A n X, we learn that 0 ̂  A/(A Π X).
But this means that A = An X, and hence that /(Xo) = 0. That
is, Xo = kernel /. This completes the proof of this lemma.
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For notational convenience, let us write X\-> Y to mean that
partial homomorphisms from X to Y have closed kernels.

LEMMA 15. If Xi \-> X5 for any i Φ j and Xt v-^ Y for all i,

then Σ?= 1 0 X, H> Y.

Proof. Let / e HomΛ(A, Y) where A ^ Σr=i θ ^ By replac-
ing A with a maximal essential extension of kernel/ in A, we may
assume without loss of generality that kernel/^g A. We proceed
by induction on n, the case n — 1 being trivially true.

For n>l, set Z = Σ?= 2 θ Xt Then the restriction of / to
A Γ) Z has an essential kernel, so by the inductive hypothesis we
have that /(A f] Z) = 0.

Let πx be the natural projection of Σ?=i Θ -X< o n t ° -Xi Then
A n kernel πx = A Π Z and /(A Π Z) = 0, so τrx induces a monomor-
phism π: A/(A f] Z) —> Xλ. Consider now the canonical epimorphism
p: A/(Af)Z)->A/kernel/. A/(An^)=image π^Xλ and A/kernel/ =
image / ^ Y, so by hypothesis the kernel of 39 is closed in A/(AΓ\Z);
that is, kernel f/(Af) Z) is closed in A/(Af]Z). On the other hand,
An Z<^ kernel / ^ A ^ ^ φ Xlf and by our induction hypothesis
partial homomorphisms from Z to Xt have closed kernels. Hence
by the previous lemma, kernel //(A n Z) ̂  A/(A Π Z). From this it
follows that kernel f = A, and the proof is complete.

LEMMA 16. // X and Y are dimension modules with J K Y
and Yh->X, then 1 0 Γ i s a dimension module.

Proof, Let A ^ I 0 7 and let / be a homomorphism from A
to I © Γ with A Π /A = 0. We must prove that kernel/ is closed
in A. As usual we can assume without loss of generality that
kernel f <3A, and we must show that / = 0. We let πx and πγ

denote the canonical projections of 1 0 7 onto X and Y, respec-
tively.

If πx/(A) — 0 then /(A) £ Y9 and we would be done by the
previous lemma. So we may assume without loss of generality that
?W(A) Φ 0, and also that πγf(A) Φ 0. Then either A Π πzf(A) ^3
πxf(A) or Anπ F /(A)^τr F /(A); else A n (πΣf(A) 0 πrf(A)) would
be essential in πxf(A) 0 πγf(A), and would therefore have nonzero
intersection with /(A), contradicting the fact that A Π /A = 0.

Thus we may suppose that A Π πγf(A) <£ πγf(A), so that there
exists 0 Φ Yΰ ^ τrF/(A) with A n Fo - 0. Setting Ao = (πτf)-\Y0)f

^Y/IAQ is a partial homomorphism from J 0 Y to Y. Hence by the
preceding lemma, kernel πγf\Ao is closed in Ao. But kernel ττ F / | 4 o ^
Ao because k e r n e l / ^ A, and so τrF/(A0) = 0, contradicting ττF/(A0) =
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Yo Φ 0. This contradiction establishes the fact that / = 0.

Proof of Theorem 13. From Corollary 2, it is clear that if M
fails to be a dimension module then so does some finite direct sum
of the Ma9 aeA. Thus it suffices to prove that Σ?=i Θ Mt is a
dimension module whenever each Mt is a dimension module and
partial homomorphisms between distinct Mt have closed kernels.

We proceed by induction on n. For n ^ 2, we claim that
-Mi •-* ΣiU Θ •Mr< For if / is a partial homomorphism from Mx to
Σ?=2 0 Λίi with an essential kernel, then / composed with the pro-
jection πt onto Mi, 2 <^ i <* n, is a partial homomorphism from Mx

to Mt with an essential kernel. By hypothesis then, each πtf = 0,
from which it follows that / = 0.

Next, Σ?=2 Θ-M< ι-> Jlfi from Lemma 15, and Σ?=2 0-M< is a
dimension module by the induction hypothesis. One may now apply
Lemma 16 to complete the proof.

COROLLARY 17. Let U = Σ«e/ 0 Ua where each Ua is a uniform
module. Then U is a dimension module if and only if every non-
zero partial homomorphism between two distinct Ua is a monomor-
phism.

A module U is called monoform if each nonzero partial endo-
morphism of U is a monomorphism. We have the following
immediate consequence of the previous corollary.

COROLLARY 18. For a uniform module U the following condi-
tions are equivalent.

(a) U is monoform.
(b) UQ)U is a dimension module.
(c) ϊ 7 ( / ) = Σ i © f ίs a dimension module for every index

set I.

One can actually show a somewhat stronger result for a mono-
form module U. Namely, that if /: A—> Uιt) is a partial homomor-
phism of U{s) into U{t) then kernel/ is closed in Uis). In particular,
when 8 = t one need not assume that fA Π A = 0 to reach this
conclusion. Our proof of this is lengthy and will therefore not be
exhibited here.

We can now apply the previous results to a completely decom-
posable injective module.

THEOREM 19. Let E — Σ«erΘ Ea be an injective module with
each Ea indecomposable. E is a dimension module if and only if,
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whenever there exists a nonzero homomorphism f: Ea —> Eβ with
a Φ β then Ea = Eβ and End Ea is a division ring.

Proof. Suppose £ is a dimension module and 0 Φ f: Ea —> Eβ

with a Φ β. By Corollary 17, / is a monomorphism. Since fEa is
an injective submodule of the indecomposable module Eβ, f must be
an isomorphism. Now suppose 0 Φ g e End Ea. If kernel g Φ 0 we
would obtain a nonzero homomorphism Ea —•> Eβ which is not an
isomorphism. Hence kernel g = 0 and it follows as above that g is
an automorphism of Ea.

For the converse we use Theorem 11. Let a homomorphism
h:X-^Y be given where E = I φ Y. It suffices to show that
kernel h is closed in X when kernel h Φ 0. Write X = kernel

Now kernel h and F are themselves direct sums of indecomposable
injective modules, and by the Krull-Schmidt-Azumaya Theorem [3;
21.14] their indecomposable summands are isomorphic to the Ea'&.
If we restrict h to an indecomposable summand of kernel h, the
restriction h | is not monic since kernel h <3 kernel h. By hypothesis,
h\ followed by projection onto any indecomposable summand of Y
must be zero, hence h = 0 on kernel h; that is, kernel h — kernel h
and we are done.

Since we have determined when a finite direct sum of uniform
modules is a dimension module, it would be interesting to solve the
corresponding problem for finite dimensional modules; that is, for
essential extensions of the class of modules already known. Although
this problem seems quite difficult we are able to determine a certain
extension of a direct sum of uniform modules, similar to the maxi-
mal rational extension, which is a dimension module if the direct
sum of uniforms is a dimension module.

PROPOSITION 20. Let U = Σ«eiΘ Ua be a dimension module
where the Ua are uniform. Let E(Ua) denote the injective hull of
Ua and set Xa = Π kernel /, the intersection taken over all f e
Horn (E(Ua), E(Uβ)) with a Φ β and fUa = 0. Then Σ α e 7 φ Xa is a
dimension module.

Proof. The proof follows easily using Corollary 17. For let /
be a partial homomorphism from Xa to Xβf a Φ β. Extend / to fe
Horn (E(Ua), E(Uβ)). If fUa Φ 0, then / gives rise by restriction to
a nonzero partial endomorphism from Ua to Uβ, which must perforce
be a monomorphism. In this case / and therefore / must also be
monic. If, on the other hand, fUa = 0, then by the definition of
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Xa9 fXa = fXa = 0. Thus / must be zero or monic.

4* Appendix* This appendix on reduced rank was added at
the suggestion of the referee.

Let R be a right Noetherian ring with nilpotent radical N. The
reduced rank, p(M), of an iϋ-module M was defined in [4] as follows.

If MN = 0, ρ(M) is the Q-composition length of M®B/NQ
where Q is the quotient ring of R/N; while if M is an arbitrary
module, p(M) = ^op(MNyMNi+1). It is well known that

(1) p(X/Y) = p(X)-p(Y),

so that in this respect p behaves like composition length. This
fact is applied quite cleverly in [2] to several aspects of noncom-
mutative ring theory.

It is a folklore result that if N=0 then p(M) = d(M)-d(Z(M))f

where Z(M) is the singular submodule of M. The question is, what
is the relationship between reduced rank and the results in this
paper?

First observe that

(2) p(A + B) = p(A) + p(B) - p(A n B) .

In fact, if p is any function satisfying (1) and ρ(X@ Y) = p(X) +
p(Y), then

B)=Kίίf)+ ^ n B) -
n B) - p(τh)+ p ( j h ) + p{A n B) = p{A)

+ p(B) - 2p(A Π ΰ ) + p(A ΓίB) = p{A) + p(B) - p(Af)B) .

Next define τ{M) = d(Z(M)), and set σ = d - τ. Then

(3) σ(X+ Y) = σ(X) + σ(Y) - σ(Xn Y) .

This is true because τ satisfies the conditions listed in the remark
at the end of [1] and so satisfies τ(X/Y) = τ(X) - τ(F) + τ(Ϋ/Y).
Moreover, Ϋ/Y is singular, so τ(Ϋ/Y) = d(Ϋ/Y) and therefore σ
satisfies (1). Hence by the discussion in the preceding paragraph,
σ satisfies (3).

We can therefore conclude that a module is a dimension module
with respect to d if and only if it is a dimension module with
respect to τ. On the other hand it is not true that a module is a
dimension module if its singular submodule is. For an example,
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consider M = Z/4Z(& Z/2Z as a module over Z/AZ. Let A be the
submodule generated by (ϊ, ϊ) and let B be the submodule generated
by (ϊ, 0). Then M = A + B and d(A) = d(B) - d{A n ί ) = l. Since
d(M) = 2, M is not a dimension module; but Z(M) equals the socle
of M and is therefore a dimension module.

Finally, observe that for a module M over an artinian ring R,
p{M) is the composition length of M while d(M) is the length of
the socle of M. Thus it is apparent that there is no useful rela-
tionship between these two invariants, other than the fact that
they happen to coincide if Rad R = 0. In fact the three dimension
functions p(M), d(M), σ(M) are equal in the event that Rad R = 0,
and are different otherwise. In fact, whenever RR has no simple
summands, σ(M) = 0 because any maximal right ideal is then large
so Socle MQZ(M).

In summary then, the main points of this appendix are
(1) if N = 0, then p(M) - d{M) ~ d(Z(M));
(2) p satisfies the classical dimension formula (2);
(3) d satisfies the classical dimension formula if and only if τ

does.

REFERENCES

1. V. Camillo and J. Zelmanowitz, On the dimension of a sum of modules, Comm. in
Algebra, 6 (1978), 345-352.
2. A. W. Chatters, A. W. Goldie, C. R. Hajarnavis, and T. H. Lenagan, Reduced rank
in Noetherian rings, (preprint).
3. C. Faith, Algebra II, Ring Theory, Springer-Verlag, New York, 1976.
4. A. W. Goldie, Torsion-free modules and rings, J. Algebra, 1 (1964), 268-287.

Received November 28, 1978 and in revised form November 12, 1979.

UNIVERSITY OF CALIFORNIA

SANTA BARBARA, CA 93106






