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ON THE CLOSED IDEALS IN A(W)

CHARLES M. STANTON

This paper is about the ideal theory of the algebra of
functions continuous on the closure and holomorphic in the
interior of a domain on a compact Riemann surface. The de-
scription of the closed ideals in the disc algebra is shown to
apply to an ideal whose hull meets the boundary of the domain
in a finite union of analytic arcs. The canonical factorization
into inner and outer functions in the disc is replaced by a
potential theoretic decomposition theorem, thus allowing es-
sentially the same description to be carried over. The basical-
ly local nature of the problem is used to reduce it to the pre-
viously known ideal theory of a compact bordered Riemann
surface. This reduction is facilitated by a factorization theo-
rem that is proved by potential theoretic methods.

Let if be a domain (i.e., open, connected set) on a compact
Riemann surface S, let 3 W denote the boundary of W and W =
WUdW its closure. Let A(W) be the set of all complex valued func-
tions that are continuous on W and holomorphic on W; A(W) is a
Banach algebra in the uniform norm. In the case of the unit disc,
Beurling (unpublished), and Rudin [8] described the closed ideals of
A(W); see also [5] for an exposition of these results.

In the case of a finite Riemann surface, Voichick [10] found an
analogous description. This case was also treated by Hasumi [3],
and Stanton [9]. These descriptions are essentially local; thus one
may ask if they extend in some form to more general domains. In
this paper, we obtain corresponding results for closed ideals of a
certain type. We assume that dW contains a subset Γ such that
WUΓ is a bordered Riemann surface with analytic border Γ, that
W lies on one side of Γ, and that Γ has finitely many components.
We describe those closed ideals in A(W) whose hulls lie in WUΓ.
We reduce our problem to the ideal theory of a finite Riemann sur-
face by means of a factorization theorem which allows us to separ-
ate the singularities of functions in A{W). The factorization
theorem follows from the decomposition theorem of Parreau [6], so
our methods are somewhat potential theoretic.

In § 1, we illustrate our methods in the case of an annulus in
the complex plane. In § 2 we collect some facts about harmonic
functions necessary for the proof of the factorization theorem in
§ 3 and the description of closed ideals in § 4.

I am grateful for the helpful comments of the referee.
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1* The annulus* In general, we reduce the ideal theory of
the domain W to that of a simpler domain. To avoid obscuring the
main ideas with technical points, we indicate how to reduce the
ideal theory of A(W), where W is an annulus in the complex plane,
to that of the disc algebra.

Let W = {z: r < \z\ < 1} and let Γ be the boundary of W. Let
I be a closed ideal in A(W). Let W1 = {z: \z\ < 1}, W2 = {z: \z\ > r)U
{oo}, and let Γ19 Γ2 be their boundaries. Now A(Wό), j = 1,2, are
just copies of the disc algebra. Our method depends on two obser-
vations: (1) If / is a nonzero element in A(W), then there exist an
integer n and functions f, in A(WS)9 j = 1, 2, such that / = z%fj2.
If p is previously given, with r < p < 1, then / , /> can be chosen
so that / does not vanish for \z\ < p and f2 does not vanish for
z\ > p. (One proves this by considering log |/ | .) (2) A function /

in A(W) that does not vanish on the hull of I is invertible modulo
7; that is, there is a function g in A( W) such that gf — 1 is in /.
(One proves this by observing that the spectrum of the quotient
Banach algebra_A(W)/I is the hull of I. Recall that the hull of I
is the set {pe W:f(p) = 0 for all / i n /}.)

Choose p, r < p < 1, so that the hull of / does not meet the
circle \z\ = p. Let ί1 be a nonzero function in I and factor F as
above: F — znF1F2. By observation (2), Fx + F2 is invertible modulo
I. Let I, = {/eA(TΓ): fF2eI} and /2 = {/eΛ(TΓ): fF.el}. Since
F x + JP'g is invertible modulo I, I = j ^ n I2 Let Jfc = {/e A(Wk):
f\WeIk), k = 1, 2; Jfc is a closed ideal in A(W*). Using the ideal
theory of the disc algebra, we find closed sets Ek c Γk of linear
measure zero and inner functions Φk on Wk such that Jk consists of
all functions of the form fΦk where / is in A{ Wk) and / vanishes on
Ek. Using observation (1) we see that Ik is the smallest closed ideal
in A(W) which contains Jk, so Ik consists of all functions of the
form fΦk where / is in A(W) and / vanishes on Ek. Thus /consists
of all functions of the f o r m / Φ ^ where/ is in A(W) and/vanishes
on Ex U E2.

Using a similar argument and proceeding by induction on the
connectivity of the domain, we can extend this result to a finitely
connected plane domain. It is then possible to treat the case of a
finite Riemann surface by choosing a neighborhood of its border
that is conformally equivalent to a plane domain. We omit the
details of this method because the results themselves are well known.

2* Potential theoretic preliminaries• In this section we study
the boundary behavior of the terms in Parreau's decomposition of
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log I/|, where / is in A{W). We first recall some elementary facts
about analytic arcs and the Schwarz reflection principle. We then
state Parreau's theorem and study the individual terms in the de-
composition. Parreau's theorem is in [6], and a generalization ap-
pears in [4]. General facts about quasi-bounded and singular har-
monic functions can be found in [1] and [2].

Henceforth we shall assume that dW contains a nonempty subset
Γ such that WUΓ is a bordered Riemann surface with analytic
border. Thus Γ is a union of simple, regular analytic arcs and
curves, and W lies on one side of Γ. In order to be explicit, we
recall some facts about analytic arcs. A simple regular analytic arc
on S is a univalent real analytic mapping a of an open interval I
of real numbers into S with nowhere vanishing differential. Since
a extends to be a univalent holomorphic mapping of a neighborhood
of I in the complex plane, it carries complex conjugation over to an
anti-conformal mapping which is defined in a neighborhood of a(I)
and fixes each point of α(2). We shall often refer to a(I) as the
curve a, and we shall call this anti-conformal mapping reflection in
α. Assume that a is contained in dW and that W lies on one side
of α. We shall say that an open set 22 on S is symmetric with re-
spect to a and W if 22 ~ a = R+ U 22_, where 22+c W, R- Π W = 0 ,
and 22+ is carried onto 22- by reflection in α. We shall use the no-
tations 22+, R- with this meaning.

Let p09 q0 be points of α, and let β denote the subarc joining
p0 and qQ. Now p0 = α(α), q0 = a(b) for some α, be I. We may as-
sume that a < b and that a inherits its orientation from W. Let
c > 0, and let

V = {z = x + iy: a < x < 6, — c < y < c}

V = {z = x + iy: a < x < b, -2c < y < 2c}

V" = {z = x + iy: a <x <b, -2c < y < -c} .

Choose c so small that a is univalent on the closure of V'. Let
R == a[V], 22' = α[F'], 22" = α[F"]. We may also assume that 22' is
symmetric with respect to β and W. Let D be the interior of
S-22'_. Notice that 22" n D = 0 . The domains D and 22 have the
following properties:

( i ) WaD, 3D is a piecewise analytic Jordan curve, and 3WΠ

(ii) 22 is simply connected, 22 is symmetric both with respect
to β and W and with respect to β and D, and 22 Π 3W = β = R Π 3D.
We shall refer to 22 and D as auxiliary domains associated with W,

Let u be a positive harmonic function on an open set Ωf and let
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v be a nonnegative harmonic function on Ω. We say that v is
u-singular and write vLu if the greatest harmonic minorant of u
and v is zero. We say that v is u-quasi-bounded and write v<tu if
there is an increasing sequence {vj of nonnegative harmonic func-
tions such that lim vn = v and 0 ^ vn ^ ?m for each w. More gene-
rally, we say that a harmonic function is u-singular (^-quasi-bound-
ed) if it is a linear combination of nonnegative ^-singular (^-quasi-
bounded) functions. If u = 1 we speak of singular and quasi-bound-
ed harmonic functions. In the case of the unit disc, a positive har-
monic function is singular if and only if it is the Poisson integral
of a measure singular with respect to Lebesgue measure on the unit
circle, and it is quasi-bounded if and only if it is the Poisson integral
of a positive Lebesgue integrable function on the unit circle.

We now fix a positive harmonic function u m Ω. If v is a
nonnegative harmonic function in Ω, then there exist uniquely de-
termined nonnegative harmonic functions q and s on Ω such that

v = q + s ,

where q is ^-quasi-bounded and s is ^-singular. In case u = 1, we
shall call s the singular part of v. This decomposition is due to
Parreau [6]; for a proof in this generality, see [2, §2].

The following lemmas state some properties of harmonic func-
tions in a form convenient for later use.

LEMMA 1. Let p0, qQ be points of a subarc a of Γ, and let R,
D be corresponding auxiliary domains. Let U be a quasi-bounded
harmonic function defined in R+. Assume that the nontangential
boundary values of U vanish almost everywhere (with respect to
linear measure) on R<Γ\a. Then U extends to be a harmonic func-
tion in R.

Proof. It suffices to prove that limg^ U(q) = 0 for each p in
RΓ)a, for then we can apply the Schwarz reflection principle. For
this purpose we may assume that R+ is the unit disc and that Rf]oc
is an arc on the unit circle. Since U is quasi-bounded it is the
Poisson integral of its nontangential boundary values. Since these
boundary values vanish almost everywhere on the arc R Π ot, we can
extend U continuously to this arc by setting it equal to zero there
[11, vol. I, p. 97].

LEMMA 2. With the notation of the previous lemma, let {Uk}
be a sequence of nonnegative bounded harmonic functions each of
which vanishes almost everywhere on Rf)a. Assume that U = ΣUk

converges in R+. Then U extends to be a harmonic function in R.
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Proof. Again we may assume that R+ is the unit disc. Each
Uk is then the Poisson integral of a function fk on the unit circle,
and fk vanishes almost everywhere on Rf)a. Now U is the Poisson
integral oί f = Σfk, and / vanishes almost everywhere on R Π oc.
The lemma follows.

LEMMA 3. With the notation of Lemma 1, let s be a singular
harmonic function in W. Assume that s is quasi-bounded on R+.
Then s extends to be a harmonic function in W U R.

Proof. We may assume that s is nonnegative. It is sufficient
to show that the nontangential limits of s vanish almost everywhere
on R Π oc. Otherwise there would be a compact subset E of R Π oc
and a number c > 0 such that E has positive linear measure and
limg_α s(q) ̂  c for all aeE. (Here we mean nontangential limit.)
Let X be the characteristic function of E. Let u be the solution of
the Dirichlet problem in W obtained by Perron's method from the
boundary data cX. Then u is a positive bounded harmonic function
in W and u <̂  s. This contradiction shows that s vanishes on R Π oc
and so it extends to W U R.

LEMMA 4. With the notation of Lemma 1, let s' be a nonnega-
tive singular harmonic function on D. Let s' = u + s where u is
quasi-bounded on W and s is singular on W. Then

(1) lim u(p) = 0

for all q e β.

Proof. We may assume that s' is nonnegative. By the tech-
nique used in proving Lemma 3, we see that the nontangential
boundary values of s', and therefore of uf vanish a.e. on β. The
assertion now follows from Lemma 1.

Parreau [6] has proved that

(2) log I/I = Q - s - b , feA(W)

where Q is a quasi-bounded harmonic function on W, s is a non-
negative singular harmonic function on W, and 6 is a potential on
W. The functions Q, s, b are uniquely determined by /. When we
want to indicate their dependence on /, we write Qf, sf, bf. We
call (2) the canonical decomposition of log |/ | (or of / ) . Now b is
the potential of a measure μ = μf on W. It follows from (2) that
μ is a discrete measure and that μ(p) is the order of the zero of /
at p for every p in W. Hence
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( 3 )

where Gw is the Green's function of W. In the case of the unit
disc, the canonical decomposition is equivalent to the factorization
of / into its outer, singular, and Blaschke factors; indeed Q, s, b
are just the logarithms of the moduli of these factors.

We need some facts about potentials of discrete measures, i.e.,
series of the form (3).

LEMMA 5. Let v be a discrete measure on W and let

U(p) = Σv(q)Gw(p, q)

be its potential. If U is finite at one point of ΫF~suppv, then U
is harmonic in TF~suppv. Let a be an arc of Γ ~ supp v. Then
we can extend U harmonically across a by setting U = 0 on a.

Proof. The first assertion follows from Harnack's theorem. For
the second, we observe that each term of the series vanishes on a
and is bounded near any compact subset of a. The conclusion then
follows from Lemma 2.

3* Factorization theorem*

THEOREM 1. Let W be a domain on a compact Riemann sur-
face S. Assume that dW contains a simple, free, onesided, regular
analytic arc a. Let p0, q0 be points of a, let β be the subarc of a
joining them, and let D and R be corresponding auxiliary domains.
Let feA(W), and assume that f(p0) Φ 0 and f(qQ) Φ 0. Then there
exist functions g and h such that

( i ) g is a bounded holomorphic function in D, g extends con-
tinuouly to 3D~{p0, qQ}, and g does not vanish on D~W,

(ii) h is a bounded holomorphic function in W U R, h extends
continuously to d(WUR)~{p0, q0}, and h does not vanish on R,

(iii) / = gh on W.

Proof Let log \f\~Q~s — b be the canonical decomposition
of log[/|. We shall show that there exist harmonic functions Qr,
sf, and a potential V on D such that Qf — Q, s' — s, bf — b have
harmonic extensions to R.

Let E = {pe/3: f(p) = 0}; E is a totally disconnected compact
subset of β with linear measure zero. Let Qf be a real-valued func-
tion on dD which is continuous on 3D ~ E, equal to Q on β, and is
smooth on dD~β. (Here "smooth" means that if a neighborhood of
3D in D U 3D is mapped conf ormally onto an annulus with 3D going
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to a circle, then Qr is smooth in terms of the parameter inherited
from that circle.) Denote the harmonic extension of Qr to D by Qf

also. Then Qf has local harmonic conjugates which extend continu-
ouly to 3D~E except perhaps at p0 and q0. Moreover Q' is quasi-
bounded on D and Q' — Q vanishes on β~E. By Lemma 1, Q' — Q
extends to be harmonic on W U iϋ.

Let 1 be the characteristic function of R+, and let v = Xμ. Let
δ' be the potential of v in D, i.e.,

&'(p) - Σv(q)GD(p, g) ,

where (?# is the Green's function of D. It follows from Lemma 5
that 6' is harmonic on D~supp v, and it follows from Lemma 2 that
br — b extends to be harmonic on R.

Now the singular function s vanishes on β~E, so we can extend
8 to be harmonic in (WΌR)~E by refection in β. Since R+ is
simply connected, there is a holomorphic function k on R+ such that
8 = Re(ft) there. Now β is an analytic arc, and k is purely imagin-
ary on β ~ E. Thus we may extend k by reflection to be holo-
morphic in R~ E; then s = Re(fc) in R~ E. Therefore *ds has no
periods in R~E. In particular, for any cycle 7 in iϋ~E,\ *ds = 0.

By [7, Theorem 3], there is a harmonic function Z7 in S~ E such
that s — U extends to be harmonic in R and so in Wl) R. Now U
is bounded below on 3D ~ β, s — U is bounded on β, and s >̂ 0.
Hence Z7 is bounded below on /3 as well. By the maximum princi-
ple U is bounded below on D. By adding a constant to 17, we may
assume that U ^ 0 on D.

On D we have

where u is quasi-bounded on D and s' is a nonnegative singular
harmonic function on D. On R+,

s' — s = U — s — u ,

and so s' — s is quasi-bounded. Thus s' — s extends to be harmonic
in TΓ U i2, by Lemma 3.

Let a homology basis for D be given; it is also a homology basis
for D{JR. There is a function v harmonic on the closure of D U R
whose conjugate differential *dv has prescribed periods. Hence we
can choose v so that the only periods of *d(Q' — s' — br + v) occur
at the singularities of 6' and are integral multiples of 2ττ. Hence
there is a holomorphic function g on D such that

log Iff I = Q ' - 8 ' - δ ' + v .
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Now g extends continuously to 3D ~ {p0, q0). Note that the only
zeros of g are in the closure of R+, and that in R+, f and g have
the same zeros with the same multiplicities. Thus the function
h = fig is holomorphic in W and does not vanish on R+. Since

log \h\ = Q - Q' + s' - s + V - b - v ,

log I h I extends to be harmonic in R, and so h extends to be holo-
morphic in W U i?. Now h is continuous on the closure of R+, ex-
cept perhaps at p0 and q0. The extension of h is obtained essentially
by reflection, so h is continuous on the closure of W U R, except
perhaps at p0 and q0.

REMARK. Let k be holomorphic in a neighborhood of D\jR and
vanish only at p0 and q0. Then

where &# is in A{D), kh is in A(ΫPU R) and AΛ does not vanish on
R. Since log \k\ is quasi-bounded on Dili?, comparing canonical de-
compositions yields sf = sg + sh and bf = bg + bh.

REMARK. An obvious extension of Theorem 1 also holds if a is
assumed to be a finite union of simple analytic arcs.

4* Ideal theory of A(W). Let / be a closed ideal in A(W).
We associate three data with /: the set Ex = {pe W: f(p) = 0 for
all / in I}, called the hull of I; the greatest harmonic minorant SΣ

of {sf: / e l } ; and the discrete measure μΣ = inf{/v

THEOREM 2. Lei I be a closed ideal in A(W). Assume that dW
contains a finite union Γ of analytic arcs such that W U Γ is a
bordered Rίemann surface and Ez f] dW = EIΠ Γ. Then

I = {feA(W): f\Ex = 0,sf^ Sl9 μf ^ μz) .

REMARKS. In the case of the unit disc, this description reduces
to the familiar one in terms of inner functions. One sees this by
considering the analogy between the outer, singular, and Blaschke
factors and the terms in Parreau's decomposition. This description
remains valid for finite Riemann surfaces [3, 8, 9].

Proof. It is sufficient to consider the case in which Γ consists
of exactly one arc. Let K = {fe A(W): f\ EΣ = 0, sf^ SIf μf ^ μΣ}.
Then IczK. To show that Kczl, choose pOf qQ in Γ so that EΣ^]Γ lies
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in the subarc β of Γ with endpoints pQ, q0. Construct auxiliary do-
mains D, R corresponding to p0, q0, and Γ. Let J={Φ e A(D): Φ\ We I}.
Now J is a closed ideal in A(D), and D is a finite Riemann surface.
Hence J is determined by its data: its hull EJf the singular harmonic
function Sj and the discrete measure μJt (In this proof we shall be
dealing with relationships between harmonic functions on W and
functions on D. For clarity we shall use a prime to indicate that
a harmonic function is defined on D.) We shall show that Ej = El9

f*j — Pi, and that on W, Sj = Sr + u where u is quasi-bounded and
vanishes on Γ. We also note that since D is bounded by a piece-
wise analytic arc, and since Ej avoids the corners of this arc, the
function Sj can be extended continuously to D U (3D ~Ej) by setting
it equal to zero on dD~Ej.

To establish these relations between the data determined by I
and /, let / be a nonzero element in I. Then there exist points plt

qλ on Γ such that p0, plf qu q0 occur in that order along Γ, f(pt) Φ 0,
f(Qi)Φθ, and EzΓiΓ lies in the subarc of Γ with endpoints pu qx. Con-
struct auxiliary domains Dlf Rx corresponding to plf qlf and Γ. We
may assume that D c f l p Let k be holomorphic in a neighborhood
of A U Rx and vanish only at pl9 q^ There exist g e A(A) a n ( i ^ i n

A(WU Ri) such that k2f= gh, g does not vanish on Z)1~Wr, and h
does not vanish on EΣ. (See the remarks following Theorem 1 and
note that only finitely many points of Ex lie outside Rlm) Since
k2fel and h is invertible modulo I it follows that gel. Therefore
geJ. If pgW~EIf we may choose / s o that f(p) Φ 0. Thus
#Gp)^O SO peEj. Since # does not vanish on JD^TF, Ej = Eτ. For
p in WΓϊEIf h(p)Φθ, so / and g have zeros of the same order at p.
Hence Uj — ux. Now bn W, Sj = σj + uj9 where Oj is a singular
harmonic function on W and Uj is a quasi-bounded harmonic func-
tion. We shall show that α> = S7. Since s7 = sff + sA, β/ ^ sff. It
follows from the uniqueness of the canonical decomposition that on
W s'g = sg + %£, where ^ 5 is a nonnegative quasi-bounded harmonic
function on W. Since sg^ Sj = 0V + %j, sff ^ σJβ Thus s/ ^ α ̂ , and
so Sj ^ σj. On the other hand, let ^ denote the set of all non-
negative superharmonic functions v! on D such that v! ^ Sτ on W.
Then J?" is a Perron family, hence τ' = inf ^ " is a nonnegative
harmonic function in D and τ' ^ S7 on W. Let / be a nonzero
element of J. Then / e l so s> ^ s/ ^ S7 on TΓ. Then s'feJ^, and
so s> ̂  τ\ Hence S ^ τ ' . Since SS = σj + ^ ^ ( 7 ' ^ S 7 . Thus Sz = (jJβ

Let / be a nonzero element of K. We may assume that p0, q0

are chosen so that f(p0) Φ 0 and f(q0) Φ 0. Let A; be a function holo-
morphic in a neighborhood of DiJR that vanishes at pQ, q0 and only
there. By the remarks following Theorem 1, there exist functions
g e A(D) and h e A( W U R) such that k2f = gh and h does not vanish
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on Ej. (Note that only finitely many points of EΣ lie outside R.)
We shall prove below that geJ. Then gel, so k2fel. Thus / is
in I because Jc is invertible modulo /. Therefore I = K.

To prove that g e J, we must show that g vanishes on EJf that
μg ^ μj and that sg ^ Sj. The first two of these conditions hold be-
cause h and k do not vanish on Ex. By the remarks following
Theorem 1, sf = sg + sh.

Now Sj is bounded near each point of dW~Ez. Since h does
not vanish on El9 sh is bounded near each point of EΣ. Thus sh and
Sj are mutually singular. Since sf — S7 ^ 0, we can decompose it
with respect to S7, obtaining

sf - SΣ = μ + φ

where μiSj and φ < S7. We can also decompose ŝ  with respect to
SΣ, obtaining

where v _L S7 and τ/r < S7. Equating the two decompositions of sf

with respect to SI9 we have

Thus sg - Sz = v + φ^O. We now claim that s'g^Sj. On dD~Ej,
Sj has boundary values zero, so

lim inf (βj(p) - S£(p)) ̂  0

for qedD~Ej. Now sσ — S7 is the singular part of sg — Sj on W.
It follows from Lemma 4 that (sj — Sj) — (sff — S7) has vanishing
boundary values on /3. Thus the inequality above holds on β also,
and by the maximum principle sg ^ Sj.
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