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THE RIEMANN MAPPING THEOREM FOR PLANAR
NASH RINGS

G. EFROYMSON

Recall/: D-> R2 is a Nash function if / is analytic and if
there exists a polynomial pf{xf y,z)^£0 with pf{x, y,f(x, y) = 0
for all (xf y) in D. We wish to show Theorem 1: If D is a
semi-algebraic simply connected, open domain in R2, then D
is Nash isomorphic to R2. This means that there exists a
map (x,y)-> (fi(x, y)f Mx,y)) where fx and / 2 are Nash
functions on D and the map is a Nash isomorphism of D
with R2.

As a corollary, we obviously get ND = NRz where ND = {f:
D^» R | / is a Nash function on Z)}. Moreover, if D is any con-
nected semi-algebraic domain in R2, it follows that D is
Nash isomorphic to R2 minus n points where n = the number
of holes in D. Here a domain is always considered to be open.
The problem of classification of nonopen regions even in the
plane is much more complicated and not settled as far as I
know.

The proof of Theorem 1 is fairly constructive. One map used
is the real two variable map corresponding to the complex variable
map z-*']/~z. Using mainly this map, we can get 3D to be a
piecewise polynomial curve, and so each piece of 3D is part of an
analytic curve which never enters D. Then a rational map will map
D to the interior of the unit circle so 3D approximates the boundary
of the unit circle. Then one maps to the upper half plane and 3D
will be the graph of a function, still piecewise analytic, etc. Finally,
we can constract a Nash function which will enable us to map D
to the upper half plane which is clearly Nash isomorphic to R2.

1* The mappings* We will need the following maps and their
conjugates by linear transformations.

(1) z-* V~z. This is the map (a?, y) -> (±((a? + (x2 + #2)1/2)/2)1/2),
±(—x + ((x2+y2)1/2)/2)1/2) where the signs are determined by designating
a curve C from P = (0, 0) to °o which lies outside of D. The func-
tion will be discontinuous all along the curve C which is alright
since C is outside D.

(2) The mapping (a?, y) -> (x, y(x2 + y2)m) which was used in [4]
to straighten out cusps and will be used for the same purpose here.
This map is analytic except at P = (0, 0).

( 3) The mapping (x, y) -> ((λa? — 2y)/μ, y) where λ, μ > 0. This
maps the region between y = Xx and the x-axis to the region
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between y + μx = 0 and the #-axis and so opens up angles.

Note that the mapping z -> 1/ z can be used to "break" analytic
arcs as in [4]. Namely, if y = 0 is to be broken at (0, 0) where we
assume the negative /̂-axis is outside of D, consider the map z —> V~z
as usual. Then the region D will be mapped inside the right hand
half plane and the image of the negative cc-axis will be the positive
?/-axis while the positive #-axis is left fixed.

2* Proof of Theorem 1*

THEOREM 1. Let Dbe a semi-algebraic simply connected domain
in R2, then D is Nash isomorphic to i?2.

Proof. Since D is semi-algebraic, 3D is a union of polynomial
arcs. So we first consider those arcs which bound D on both sides.
Since D is simply connected, any such arc is part of a curve C
running to 00 outside of D. Now take z->VΎ where P is the
other end from 00 of C. In the image, the rest of 3D will be no
worse than before, but the double bounding arc will now be split
into two isomorphic arcs each of which will bound D only on one
side. (See the diagram below.) Since there are only a finite number
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of double bounding arcs, in a finite number of steps we can remove
them. Finally there may be some points where bounding arcs in-
tersect so the same type of behavior as above will occur only at one
point. These points can be eliminated also as above.

Next, as in [4], we use map (2) to straighten out cusps. We
briefly sketch the process. The object is to take a cusp like y2 = xz

and change the angle from 0° to 180°. So take the cusp with
principal term ym — xn where m < n. If m is odd, the cusp will
already have angle 180°. If m and n are both even, we get a
factorization of ym — xn so we can assume that m is even and n is

F
odd. Consider the map: (u, v) —• (fι(u, v), f2(u, v)) — (u, v(u2 + v2)a) —
(α;, y). I claim that this is a Nash isomorphism of R2 — {(0, 0)} to
R2 — {(0, 0)}. This is easily seen by considering y = v(u2 + v2)a as a
function of v, and noting that dy/dv = (u2 + v2)a + 2av{u2 + v2)"'1 =
(u2 + v2)°-\u2 + vz + 2av2) > 0. Moreover, v^u2 + v\) = v2(u2 + v\)
clearly implies that vλ and v2 have the same sign. So assume that
vt > 0, and we see that vx = v2 and so the map is one-to-one. That
the map is onto is clear.

Now suppose that we have ym — xn as the dominant term in
p(x, y). Then F*(p(x, y)) will have dominant terms (v(u2 + v2)a)m — un.
To find the dominant term, we look at the Newton polygon and find
that it is v{2a+1)m — un. Now if, as above, m is even and n is odd,
we find that for a large enough, this cusp will have angle 180°
(from the un, n odd, term).

Next, we wish to "break" all the analytic arcs of 3D so they
do not enter D. So let C be an analytic arc of 3D and let P be a
boundary point of C where it ceases to be on 3D. That is, on one
side of P, C is part of 3D and on the other it is not. Now from P
we can run an arc C" to oo so C lies outside D. Then, when we
make the transformation z —> l/ z centered at P, we break C as we
broke y = 0 in the example. This works since the angle C makes
at P will be 180° even if P is a cusp of C.

Now by mapping, if necessary, some point off D to oo we can
assume that 3D is a closed curve. By the last procedure, all angles >
180° on 3D will have been eliminated. Now keeping in mind trans-
formation (3), we see that we can map D diffeomorphically to the
inside of the unit circle so that all the corners of 3D lie on the unit
circle. This map can be extended to a diffeomorphism of R2 with
itself so that the map is the identity at oo by [5], p. 180.

We next find a rational approximation to this map which takes
D to the inside of the unit circle with 3D having all its corners on
the unit circle. We also want 3D to have smooth points at ±ί and
to approximate the unit circle closely enough so that the following
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circles cut 3D in only two points. These circles are obtained from
the map φ: R2 —> R2 which is given in complex coordinates by z —»
{~%){z — i)/(z + i), i.e., a Moebius transformation. The circles we
want are the images of the circles r = (x2 + y2f/2 — constant under
the above map. So these circles are centered on the imaginary axis
and always include in the interior +i (r > 1) or —i (r < 1); except
for r = 1, which has image the real axis. So approximating the
unit circle closely by 3D will ensure that 3D cuts each of these
circles in only two points.

Now, when we follow our rational map by the Moebius trans-
formation φ: we find:

(1) D is contained in the upper half plane.
(2) 3D is a piecewise polynomial arc with two ends.
(3) Any analytic arc C which contains a piece of 3D has C Π

D = 0 .
(4 ) Any circle x2 + y2 = r2 intersects D in only two points, one

on each side of the ^/-axis.
Of these properties (1) and (2) are clear, (3) follows from our con-
struction.

Now for each analytic arc Ct on 3D, let C[ be the analytic
closure of C*. Then since Ct is contained in the zero set of a poly-
nomial, we have by [4], Theorem 1, that there exists a Nash func-
tion qt(x, y) vanishing in R2 only on C*. By construction, G\ does
not intersect Z), so qt Φ 0 on D. So we can change sign if necessary
to insure qt > 0 on D. Now set q — Π Qi- The Nash function q is
> 0 o n ΰ and vanishes 3D.

Next let h = #2/(tf2 + s) = (1 + ε^"2)"1 with e(x, y) a function to
be chosen. Then

dh/dy - - ( 1 + eq-2)-2((dε/3y)q-2 = 2εq-\3q/3y))

(3h/3y)h = (2ε(3q/3y)/q - 3ε/3y)/(q2 + ε) .

We wish to choose ε so as to make (3h/3y)/h > — 2/r > — 2/j/. To do
this, we fix r and consider the function (3q/3y)/qz on χ2 + y2 = r2,
(α&, ?/) in ΰ . This function will have a minimum since q = 0 on 3D,
<7 > 0 inside Z>, and by property (4) the circle x2 + y2 = r2 will cut
3D in only two points, one on each side of x = 0.

By the Tarski Seidenberg principle, we see that <p(r) is piece-
wise algebraic so that there exists a constant C > 0 and an integer
m so that φ{r) > —C — rm.

Now let ε = 1/C(2 + r%), where, for now, n ^ 2m. Then, noting
that dε/dy < 0 for y > 0, we see that

2e(dq/dyW > 2eφ(y) > 2ε(-C - r™)
= -2(C + rw)/C(2 + τn) > -2/r ^ -2/?/
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since (C + rm)/(2 + rn)C < IIr by the choice n ^ 2m.
We also need to choose n large enough so that h = q2/(q2 + ε) is

bounded from below as y -> oo, i.e., q2/(q2 + ε) > 1/JV for some large
JV and all large enough y. But this is equivalent to the inequality
q2 > ε/JNΓ — 1. And by the Tarski-Seidenberg principle again, we
have that q2 > λ/rs as y —> oo for some constant λ > 0, and some
integer s > 0. So choose n > s and we are okay.

Now let g = y2h. Then g vanishes on 3D and g does not vanish
inside D. Moreover dg/dy = 2yh = y\dh/dy) = y2h((dh/dy)/h) + 2/#) > 0

on 2λ Now we map (x, y) —> (#, g(x, y)). Then ψ maps D into the
upper half plane and we claim in fact ψ maps D isomorphically onto
the upper half plane. For ψ is one-to-one since each g(x, y) is an
increasing function of y on D. Moreover, the inverse Nash map

exists everywhere locally since its Jacobian is ~ ,~ daldv ^ ^
anywhere on D. Moreover, the map is onto since, even through
q2/(q2 + ε) = h is bounded, g = y2h won't be bounded as a function
of y, (x fixed).

Finally, it is obvious that the upper half plane is isomorphic to
R2 since the map (x, y) —> (x, (y2 — ϊ)/y) will accomplish this isomor-
phism.

3* Corollaries of Theorem 1*

THEOREM 2. Let D be a semi-algebraic region (open still) with
n holes. Then D is Nash isomorphic to R2 minus n points.

Proof. Let D be a semi-algebraic connected domain in Rn. Let
i22U{°°} be the one point compactification of R2. Then there are only
a finite number of connected components of i?2U{oo} — D. We define
a hole in D to be any of these components except the one containing
{oo}. We wish to map D-+.R2 — {n points} where n is the number
of holes in D. First consider the component S of R2\J{oo}—D
containing {oo}. Then, if S = {oo}, we do nothing, and if not we

map R2 - S^R2 using Theorem 1.
Now consider any hole H of D which is bigger than one point.

Let P be a point in H and map P = (α, 6) to oo by (xf y) —>
(x/(x - a)2 + (y - b)\ y/(x - a)2 + (y - δ)2). Then map R2 - φ(H) -> R*
by a map ψ using Theorem 1. Finally, follow this map by a map
like φ which maps ψoφ(oo) to oo and we see that H is mapped to
a point hole in the image of D. By induction on the number of
nonpoint holes, we complete the proof.

THEOREM 3. The nullstellensatz for ND. Let D be a planar
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connected semi-algebraic region (open). Let & be a prime ideal of
ND, the ring of Nash functions on D. Then AΌj^ is orderable if
and only if I(V(P)) - &. Here V{0>) = {(α, b) in D:f(a, b) = 0 for
all f in &*}. And I(V(&)) = {g in Nn: g(a9 6) = 0 for all (α, 6) in

Proof. By Theorem 2, D is Nash isomorphic to R2 minus n
holes. So if the holes are the points (aif 6<), i = 1, , n; then D =
{(x, y) in R2: (x - a,)2 + (y - b%)2 > 0 for i = 1, ••-,%}. Now this is
a region for which the nullstellensatz has been proved [2], [3]. (In
[2] the nullstellensatz is proved only for planar regions of the
restricted type and in [3] for higher dimensional regions of restricted
type). The nullstellensatz is also known to be true for higher
dimensional domains if one combines [3] with a proof (unpublished)
by Shiota of Lemma 6 of Mostowski [6]. (This is explained in more
detail in [1].)
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