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MAPS ON SIMPLE ALGEBRAS PRESERVING
ZERO PRODUCTS.

II: LIE ALGEBRAS OF LINEAR TYPE

W. J. WONG

The study of maps on an algebra which preserve zero pro-
ducts is suggested by recent studies on linear transformations
of various types on the space of n x n matrices over a field,
particularly Watkins' work on maps preserving commuting
pairs of matrices. This article generalizes the result of
Watkins by determining the bijective semilinear maps / on a
Lie algebra L with the property that

where Λ J G L , for a class of Lie algebras constructed from
finite-dimensional simple associative algebras.

Introduction* In [8] we began the study of the semilinear
maps on an algebra over a field k which preserve zero products, a
problem arising from recent investigations characterizing the linear
transformations on the n x n matrix algebra Mn(k) over k which
preserve various properties, particularly the work of Watkins on maps
preserving commuting pairs of matrices [7]. If L is a Lie algebra,
this means that we are concerned with the bijective semilinear maps
f on L such that [f(x), f(y)] — 0 for all pairs of elements x, y of L
such that [x, y] — 0. We say that / preserves zero Lie products.

If L is finite-dimensional, these maps / form a group G(L) [8].
Clearly G(L) contains the group G± of all semilinear automorphisms
and anti-automorphisms (semilinear maps which are automorphisms
or anti-automorphisms of the multiplicative structure of L), the group
of units G2 of the centroid of L (the algebra of linear transforma-
tions which commute with left multiplications in L), and the group
Gs of all bijective transformations / of the form f(x) = x + g(x),
where g is a linear map of L into its center Z(L). Let GQ(L) =
GXG2GZ.

In this paper we determine G(L), for a class of simple Lie al-
gebras L, These are obtained by taking finite-dimensional simple
associative algebras A over a field k and forming the Lie algebra
L — [A, A]l[A, A] Π Z(A), where [A, A] is the subspace spanned by
all the commutators [x, y] = xy — yx, and Z(A) is the center of A.
If A is noncommutative, then L is a simple Lie algebra, except when
A has characteristic 2 and is 4-dimensional over Z{A) [1, p. 17].
Except for cases of "small length/' we show that G(L) = G0(L) for
such a Lie algebra L. In fact, we can deal with a wider class of
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Lie algebras, including the case L = A (Theorem II and Corollary 9).
We say that these are Lie algebras of linear type, since A is iso-
morphic with the algebra of all linear transformations on a vector
space over a division algebra. Our result includes that of Wat kins
[7], and its extension to nonalgebraically closed ground fields by
Pierce and Watkins [6].

The proof of Theorem II uses a result about maps between tensor
products of vector spaces, preserving rank 1 elements, modulo a
certain subspace (Theorem I), and a knowledge of the structure of
linear transformations on a finite-dimensional vector space over a
finite-dimensional division algebra, generalizing the usual elementary
divisor theory for fields (§ 2).

It would be interesting to find G(L) for the cases not covered
by Theorem II. A particularly intriguing case occurs with the simple
Lie algebra L obtained from a simple associative algebra of charac-
teristic 2 having dimension 16 over its center, where it may be pos-
sible that not all elements of G(L) come from the generalized rank
1 preservers classified in Theorem I.

1* Generalized rank 1 preservers* In [8] we studied maps

of tensor products of vector spaces over an associative division al-
gebra D, preserving elements of rank 1. Here we shall need to
consider the case when V and U form a pair of dual vector spaces,
/ may not be defined on the whole of U 0 V, and the image of a
rank 1 element under / is only assumed to be of rank 1 modulo a
certain subspace S of Ux 0 Vx.

We assume familiarity with the notations and facts concerning
tensor products contained in [8]. If U and V are a right and a left
vector space over a division ring D, then U 0 V is an additive abelian
group, which is a A -vector space if D is a division algebra over a
field k. In particular, U0 V is a vector space over the center Z(D).
The rank of an element x of U 0 V is the least number r such that
x has an expression in the form

x = Σ Mt (x) vt , (ut e U, vt e V) .

In this case, the sets {uly •••,%} and {vu , vr] are linearly inde-
pendent, and span subspaces U{x) and V(x) of U and V, which are
uniquely determined by x [2, Lemma 3.1].

If also Ul9 VΊ are a right and a left vector space over a division
ring Dl9 we can speak of semilinear maps
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g: U >Ulf h: V > Vt ,

with respect to an isomorphism σ: D —» Dx. Such a pair of maps gives
rise to a map

g®h: U0V >U1®V1,

such that (g (g) h)(u ®v) = g(u) (x) fe(v). Similarly, if o :̂ D-* Dx is an
anti-isomorphism, we can speak of semilinear maps

Ql: γ. >Ulf hλ: U > V, ,

with respect to σly and these give rise to a map

such that (gx (x) h^u (x) v) =
If V, 17 form a pair of dual vector spaces over D with respect

to a nondegenerate bilinear form < , >, and [D, D] denotes the
additive subgroup generated by the commutators aβ — βa, where
a, β e D, then the map taking the pair u, v to the coset of (v, n)
(mod [D, D]) is a balanced map of U x V into D/[D, D], so that there
is a homomorphism

tr: U(g) V >D/[D,D] .

This is surjective, and is called the trace map. If D is a division
algebra over a field k, then [J9, D] is a &-subspace of D, and tr is a
ά-linear map. If J7(g) V is identified with the algebra A of finite-
valued linear maps of V into itself which are continuous with respect
to a certain topology defined by U (discrete if V is finite-dimensional),
then the kernel of the trace map is the commutator [A, A], so that
the subspaces of A containing [A, A] are in one-one correspondence
with the subspaces of D containing [D, D].

Because of the possibility of further applications, the result
which we shall prove in this section is placed in a more general
setting than that which is needed for the main purpose of this paper.
The ingredients of the situation are as follows.

HYPOTHESES. (1) D and A are associative division algebras
of finite dimension over a field k, with dim,, D ^ dim .̂ D^

(2) (V, U) is a pair of dual vector spaces over D.
(3) C is a fc-subspace of D containing [D, D], and L is the k-

subspace of U® V consisting of all elements whose traces lie in
CI[D, D].

( 4 ) U19 V1 are a right and a left vector space over Du and S
is a Λ-subspace of U1 (x) VΊ containing no elements of rank 1 or 2.
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(5) If S has an element of rank 3, then S is a 1-dimensional
Z(A)-subspace of U1 (x) Fx.

(6 ) dim V ^ 3, C Φ 0 if dim F = 3, and dimfc C > dimfc [A, A]
if dim V = 3 and S has an element of rank 3.

The technical conditions (5), (6) will be used in the proof of
Theorem I. It is not clear to what extent they are really necessary.
In Hypothesis (6), dim V indicates the D-dimension of V. We make
the convention that the unqualified words dimension, linear, sub-
space, will always be taken to be with respect to D or Dl9 as
appropriate, and not with respect to k.

THEOREM I. Assume Hypotheses (l)-(6), and suppose f:L—>
Ux (x) Vi is a semilinear map with respect to an automorphism μ of
k, such that, whenever x is an element of rank 1 in L, f{x) is the
sum of an element of S and an element of rank 1 in U1 (x) VΊ.
Then one of the following holds.

( i ) There exists an element ux of Uu such that

(ii) There exists an element vx of Vu such that

(iii) μ can be extended to an isomorphism σ: D -> D19 and there
exist injective σ-semilinear maps g: U —> Uu h: V'—> Vu such that

where (g 0 h)L is the restriction of g (x)h to L, and r: L —> S is a
μ-semilinear map.

(iv) μ can be extended to an anti-isomorphism σ: D —> Dlf and
there exist injective σ-semilinear maps g: V-+ Uu h: U-+ Vl9 such
that

where (g (x) h)L is the restriction of g (x)h to L, and r: L—> S is a
μ-semilinear map.

The proof of this theorem resembles that of [8, Theorem A],
except that we can use the fundamental theorem of protective ge-
ometry, because of Hypothesis (6).

We shall call a λ -subspace of L a rank 1 Λ -subspace if its nonzero
elements all have rank 1. Such a fc-subspace can be obtained by
taking an element % of ?7* = U — {0} and forming u (x) u°, where

u° = {ve V\(v, u)eC},
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a fc-subspace of V containing the annihilator u1 of u. If d = dimfc D,
c = dimfcC, then dimfc F/w° = d — c, dim* V/u1 = d. Since 2cί + (d — c)<
dim* V, by Hypothesis (6), we have

u1 n (w')1 n (u"y Φ o ,

for all u, u', u" in U. Similarly, if v e V\ then t;0 (x) t; is a rank 1
ά-subspace of L, where v° = {ue U\(v, u) eC}.

If an element w of J7i ® VΊ has the form

w = s + t ,

where s e S and ί has rank 1, then the rank 1 component t is uniquely
determined by w, since w^s + t^s' + t' gives s — s' = t' — t, and
the only element of rank at most 2 in S is 0. We shall write w0

for the rank 1 component t of an element w of this form. It will
be convenient also to write w0 = 0 for an element w of S. Clearly,
if w0 is defined and aek, then (aw)0 is defined, and is equal to aw0.

LEMMA 1. If ueU*, then the map x-+f(x)0 is an injectίve μ-
semilinear map of u®u° into Ut ® VΊ.

Proof Our assumption on / shows that f(x)0 is defined and
nonzero if x has rank 1, and we have f(ax)0 = (cctιf(x))0 = aμf(x)0, for
aek. Form W = f(u 0 u°). It is enough to prove that if w, w' 6 W,
w + wf = w", then w0 + wΌ = wίf. Suppose this is not so. Then
w0 -f wί — wίf is an element s of S having rank 3, by Hypothesis (4).
If w0 = %! (g) Vi, te J = wj (g) vJ', wί' = uί (g) v[\ then {̂ , wj, %ί'}, {vu v[, v")
are linearly independent subsets of Ulf Vlf generating the subspaces

If aeZ(Dλ)f we see that w0 — as has rank 1 or 3 unless a = 1.
By Hypothesis (5), s is determined by w as the only element of S
such that w0 — s has rank 2, and t/̂ Wo — s) = ttjA 4- wΓA, Vi(w0 — «) =
A^ί + A < If * is any element of W for which (w + t)0 ^ w0 + ί0,
then the same argument with ί in place of wf shows that

υiu) c P M - 8) = u[A + Hi'A ,

Similarly, if (wf + t)0 Φ wΌ + ί0, then Ux{Qczu1D1 +

Now let Y be the set of all elements of U1 (x) Vx of the form
%i ® «^i + ^ί (8) /Svϊ + %!' (x) 7vΓ, where α, β, y e A Then Γ is a fc-
subspace of Z7Σ (g) VΊ containing S. Suppose that W is not contained
in Y, and let ί e W, t $ Y

If (w + ί)0 = ŵo + *o» then ί0 has form ux (x) ̂ ί" or u[" (x) Vi [8,
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Lemma 1]. If (w + t)0 Φ w0 + tOy then ί0 = u[" (g) v"', where u[" e
u[D1 + u"Dlf v"f eDjV[ + A^Γ Considering w' + t, we similarly have
the possibilities that tQ = %ί (g) v"', %"' (8) ̂ ί> o r w{" <g) ̂ ί", where in
the last case u[" euιD1 + w"A> vί"e A^i + A^ί' Combining these,
and using the linear independence of {ulf u[, u") and {vlf v[, v"}9 we
see that there are seven possibilities for t0:

( i ) ux (x) α < ( i i) uί (g) α ^ ,
(iii) v,! (x) (αv! + βvϊ), ( iv) ( ^ α + u['β) ® vlf

( v ) %ί (x) (αvί + /SvΓ), (vi) (u[a + </3) (8) vί,
(vii) %!' (g) αwί'.
Suppose case (i) holds. Since w + w' + t lies in PΓ, it is the

sum of an element of S and an element of rank 1 or 0. By Hy-
pothesis (5), there exists 7 6 Z(D1) such that wQ + w[ + tQ + 7s has
rank 1 or 0. However, this element is equal to

Mi (x) ((7 + 1>! + αvί) + uί (g) (7 + l)vί - %ί' (x) 7vί'

Since {nly u[, u") is linearly independent, it follows that {(7 + l)vι +
OLV'U (7 + l)v[, yv"} must span a space of dimension 1 or 0. Since
a Φ 0, it is easily seen that this is not so. Case (ii) may be eliminated
in the same way.

Suppose case (iii) holds. Then β Φ 0, since t<tY. For 7€.Z(A)>
we find that w[ + t0 + js is equal to

u, (x) ((a + 7 K + βvί') + πj (x) (7 + l)vί - uί' (x) 7 < .

For this to have rank 1 or 0, we must have 7 — — 1 , a = 1. Now,
for 8 e Z(D1)9 we find that w0 + wί + t0 + δs is equal to

ux (g) ((δ + 2)v, + /SO + u[ (x) (δ + l)vί - uϊ (g) δ < ,

which cannot have rank 1 or 0. Cases (iv), (v), (vi) may be elimi-
nated in a similar way.

Case (vii) cannot hold, since t$Y. Thus, W must be contained
in Y.

Since dimfc Y = 3 dimλ A , T^ ΓΊ S — 0 by our hypothesis on /, and
dimfc S — dimfc Z(Dj), we have

dimfc W ^ 3 dimfc A ~ dimfc Z( A) .

Since TF and u° are isomorphic fc-vector spaces, and dim& V/u° —
dimfc D ~ dimfe C, we see that V has finite dimension n, and

W= (n — ϊ) dimΛ Z) + dim& C ^ (n — ϊ) dimfc A + dimfc C ,

by Hypothesis (1). Since n ^ 3, we must have w = 3, and dimfeC ^
dimfc A — dim f cZ(A). This is a contradiction to Hypothesis (6), and
completes the proof of Lemma 1, because of the following result.
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LEMMA 2. If B is a finite-dimensional simple associative algebra
over a field k, then

dimfc B = dimfe Z(β) + dimfe [B, B] .

Proof, Eeplacement of k by Z(B) divides all three dimensions
by dimk Z(B). Thus we may suppose k — Z{B). If if is an algebraic
closure of k, then Bκ = B ®k K is a full matrix algebra over K, and

dim,, Bκ = 1 + dim* [Bκ, Bκ] ,

since [Bκ, Bκ] is just the subspace of matrices of trace 0. Since
[Bκ, BK] = [B, B] ®k K, we have dim,, [Bκ, Bκ] = dim, [B, B], dim,, Bκ =
dim& 5, and the result follows.

LEMMA 3. If ue U\ then f(u (x) u°) £ S + (% (x) Fx), /or some
uλ 6 Ϊ7*, or f(u (x) %°) £ S + {U1 ® vj, /or some ^ 6 V?.

Proof. By Lemma 1, {/(#)0|# ^ ^ (x) ̂ °} is a rank 1 subgroup of
Ux (x) V19 and so is contained in u1 (x) F2 for some uu or in C/Ί (x) ^
for some ^ [8, Lemma 2].

LEMMA 4. It is impossible to have

f(u (x) u°) £ S + (^ (x) Fx) ,

f(u' ®u'°)GS + (U^vJ ,

where u, uf 6 U\ uλ e ΪTf, ^ e F/.

Proof. We use two injective semilinear maps of k-vector spaces,
u° Π u'° -> %! (x) Fx, u° Π %'° —> Z7i (8) ̂ i» given by v -> /(w (x) v)0, v ~>
/(%' (g) v)o respectively. The inverse images A, A! of ux (x) D^i under
these two maps are fc-subspaces of u° Π u'°, each having fc-dimension
dimfc A If d = dimfc D, c = dimfc C, then dimfc F > 2>d - 2c, by Hy-
pothesis (6), while dimfc V/u° = dimfc F/tc'0 = d - c. Hence dimfc u° n ̂ '° >
d ;> dimfc I?!, by Hypothesis (1), and so A, A' are proper Λ-subspaces
of u° n u'\

If 0 ̂  v 616° ΓΊ 'M''0, then, by symmetry, Lemma 1 applies to v° (x) v
in place of u 0 u°, and we see that the sum of the rank 1 elements
f{u (x) v)0 and f(u' (x) v)0 has rank 1 or 0. It follows [8, Lemma 1]
that either UJJίu' ® i;)0) = Ux(f{u (g) v)0) - ^ A , or Vt{f{u 0 v)Q) =
VΊifiu' (x) i;)0) = A^i^ so that veA' or v e l Since a vector space
cannot be the union of two proper subspaces, this is a contradiction.

LEMMA 5. Every element of L is a sum of elements of rank 1
in L.
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Proof. Let x — ΣΓ=i ^t 0 Vi (uί e U, ^ G V) be an element of L.
Since the result is trivial when m — 1, we assume m > 1 and use
induction. If (vu u^ = 0, then K ^ ^ G L , and we apply induction
to the remaining m — 1 terms. If <^, %<> =£ 0, for some j Φ ί, say
(v2i u,} Φ 0, then uι (x) (^ — av2) e L, where a = ( ^ u^){v2j ^i>~S

= Ml (g) (tf 1 — Σ

and induction can be applied. Finally, if (vu uγ} Φ 0, and (vjf u^ = 0
for all j Φ ί, then (u1 + u2) (x) (/5̂ i + v2), ^ 2 (8) /3̂ i and ux (x) v2 all lie
in L, where /5 = — (v2, u2}(vu u^"1; since a; — {uλ + %2) ® (βvt + v2) +
(u2 (x) /3Vi) + ^i (x) v2 is equal to

Ml (8) (1 - /3)^! -f Σ ^i Θ /ŷ  ,
i — 3

induction can again be applied.

Proceeding with the proof of Theorem I, we have two possi-
bilities, by Lemmas 3 and 4:

(A) For every ue U, there exists ux e Uί9 such that

(B) For every ue U, there exists vι e V19 such that

Similarly, we also have two possibilities for the f(v°(x)v):
(a) For every v e V, there exists vx e V19 such that

(b) For every v e V, there exists ut e Ulf such that

In all we have four cases, (Aa), (Ab), (Ba), (Bb), where (Aa) means
that (A) and (a) hold, etc. We consider these one at a time.

Case (Ab). Suppose u, u' e UK Since dim V ^ 3, we can choose
a nonzero element v of u° n w'°. We have

f(v* ®v)^S + (u2(g) Vx) ,

where uu u[, u2 e Uλ. Since f(u (x) v) lies in both f(u (x) u°) and
we have
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u.D, = Ux{f{u 0 v)) - u2D, .

Similarly, u[Dι — u2Dlf so that uj)1 = u[Dt. Thus the same uγ may
be used in (A), for every u e U. From Lemma 5, it follows that
f(L) QS + (^ 0 Fx), and case (i) of Theorem I holds.

Case (Ba). An exactly similar argument shows that case (ii) of
Theorem I holds.

Case (Aa). Let P(U), P(ΪΛ), P{V,) denote the sets of one-dimen-
sional subspaces of U, Ulf Vu respectively. We have maps L: Z7# —>
P{U,), R: V^PiV,), such that

f(v° 0 v) £ S + (C/x (g) Jf2(t?)),

where w e ί7#, v e F*. If α is a nonzero element of D, and %' = uaf

let v be a nonzero element of u1. Then

i(^) = Uάfiu (x) αv)) - Uάfiu' (x) v)) - L(tt') .

Thus, uD-*L(u) is a well-defined map of P(U) into P(i71).
If ^ 6 ?7*, v 6 F#, and (v, u) = 0, then, for α 6 J9#, / ( M (X) V)0 e

L(ua) (x) i?O) = ί/(^) (g) Λ(t ). Since a —> /(%α ® v)0 is an injective
semilinear map of D into L(u) 0 Λ(v), which is isomorphic to A as
a ά-vector space, it follows from Hypothesis (1) that

Lin) (x) R(v) = {fiua 0 v)01 a e D) .

If ^, 1̂ ' 6 Z7*, and L(u) = L(ur), choose a nonzero element v of
uL Π ^^. Then f(u' 0 v)0 e L(u')®R(v) = L(u)®R(v). Thus, f(u'(g)v)0 =
f(ua 0 t;)0, for some aeD, so that /((V — %α) 0 v)0 = 0. Hence,
u' = M . Thus, uD~^L(u) is an injective map of P(U) into P{U^).

Next, suppose wZ), '̂Z>, w"D are three coplanar elements of P{U),
that is, u" = ua + u'β, where a, β eD. Let v be a nonzero element
of ^ Π w'1. Then,

L(w'O 0 R{v) = {f(u"y ®v)Q\7eD}

+ /(^/37 0 v)017 e D)
L(ur) (g) R(v) .

Since R{v) is one-dimensional, it follows that L(u") Q L(u) + L(uf),
so that L(^), L(U')9 L(U") are coplanar.

If, conversely, L(u") £ L(%) + L(u'), choose a nonzero element v
of u-1- Π ^/J" ΓΊ u"\ Then,

/(wf/ 0 v\ 6 L ( O g) Λ(v) C L(w) 0 i2(v) + L{uf) 0 Λ(v) ,
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so that there exist a, β eD, such that

f{u" (x) v)0 = f{ua (x) v\ + f(u'β (x) v)0 .

Since the map x—> f(x)Q is an injective semilinear map on v° (x) v, it
follows that u" = ua + w'/3.

Finally, suppose u,u'eU\ ^616L(^6), u[eL(uf). Again let v be
a nonzero element of uL Γ) ufL, and take a nonzero element v1 of #(#).
There exist a, β eDy such that

Wi (x) v, = /(uα (x) v)0 , %; (g) v, = /(w'/3 (x) v)0 ,

and so (uL + u[) (x) ̂  = /((uα + w'/3) (X) v)0. If ua + w'/3 = 0, then
uλ + u[ = 0. If uα + u'β Φ 0, then v,! + u[e L(ua + u'β). Thus the
union of all the L(u), u e Ui

y is a subspace £72 of C/Ί.
We can now apply the fundamental theorem of projective geome-

try [4, p. 104]. There exist an isomorphism σ: D —> A and an injec-
tive σ-semilinear map g: U'-> U1 (with image U2), such that L(u) =
g(u)Dlf for all w 6 ?7*. Similarly, there exist an isomorphism τ: D->DL

and an injective τ-semilinear map h: V —> V19 such that R(v) = DJι(v),
for all v e V*. Thus, u e U, v e V, (v, u) e C, we have

fin (x) v)0 = g(u)a(u, v) (g) h(v) ,

where a(u, v) e Dλ (and a(u, v) Φ 0 if u Φ 0, v ^ 0).
Suppose v e F*, and let u, u' be nonzero elements of v°. The

equation /((u + u') (x) /y)0 = f(μ 0 v)0 + /(%' (x) v)0 gives

+ u')a{u + u', v) = g(u)a(u, v) + g(u')a(u', v) .

If u, w' are linearly independent, then #(%), r̂(%') are also linearly
independent, since g is injective. Comparison of the above equation
with the equation g(u + uf) = g(u) + ί/(̂ ') shows that a(u, v) = α(^', v).
If u, u' are linearly dependent, we choose v," e v\ such that u, u"
are linearly independent. Then we have a(u, v) = a(u", v) — a(u', v).
Thus, a(u, v) is the same for every nonzero uev°. Similarly, if
u 6 U% then a(u, v) is the same for every nonzero v e u°.

If u, v! are any elements of U% v, vf e V\ and (v, u)y ζy', u') e C,
we can choose a nonzero u" in °̂ n vr\ By what we have proved,

a(u, v) = α(^", v) = a(u", v') - a(u\ vr) .

Thus, a(uf v) is the same for all pairs u, v of nonzero elements such
that (v, u) 6 C, say a(u, v) = a. We can also set a(u, v) = a when
u or v is zero. Since u —> g(u)a is an injective semilinear map, we
can change notation appropriately and write

f(u (x) v)0 = g(u) (x) fe(v) ,
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for all u, v such that (v, u) e C.
If (v, u) = 0, we see from the equation f(uβ (x) v) — f(u (x) βv)

that the isomorphism σ: D —> A related to g is the same as the iso-
morphism related to h. If β e k, we see from the equation f{uβ®v) =
βμf(u (x) v) that σ agrees with μ on elements of k.

The maps g, h give a map g (g)h: Ϊ7(x) V—> ί̂  (x) F l f whose restric-
tion to L is denoted (g (x) Λ)z. Clearly / — (g (x) Λ)z is a μ-semilinear
map of L into Z7X (x) VΊ which maps elements of rank 1 into elements
of S. By Lemma 5, the whole of L is mapped into S. Thus, case
(iii) of Theorem I holds.

Case (Bb). Take a division algebra D2 anti-isomorphic to Du and
make VΊ into a right Z)2-vector space ί72, C/Ί into a left £)2-vector
space F2 in the obvious way. There is an isomorphism of fc-vector
spaces

jiU^V, >Ut® F 2,

given by j(ux (x) υt) = ^ ( x ) ^ . If Uu Vlf Dlf f, S are replaced by
U2, V2, D2, jf, j(S), then Hypotheses (l)-(6) are still satisfied, and
we are in Case (Aa). We can apply the result we have just proved
for that case, and by the obvious translation obtain case (iv) of
Theorem I. We omit the details.

This completes the proof of Theorem I.

2 Centralizer of a linear transformation* We need some facts
concerning the structure of a linear transformation on a finite-dimen-
sional vector space over a division algebra. These form a special
case of a more general situation discussed by Jacobson [3].

Let fl be a finite-dimensional associative division algebra over
a field k, with center Z. We identify k with a subfield of Z. The
polynomial ring D[t] is defined in the usual way; in particular, the
indeterminate t commutes with elements of D. If a(t) is a nonzero
element of D[t], the right ideal a(t)D[t] has finite codimension as a
subspace of the right D-vector space D[t], The codimension is still
finite if D[t] is regarded as a ^-vector space, since dimz D is finite.
Thus, Z[t] Π a(t)D[t] is a nonzero ideal of Z[t], since it has finite
codimension over Z. Thus there is a nonzero multiple of α(ί) lying
in Z[t]. In the terminology of [3], every nonzero polynomial in D[t]
is bounded. Because of this, the usual elementary divisor theory
for linear transformations over a field will hold over D, with only
minor modifications.

If <z(£), αx(ί) 6 D[t], then α(ί) and aλ(t) are similar if there exist
monic polynomials 6(ί), bλ{t) in D[t], such that b(t)a(t) — a$)b$), where
b(t) and at(t) have no nonconstant common left factor, and a(t) and
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6i(i) have no nonconstant common right factor. Similarity is an
equivalence relation [5, p. 489], and similar polynomials have the
same degree. In the case of degree 1, t — a and t — β are similar
if and only if a and β are conjugate under the inner automorphism
group of D.

Let V be a finite-dimensional left D-vector space, and x a linear
transformation on V. (As in § 1, the unqualified words linear, dimen-
sion, subspace will always be taken with respect to D.) If a{t) =
X, aft is a polynomial in D[t], and v e V, define

a(t)v — X a^iv) .

Then V becomes a left D[ί]-module, and a submodule is a subspace
which is invariant under x. If W, X are submodules, the D[t]-
homomorphisms of IF into X form a &-vector space Rom(W, X). In
particular, the endomorphism algebra Horn (V, V) is the centralizer
C(x), consisting of all linear transformations on V which commute
with x. The order of a vector v is the monic polynomial α(ί) of
least degree for which a(t)v = 0, and its degree is equal to the di-
mension of the submodule generated by v. The order of another
vector generating the same cyclic submodule is similar to a(t). Thus
one can speak of the order of a cyclic submodule, defined to within
similarity.

If V is indecomposable as a D[£]-module, then it has a unique
composition series, and its composition factors are all isomorphic.
The order of a composition factor of V is an irreducible polynomial
p(t) in D[t], defined to within similarity, which we call the irreducible
divisor of V. We call the length m of the composition series of V
the length of V. To within isomorphism, V is determined by the
similarity class of the irreducible divisor p(t) and the length m. We
note that dim V = m degp(t). Also, every submodule and every
quotient module of V is indecomposable.

In general, V can be expressed as the direct sum of indecom-
posable D[ί]-modules, each of which is as described above.

PROPOSITION 6. Let D be a division algebra of finite dimension
d over a field k9 and x a linear transformation on an n-dimensional
vector space V over D. Suppose that the corresponding structure of
V as a D[t]-module is given by the decomposition

where each Vtj is indecomposable, Vίά has irreducible divisor pt(t)
and length mij9 and no two of the polynomials pSt), - - -, pr{t) are



MAPS ON SIMPLE ALGEBRAS PRESERVING ZERO PRODUCTS 481

similar. Let C(x) be the algebra of linear transformations on V
which commute with x, and let c(x) = dim*. C(x).

( i ) As a k-vector space, C(x) is isomorphic with the direct sum

Σ Horn (Vii9 Vik) (j, k = 1, - , n<; i = 1, - - , r) .

(ii) For given i, j , k, if m = minim,,-, mik}, then Ή.om(Vi3, Vik)
is isomorphic (as a k-vector space) to the space of all polynomials
a(t) in D[t] for which deg a(t) < m deg pt(t) and pim(t)a(t) is a left
multiple of pim(t), where pim(t) is the order of an indecomposable
module with irreducible divisor pt(t) and length m.

(iii) c(x) ̂  d ΣAUI ( Σ & = I
 m i n {™>t,Ί ™α}) deg pt(t).

(iv) Σi,i ™>i5 deg pit) = n.

Proof Since C(x) = Hom(F, F), and two Vtj having different
values of i do not have any irreducible constituents in common,
assertion (i) is clear.

The image of any homomorphism h of Vti into Vik has length
at most m = min {mij9 mik}. Thus h is essentially a homomorphism
from the unique quotient module of Viό having length m to the
unique submodule of Vik having length m. These modules are each
isomorphic with the indecomposable module W with irreducible divi-
sor pit) and length m, and so Hom(F i i, Vtk) is isomorphic with
Hom(PΓ, W). Let w0 be a generator of W, with order pim(t). Each
endomorphism of W is determined by the image of wOf which can
be any element w for which pim(t)w = 0. Every element of W can be
uniquely expressed in the form w = a(t)w0, where α(ί) is an element
of D[t] for which deg a(t) < deg pίm(t) = mdegp^t). The condition
that pίm(t)w = 0 is then equivalent with the condition that pίm(t)a(t)
is a left multiple of pim(t). This proves assertion (ii).

Assertion (iii) follows from (i) and (ii), since the space of all
polynomials ait) in D[t] for which deg a(t) < m deg pt(t) has Λ-dimen-
sion dmdegPi(t), and assertion (iv) follows from the equation dim Viά —
mi:ίdeg pit). This proves Proposition 6.

A special case of statement (ii) of the proposition is easily
calculated. Suppose p^t) = t — a and m = min {mijf mik} = 1. Then
we seek the elements β of D for which (ί — a)β is a left multiple
oi t — a. This means (ί — a)β — β(t — α), so that α/3 = /3α. Thus,
Hom(F i i, Vik) is isomorphic with CD(a), the centralizer of a in Iλ

COROLLARY 7. In the situation of Proposition 6,

c(x) <ϊ d% max {nlf n2, , ^ r} .
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// equality holds, then (a) nλ = n2 — = nrr and (b) for each i, miό

is independent of j.

Proof. Let nQ == max [nu n2, , nr). By Proposition 6 (iii), since
min {mij9 mίk) ^ mih

c(x) £d^n, Σ % deg#<(£) ,

and equality implies mid — mik, for all j9 k. Since nt <; w0, this gives

c(x) ^ d^o Σ ma deg Pi(ί) = dn0 n ,

by Proposition 6 (iv), and equality implies ni = n0, all i. This proves
Corollary 7.

If aeZ(D), then α defines a linear transformation sα:v—>αv on
V, called a central homothety. This corresponds to the case where
V has w indecomposable components, each with length 1 and irre-
ducible divisor t — a, and then c(sa) = dn2. If y is a linear trans-
formation of rank 1 on V, then x = sa -{- y corresponds either to the
case that V has n — 2 indecomposable components of length 1 and
one of length 2, all with irreducible divisor t — a, and then c(x) —
d(n2 — 2n + 2), or to the case that F has n — 1 indecomposable com-
ponents of length 1 with irreducible divisor t — a and one of length
1 with irreducible divisor t — β, and then c(x) = d(w — I)2 + dimfc CD(β).
We show that these are essentially the only cases when c(x) ^
din2 -

PROPOSITION 8. In the situation of Proposition 6, assume that
n^Z and c(x) ^ d{n2 — 2ή). Then one of the following holds.

(1) x is a central homothety; c(x) — dn2.
(2) x is the sum of a central homothety and a linear trans-

formation of rank 1; c(x) — din — I)2 + dimfc CD(β), for some element
β of D.

(3) n ~ 3, and V has a basis for which x has matrix
diag{α, a, a}9 where dimfc CD(a) = (l/2)d; c(x) = 9d/2.

(4) ^ = 3 or n — 4, αtid cix) — d(n2 —

Proof. We may suppose % ̂  ^ , all i. By Corollary 7, wx ^
n — 2. Also, if Wj. = n — 2, then every ni is w — 2, m€i = mα for
all j, and c(α ) = d(n2 — 2ri). In this case, Proposition 6(iv) shows
that n — 2 divides w, so that w = 3 or n = 4, and case (4) holds.
We may now suppose nx^in — 1.

If wt = n, then V has ^ indecomposable components, each of
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length 1, with the same irreducible divisor t — a. By the remark
following Proposition 6, c(x) = n2 dimfc CD(a). Since CD(a) is a divi-
sion subalgebra of D, dim*. CD(a) is a divisor of d. We must have
dim* GD{a) ^ (l/3)d, since (1/4) dn2 < d(n2 - 2n) when n ^ 3. If
dim* CD(a) = (l/3)d, then the inequality (1/3) dn2 ^ d(w2 — 2n) gives
w = 3, so that c(x) = Sd = d(n2 - 2n), and case (4) holds. If
dimΛ d)(α) = (l/2)d, we similarly find that w = 3 and case (3) holds,
or n = 4 and case (4) holds. If dimfc CD(a) = d, then case (1) holds.

If nt = n — 1, then r ^ 2. If r = 2, then F has n — 1 com-
ponents of length 1 with irreducible divisor t — a, and one of length
1 with irreducible divisor t — β, where β is not conjugate to a under
the inner automorphism group of D. Now, c(x) = (n — I)2 dim^ Cχ,(α) +
dimfcC^/3). We must have άimk CD(a) ^ (l/2)d, since (l/3)d(w - I)2 +
d < cί(^2 — 2w) when n ^ 3. If dim* ̂ ( α ) = (l/2)d, the inequality
c{x) ^ d(^2 - 2ri) gives w = 3, β e Z(D), and c(a?) = 3d = d(w2 - 2w),
so that case (4) holds. If dimfc C^α) = d, then case (2) holds.

If r = 1, then V has ^ — 2 components of length 1 and one of
length 2, all with irreducible divisor t — a. If W is the component
of length 2, we find that

φ) = (n2 - 2n) dimfc CD(a) + dimfc Horn (W, W) .

There is a submodule X oί W such that X and W/X are each ir-
reducible, with irreducible divisor t — a. As in the remark following
Proposition 6,

Horn (W, X) ~ Horn (W, W/X) ^ CD(a) .

Now the exact sequence

0 > Horn (W, X) > Horn (FT, W) > Horn (PΓ, W/X)

shows that dimA Horn (W, W) ^ 2 dim^ CD{a), so that c(aj) ^ (n2 —
2n + 2) dimfc CD(a). We must have a e Z(D), since (l/2)d(n2 -2n + 2)<
d(n2 — 2w) when n ^ 3. Thus, c(x) = c£(w2 — 2^ + 2), and case (2)
holds.

This proves Proposition 8.

3* Lie algebras of linear type* If A is an associative algebra
over a field k, then A becomes a Lie algebra under the operation
[x, y] = xy — yx. If A is noncommutative and simple, with center
Z(A), then [A, A]/[A, A] Π Z(A) is a simple Lie algebra, except when
k has characteristic 2 and A is 4-dimensional over ϋΓ(il) [1, p. 17].
By Wedderburn's theorem, if A is finite-dimensional over k, then A
is isomorphic with the complete algebra L(V) of linear transforma-
tions on an ^-dimensional vector space V over an associative division
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algebra D of finite dimension over k. Here Z{A) corresponds to the
set of all central homotheties on V, and [A, A] to the kernel of the
trace map from L(V) to Dj[D, D] mentioned in § 1.

We shall find the bijective semilinear maps preserving zero Lie
products in a general situation having as special cases both the simple
Lie algebra associated with L(V) and the complete algebra L(V)
itself. Let L be any fc-subspace of A containing \A, A], where A =
L(V), and let E be any &-subspace of L Π Z(A). Then L is a Lie
subalgebra of L(V), E is a central ideal of L, and we can form the
Lie algebra L — L/E. We are interested in the group G(L) of all
bijective semilinear maps on L which preserve zero Lie products.
Since every semilinear map on L lifts to one on L, we need to find
all the bijective semilinear maps f on L with the properties that
f(E) = E, and [f(x), f(y)] e E whenever [x, y] e E. We say that such
a map preserves zero Lie products (modi?).

THEOREM II. Let D be a finite-dimensional associative division
algebra over a field k, and V a left vector space of finite dimension
n over D. Let A be the algebra L{ V) of all linear transformations
on V, and S the set of all central homotheties on V. Suppose L is
a k-subspace of A containing [A, A\ and E a k-subspace of L Π S.
Assume that n ^ 3. // n = 4 and D is commutative of characteristic
2, assume that EφS or Lφ [A, A]. If n = 3, assume that L Φ [A, A],
and that D does not contain an element a such that dimfc CD{a) —
(1/2) dimfc D. If f is a bijective map on L which is semilinear with
respect to an automorphism μ of k, such that f preserves zero Lie
products (mod E), then one of the following holds.

(1) μ can be extended to an automorphism σ of D, and there
exist a bijective σ-semilinear transformation h on Vy a nonzero
element s of S, and a μ-semilinear map r: L —> S, such that

f(x) — hxsh"1 + r(x) ,

for all x eL.
(2 ) μ can be extended to an anti-automorphism σ of D, and

there exist a bijective σ-semilinear map h of the dual space V onto
V, a nonzero element s of S, and a μ-semilinear map r: L —> S, such
that

f(x) - h{xs)rh~ι + r(x) ,

for all xeL, where (xs)r denotes the adjoint of xs.

Proof. Identifying A with [/(x) V, where U is the dual space
V'f we shall apply Theorem I. Since the trace map induces an iso-
morphism of A/[A, A] with D/[D, D], we have
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L = {xeA\trxeC/[D, D]} ,

where C is a Λ -subspace of D containing [D, D], We note that S is
a 1-dimensional Z(J9)-subspace of A containing no elements of rank
1 or 2, and that S contains an element of rank 3 only when n — 3,
in which case C contains [D, D] properly, since L Φ [A, A], We need
to determine the structure of /(#), where x has rank 1.

For any element x of L7 we let C(x) denote the centralizer of
x in A, and c(x) — dim, C(x), as in § 2. Also set

CL(x) = C(x) ίΊ L , cL(x) = dim, CL(x) ,

C*(x) = {yeL\[x,y]eE) , c*(x) = dim,C*(x) .

Let d — dim, D, c = dimfc C, e — dim, J5. Then c S d, and e ^
dim, Z(D) ̂  d. Since A/L is isomorphic with D/C (as &-vector spaces),
we have

c(x) — d + c ̂  cz(x) ^ c(x) .

The map 2/ —> [#, ?/] is a ^-linear map of C*(α?) into E, with kernel
CL(ίc), so that

cL(x) ^ c*(α;) ̂  cL(x) + β .

Thus, we have

c(x) — d + c ̂  c*(cc) ̂  φ θ + e .

The condition that / preserves zero Lie products (modi?) implies
that /(C*(a))£C*(/(aO), so that c*(a) ^ c*(f(x)). From the last in-
equalities we get

c{x) - d + c ̂  c(/W) + e .

Now suppose that x e L Π S, so that α? is a central homothety, and
c(a ) = dn2. Then,

c(/(α)) ^ r f ^ - d + c - e ^ d(n2 - 2) .

By Proposition 8, f(x) eL Π S. Since / is injective and L Π S is a
fc-subspace of L, /(L Π iS) = L Π S.

Next suppose cc has rank 1. By what we have just proved, f(x)
is not a central homothety. Now, c(x) = d(n — I)2 + άimkCD(β)9 for
some element β of D. Note that dim, CD(β) ^ dim, Z(Z?) ̂  β. Then,

) έ d{n2 -2n) + c + (dim, C /̂3) - e) .

By Proposition 8, and our assumptions for the case n = 3, /(a?) is
the sum of a central homothety and a linear transformation of rank
1, except possibly when n — 4, c — 0, and dim, CD(β) — β. In the latter
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case, D is commutative, since C contains [D, D], and so CD(β) •= D.
Then e = d, so that E = S. Also, L = [A, A], since C = [D, D].
Since S £ L, every homothety has trace 0, so that the characteristic
of k must be 2. This case is ruled out by hypothesis.

We can now apply Theorem I, with V = V19 and U — U1= F',
the dual space of F.

Cases (i) and (ii) of Theorem I do not hold, since / is assumed
to be bijective. Suppose case (iii) of Theorem I holds. Then μ can
be extended to an automorphism σ of D, and there exist a bijective
σ-semilinear transformation h on F, a bijective tf^-semilinear trans-
formation g on V, and a μ-semilinear map r: L —> S, such that

fix) = fcct# + r(a?) ,

for all x e L. (Here g is the adjoint of the map denoted g in Theorem

I (iϋ).)
Let W be any 1-dimensional subspace of Vf H any hyperplane

of V containing W. Let X be a hyperplane of F containing both
W and flr(fe(W)). Let x be a linear transformation on V with kernel
X and image W, and 2/ a linear transformation on F with kernel
H and image W. Then x and 7/ have rank 1, and lie in L since
they have zero trace. Since xy — yx = 0, and / preserves zero Lie
products (mod E),

[hxg,hyg] = [f(x),f(x)]eE.

Since hxg and hyg have rank 1, the left side has rank at most 2.
Since E contains no nonzero elements of rank less than n, we have
[hxg, hyg] = 0. Since g(h(W)) Q X, hxghyg = 0. Thus hyghxg = 0,
so that yghx = 0, since g and h are bijective. Hence, g(h{W))ζ^H.
Since W is the intersection of all hyperplanes H which contain it,
gihiW)) = W. Since gh is linear, this implies that gh = s, where s
is a nonzero central homothety. Then g = sh~\ so that case (1) of
Theorem II holds.

Finally suppose case (iv) of Theorem I holds. Then μ can be
extended to an anti-automorphism σ of D, and there exist a bijective
σ-semilinear map h of the dual space V onto F, a bijective σ1-
semilinear map g of V onto V', and a μ-semilinear map r: L-* S such
that

fix) = hx'g + r(cc) ,

for all xeL, where x' is the adjoint of x. (Here g is the adjoint
of the map denoted g in Theorem I (iv).)

If x, y are elements of rank 1 in L such that [x, y] = 0, then,
as in the previous case, we see that
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[hx'g, hy'g] = [f(x\ f(y)] = 0 .

Taking adjoints, we see that [g'xh', gfyh'\ — 0. The same method as
before shows that h'g' — s, where δ is a nonzero central homothety.
Then gh = s', g — s'h~\ so that case (2) of Theorem II holds.

This completes the proof of Theorem II.

We remark that Pierce and Watkins obtained the case of Theo-
rem II when k — D, f is linear, L is the whole algebra L(F), and
E = 0 [6], extending the earlier paper [7] of Watkins, in which the
additional assumptions that k is algebraically closed and n ^ 4 were
made. Watkins also pointed out that the conclusion of the theorem
does not hold when n = 2. When n = 3, 4, the cases not covered
by the theorem remain open.

If s is a central homothety, then the map x —> xs is an element
of the centroid of the Lie algebra A. In case (1) of the theorem,
the map x —> hxh~ι is a semilinear automorphism of A) and in case
(2), the map x —> hx'h~ι is a semilinear anti-automorphism of A. It
is not clear that L is always invariant under these maps. How-
ever, this is so in the case L = [A, A], We obtain the following
result.

COROLLARY 9. Let A be a finite-dimensional simple associative
algebra over a field k, such that A can be written as the direct sum
of A nonzero right ideals. If k has characteristic 2, assume further
that the dimension of A over its center Z{A) is greater than 16.
Let L be the simple Lie algebra [A, A]/[A, A] f] Z(A) associated with
A. Then every bijective semilinear map on L which preserves zero
Lie products is the product of an element of the unit group of the
centroid of L with a semilinear automorphism or anti-automorphism
of L.
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