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MONODROMY AND INVARIANTS OF
ELLIPTIC SURFACES

PETER F. STILLER

The purpose of this research is to analyze and compute
the monodromy representation of the Gauss Manin connection
associated with an elliptic surface and to relate properties of
the monodromy to geometric properties of the surface. The
results utilize the general theory of elliptic surfaces due to
Eodaira.

Let E be an elliptic surface having a global section over its base
curve X. We assume throughout that the functional invariant ^
is nonconstant and that E has no exceptional curves of the first kind
in the fibres. We denote by G the homological invariant of E/X.
On a Zariski open subset XoczX, G can be viewed as either a locally
constant Zξ&Z sheaf or as a representation πy{X^ —»SL2(Z). This
representation corresponds to an algebraic vector bundle of rank two
on X together with an integrable algebraic connection having regular
singular points (Deligne [1], Griffiths [2]), which is known as the
Gauss-Manin connection (Katz and Oda [4]). It can be expressed as
a second order algebraic differential equation on X having regular
singular points. The explicit form of this equation that we shall
make use of appears in Stiller [12].

We begin with a brief section of preliminaries, recalling some
previous results which relate the geometry of the elliptic surfaces
over X to properties of the corresponding differential equations (in-
equations, see Stiller [12]).

The first section describes a period mapping from the base curve
X to the modular curve MΓ where ΓcSL2(Z) is the global monodromy
group of both E/X and the differential equation. Also we give a
number of conditions under which Γ — SL2(Z) (see also § 3). When
Γ = SL2(Z) the group of i£(X)-rational division points on the generic
fibre (which is an elliptic curve over K(X) the function field of the
base curve X) is zero.

In section two we examine a number of invariants of E/X such
as the Picard number, the valence of the functional invariant ^f,
the index of the monodromy group Γ in SL2(Z), and other numerical
invariants to determine their behavior when we pass to a generi-
cally isogeneous surface over X. The main results are that all of
these invariants remain unchanged under generic isogeny! We will
utilize the fact that in this case the differential equation does not
change (Stiller [12]).
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We finish by giving a method for determining the monodromy
representation and computing several examples which illustrate the
results.

O* Preliminaries* Let X be a complete smooth connected curve
over C with function field denoted by K(X). After fixing a parameter
x € K(X), consider an algebraic differential equation on X

dx2 dx

with P and Q in K(X) and / an unknown function.

DEFINITION 0.1. Λf = 0 is called a ϋC-equation if it possesses two
solutions, ωx and ω2, which are holomorphic nonvanishing multivalued
functions on some Zariski open subset Xo of X, satisfying:

(i) ωλ and ω2 form a basis of solutions,

(ii) for every closed path 7 e πΊ(-Xo) the analytic continuation of

(ωi) around 7 is Mr\fΛ with Mr e SL2(Z) (the monodromy represen-

tation),
(iii) Im(ωjω2) > 0 on Xo (positivity).

Such a pair of solutions is called a iΓ-basis. In addition, since the

monodromy is in SL2(Z), the Wronskian W — exp ί — I Pdx) is single-

valued. We assume as part of our definition:
(iv) WeK(X).

Let Λf = 0 be a iΓ-equation with iΓ-basis ω1 and ω2. Consider
the function ^ = Joωjω29

ω1/ω2 g, J -̂

where J is the elliptic modular function on the upper half plane £>.
This J" is a single-valued holomorphic function on Xo c X.

PROPOSITION 0.2.

We now determine all inequations. Fix a iΓ-equation Λf = 0 on
X with if-basis ω19 ω2 such that ^f = J(ωjω2). Say

Λ f ξ ζ + P ψ + Q f θ .
ax" ax

THEOREM 0.3. There exists an algebraic function X on X with
X2 e K(X) such that
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dx
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This is known as the if-equation Au-tλ).

It is shown in Stiller [12] that if-equations are precisely those
differential equations which arise naturally as the Gauss-Manin con-
nexions associated to elliptic surfaces.

One can directly compute the local behavior of the solutions at
the singularities of the differential equation (Ince [3], Picard [7]).
The local monodromy matrix corresponds with the marix associated
to the particular type of singular fibre of the elliptic surface; see
Kodaira's list in Kodaira [5]. The reader unfamiliar with the relation
between representations and differential equations, and the local prop-
erties of differential equations with regular singularities can consult
Poincare [8], Deligne [1], or Griffiths [2], The only terminology that
we employ which is not standard is that we refer to a singular point
as cosingular if the solutions are single-valued meromorphic functions
in a neighborhood of the point.

Given a if-equation A on X with if-basis ω19 ω2 one can construct
a basic elliptic surface E over X with functional invariant ^ —
J(ωjω2) and homological invariant corresponding to the monodromy
representation of A using the basis ωly ω2. There is no unique if-
equation associated to a given elliptic surface E/X and conversely a
given if-equation may produce several surfaces for different choices
of if-bases. However any other surface E'/X produced from the
same if-equation A via a different if-basis will be generically iso-
geneous to E, i.e., there will exist a rational map φ: E-*Ef over X
which over a Zariski open set Xo c X will be a fibre by fibre isogeny.
The converse also holds:

THEOREM 0.4. (Stiller [12].) Let E, E' be basic elliptic surfaces
over X which are generically isogeneous, then there is one K-equation
A with two K-bases ωu ω2 and ω[, ω2 such that E can be constructed
from A, ωlf ω2J and E* can be constructed from A, ω[, ω2. Moreover
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since both o)l9 co2 and a)[, o)2 form bases of solutions for A they are
related by a constant matrix which is forced to be in GLJ(Q) as both
are K-bases.

Thus if E, Ef are generically isogeneous we have

MΓM-1 = Γ

where Me GLί(Q) and Γ9 Γr e SL2(Z) are the global monodromy groups
of E, Ef respectively. Of course if M e SL2(Z) or scalar then E = E'.

In this way information about the entire isogeny class (of the
generic fibre) is fixed in one differential equation. Any invariants
which depend only on the differential equation are then the same for
members of a given isogeny class. It is this idea that we shall
pursue.

1* The monodromy* Let X be a complete smooth curve over
the field of complex numbers C, and let 4 / = 0 b e a iΓ-equation on
X with a i£-basis of solutions ωί9 ω2. By definition ω19 ω2 are holo-
morphic nonvanishing multivalued functions on a Zariski open subset
Xo C X with Im ((θj(t)2) > 0 on I o and SL2(Z) monodromy. From ωί9 ω2

we obtain a commutative diagram:

where
( i ) Xo is the universal cover of XQ.
(ii) ξ>~ is the upper-half-plane minus the PSL2(Z) orbits of a

finite set of points.
(iii) J is the elliptic modular function.
(iv) ^ — JoQ)Jω2 (see §0, Proposition 0.2).
(v) Γ c PSL2(Z) is the protective monodromy of A, ωlf ω2. Note

that Γ has finite index in PSL2(Z) (Stiller [12]).
(vi) £>~/PSL2(Z) is Pc minus a finite set of points.

Two remarks are in order. First, we will take Xo small enough to
insure that A will be holomorphic on Xo. Then neither ωt nor ω2
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vanish on Xo and also the Wronskian W = β)^ — o)2ω[ —

expί — \Pdx) will be nonvanishing. Thus the map

will be locally biholomorphic. Moreover it will be onto &~ where we
have removed the PSL2(Z) orbits of a finite set of points (Stiller [12]).
In fact it will be enough to remove the points where ^J? = 0, 1, °°,
χ2 = o, oo, or ordd^ Φ 0. From the explicit form of the equation
(see § 0, Theorem 0.3) one sees that choice of derivation d/dx does
not effect the map (1.1). Our second remark is that the triple A, ωlf ω2

corresponds to a unique basic elliptic surface E over X with func-
tional invariant ^ and homological invariant G given by the mono-
dromy representation of A for the basis o)lf ω2. Moreover, if Λ', ω[f ω[
also gives rise to E over X then there is a g e K{X) such that Λr =
Λg = ΛUtgλ) where A = A{J}λ) (see §0, Theorem 0.3) and ω[ = gωt up
to the action of SL2(Z) changing bases. Thus the map (1.1) depends
only on E/X.

DEFINITION 1.1. The map X0—>ξ)~/Γ will be called the period
map.

THEOREM 2.1. The period map Xo—>$~/Γ is algebraic and ex-
tends to a regular map X —» Mj where Mγ is the modular curve ξ>*/Γ
and where £>* = § U {Q}.

Proof. Let x e X — Xo. Choose a disc about x in X with local
parameter t and select branches of ω19 ω2 single-valued in a fixed
sector of the disc. Now because A has regular singular points there
is an integer N such that tNωλ\ω2 remains bounded as t —•> 0 in the
sector. It follows easily from this pole-like behavior that the map
is algebraic and it must extend as both X and Mr are complete
smooth curves.

Note that if the corresponding elliptic surface E/X has a singular
fibre at x e X — Xo of type Ib or Iδ* b >̂ 1 then the local monodromy
of A will be parabolic and x will map to a cusp, and for types II,
II*, III, IIP, IV, IV* x will map to an elliptic point. The only other

possibility is local monodromy ± ( Q j ) which yields some noncusp.

(See Kodaira [5] for a description of these fibre types.)
From the commutative diagram above we can obtain immediate

results:
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PROPOSITION 1.3. [PSL2(Z): Γ]\ valence ^f', that is, the index of
the projective monodromy group divides the valence of

Proof. Obvious.

REMARK. Using the formulas for the numerical invariants of a
basic surface (Kodaira [6]), one can show, for example, that if E/Ph
is a K3 surface then valence ^f <; 24. It follows that the monodromy
has index <; 48. This in turn limits the nature of the Jf(X)-rational
torsion on Esen as an elliptic curve over K(X).

THEOREM 1.4. Suppose Xo >̂ £r/PSL2(Z) (or X^Pί) is abelian
Galois with no 2 or 3 torsion. Then Γ = PSL2(Z).

Proof. Under the hypotheses of the theorem, a standard fact in
the theory of modular functions gives Γ normal in PSL2(Z). We have

PSL2(Z)/Γ — ^ Abelian group with no

2 or 3 torsion

PSL2(Z)/Γ A

where Δ is the commutator subgroup of PSL?(Z). But PSL2(Z)/J
surjects on PSL2(Z)/f J and ίf^PSL^Z), Z) = PSL2(Z)/J is Z2 x Z8.
Thus * is the zero map and Γ = PSL2(Z).

Now suppose we have a basic surface E/X. Assume the projec-
tive monodromy group of E/X is all of PSL2(Z).

THEOREM 1.5. Let X->X be any abelian Galois extension of X
with no 2 or 3 torsion. Then the projective monodromy of E =
E x XX (minimal smooth model/X) is also PSL2(Z).

Proof. After removing a suitable set of points from both X and

X we have

EQ > Eo

i i
XQ * -^o

with Xo -^ Xo etale Galois (thereby a covering may). Then

TΓ.do) >—> πάXo) - — PSL2(Z) ,

with πλ(XQ) normal in πλ(X^ and the image of πλ(X0) = Γ, the monodromy
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of EQ, also normal in PSL2(Z). So

On the other hand, π^X^/π^X,) == Gal (Xo/Xo). Thus PSL2(Z)/f is abelian
with no 2 or 3 torsion and as above we conclude Γ — PSL2(Z).

THEOREM 1.6. Let E/X be an elliptic surface over X with func-

tional invariant ^f'. Suppose X —> Pc exhibits X as a solvable Galois
extension which admits a tower having no 2 or 3 torsion. Then the
projective monodromy of E/X is all of PSL2(Z).

Proof. Clear.

REMARK. Clearly Γ = PSL2(Z) if and only if the monodromy
Γ = SL2(Z). Thus Γ = SL2(Z) in all the above results.

COROLLARY 1.7. If the monodromy is all of SL2(Z), as it is in
the above cases, the generic fibre EseΏ/K(X) as an elliptic curve over
K(X) has no nonzero K(X)-rational division points.

Proof See Stiller [12].

Let E/X be a basic surface. The homological invariant is a locally
constant ZφZ sheaf on some X0—>X Zariski open. Let xoeXo be
a base point. We can interpret the homological invariant as an ac-
tion of G = πL(XOf xQ) on H\EH, Z) = A{= Z@ Z) where EXo is the
fibre over xQ. Thus there is a map

and A is naturally a ZG-module.

Or

THEOREM 1.8. Let A(g)zC~ H\EXQ, C) - V. Now G -> Autc (F),
so V is a CG-module. We claim V is a simple CG-module, i.e., the
representation is irreducible.

Proof. Say H c V is a one dimensional invariant subspace. Thus
V has a basis where the representation takes the form

_0 *_

Now V also has an underlying Z-structure so that the representation
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may be taken into SL2(Z). Hence there is an ikf eGL2(C) conjugating
one form to the other. An easy computation shows that in SL2(Z)
we could get only parabolic elements fixing ί°° (assuming we normalize

so ± Q ̂  , n > 0 is in the monodromy group Γ a SL2(Z). This

contradicts Γ c SL2(Z) of finite index.

We now consider when A is simple as a ZG-modxήe. It is easy
to see that A has no G-in variant subgroups of rank 1. However
suppose we have H gΞ A a G-invariant subgroup of rank 2. Obviously
upon tensor ing with Q we have H0zQ = A(x)zQ. If we view A as
Zω1 + Zω2, ωif ω2 a lattice for EH, then H corresponds to an invariant
sublattice and clearly gives rise to another if-basis for our if-equa-
tion A which is not Z-equivalent to o)19 ω2 i.e., the new basis o)[, ω2

is not a scalar or SL2(Z) combination of co19 co2. This new basis for
Λ determines another elliptic surface E'/X whose generic fibre wτill
be isogeneous to that of EjX. Conversely every elliptic surface E'jX
which is generically isogeneous to E/X over K(X) arise out of another
if-basis for A. (See Stiller [12] and the remarks in §0.)

2. Invariants. Let E and Ef be two elliptic surfaces over a
common base curve X with function field denoted K(X). We shall
assume as before that both E and E' have nonconstant functional
invariant, admit a section over X, and that they are free of excep-
tional curves of the first kind in the fibres. The section corresponds
to a iΓ(X)-rational point on the generic fibre Egen, £" g e n. In this way
£ s e n , E'gen can be viewed as elliptic curves/iί(X).

DEFINITION 2.1. E and Ef are said to be generically isogeneous
over X if the genetic fibres of E and Ef are isogeneous over K(X).

One should note that this definition is equivalent to the existence
of a rational map

E

X

which over a Zariski open subset of X is a regular fibre isogeny.
Such a map need not extend to all of E as examples show (see §3).
Assume E and Ef are generically isogeneous and let φ be the above
rational map. Choose Xo Zariski-open in X so that Eo — π~\X0) and
Eό = π'-~χXo) contain no degenerate fibre and so that
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ψ\E0: Eo > E^

\ /
\ /

is a regular fibre by fibre isogeny. Let Do and Do be the Gauss-
Manin connexion (Katz and Oda [4]):

A : HUEo/Xo) > Ω\-0/c ®,XQ/C HhB(E0/X0)

etc. for Do> where HkR is the first hyper derived functor of direct
image applied to Ω'EQ/XQ9 the relative algebraic DeRham complex. Note

Hhn(E0/X0) = Kιπ*(C)

Thus we have two flat vector bundles of rank two on Xo.

THEOREM 2.2. E and Er\ are generically isogeneous if and only
if the resulting flat vector bundles are isomorphic.

Proof. See Stiller [12].

This flat bundle can be represented by a second order algebraic
differential equation X

<EL + pAL + Qf = o
dx2 dx

where P, Q e K(X) and x e K(X) nonconstant. The resulting differ-
ential equation will be a if-equation Λ. However, it will possess two
2Γ-bases ω19 ω2 and ω[, ω[ such that E will be the surface associated
to ft)J? ω2 and Er to ω[, ω[. Thus the functional invariant ^ of E will
be J(ωjω2) and £/

rt of E will be J{ω[\ωf^), J the elliptic modular
function. Moreover the homological invariants of E, E' will cor-
respond to the monodromy representations given by ωl9 ω2 and ω[, ω[
respectively. Since both ωu ω2 and ω[, ωr

2 are bases of solutions of
the same differential equation the representations are complex equiva-
lent. However they will not be equivalent over SL2(Z). It can be
shown (Stiller [12]) that there exists ΛfeGL2

+(Q) such that

M(ωjω2) = (ω'Jω'2) .

Of course if M is in SL2(Z) or scalar then we will have E ~ E'.

THEOREM 2.3. If E and Ef are generally isogeneous over X then
the period maps commute, that is there exists a regular map Ψ such
that the diagram
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%+/PSL«(Z)

commutes. Here § + is the upper-half-plane union the appropriate
cusps and Γ, Γf are the projective monodromy groups in PSL2(Z) of
E and Ef respectively.

Proof. Let p: πx{XQ) -> SL2(Z) and pf: πλ{XQ) -> SL2(Z) be the
monodromy representations (homological invariants) of E and Ef

respectively. For yeπ^Xo) we have

for some MeGLtiQ). We have

where φ~ is the upper-half-plane minus a finite number of SL2(Z)
orbits, map £~ to £>~ by τ —> Mr. It is easy to check that this
descends to a well-defined map

since MΓMr1 = /". It then follows that the diagram commutes.

Note that Ψ is an isomorphism of Riemann surfaces Mγ and Mf/.
Thus:

COROLLARY 2.4. Γ/ιe global projective monodromy groups must
have the same index if E and Ef are generically isogeneous i.e.,
[PSL2(Z): Γ] = [PSL2(Z): f ' ] .

COROLLARY 2.5. // JE/ and E' are generically isogeneous then the
functional invariants ^ and ^ff have the same valence, that is
the same number of poles.
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THEOREM 2.6. // E and E1 are generically isogeneous then all
the bettί numbers bi i = 0, , 4, the geometric genus pg and the ir-
regularity q of E and Ef are the same.

Proof. We appeal to the formulas of Kodaira [6] and general
relationships among the numerical invariants. Let g be the genus
of X then δx = 63 = 2q = 2g and bQ = b4 — 1. So only pg and b2 are
of interest; and quality between one of these for E and Er implies
equality for the other. Recall Kodaira's formula (Kodaira [6]):

- μ + 6 Σ v(Ib*)

+ 9i;(ΠP) + 4v(IV) + 8i;(IV*) ,

where pa is the arithmetic genus of the surface, v(T) is the number
of singular fibres of type T (for types see Kodaira's list in Kodaira
[5]), and μ is the valence of the functional invariant. As pa =
pg — q it will be enough to show that the sum on the right hand
side is invariant under genetic isogeny. By Corollary 2.5 above μ
is invariant. Now each fibre type has an associated matrix in SL2(Z)
which represents the local monodromy up to conjugation in SL2(Z).
For example,

/I b\
Ib [o l) b > 0

-1 - 5 \

o - l ] δ > 0

- 1 0\

0 - l j '

Since E and E' are generically isogeneous, the local monodromy at
x e X of either E or Ef is GL2(C)-equivalent to the local monodromy
for A. Thus trace is preserved and it follows that Σ&^o^(/*) is pre-
served as is Σδfcî (Λ) Note that the actual fibre type may not be
preserved (see examples §3 where type I2 becomes 74 etc.). Of course
type Jo* is preserved. In all of the remaining cases the type will be
preserved. For example trace considerations show that a fibre of
type II on E must correspond to one of type II or II* on E'. In
order for the type to change there would have to be a matrix N —

in GL2

+(Q) with

But this forces a = —d and b — a — c. Thus det N = —a2 — b2 + ab =
-(a2 - ab + b2) = ~((α - 1/2b)2 + 3/4δ2) £ 0 a contradiction. The



444 PETER F. STILLER

same sort of calculation shows I P , III, IIP, IV, IV* are preserved.
Thus the entire sum is preserved as we desired to show.

Lastly we wish to investigate the Picard numbers p and p' of
E and E'. Recall that p is the rank of the Neron-Severi group which
is the group of divisors modulo algebraic equivalence.

THEOREM 2.7. // E and Ef are generίcally isogeneous then their
Picard numbers p, pf are equal.

Proof. We make use of a formula appearing in Shioda [11]

p = r + 2 + Σ (m, - 1) .

Here p is the Picard number, r is rank of the group of UL(X)-rational
points of the generic fibre Esen, £" g e n which is an elliptic curve over
K(X), and mυ is the number of irreducible components of the fibres
where v runs over the singular fibres. Since E and Er are generically
isogeneous r is preserved. As we observed in Theorem 2.6 all fibre
types are preserved except possibly Ib, I* b ^ 1. Now a fibre of type
Ib b >̂ 1 has 6 components and a fibre of type J* 6 ^ 1 has 6 + 4. Let
bv be the indices of the type Ibv that occur as v runs over the singular
fibres and 6* the indices of the type Iζ. Now Σ A + Σ» δ * is μ the
valence of the functional invariant which is preserved. Also the
number of type Ib and the number of type I* are fixed by trace
considerations.

We are interested in the invariance of the sum ^vmv — 1 where
v runs only over singular fibres of types Ib, I* b ^ 1. This becomes

Σm, - 1 + Σ < ~ 1
V V*

where v runs over types Ib b ^ 1 and v* runs over types If. By
our remarks above this is

Σ&. - i + Σ((&* + 4) - l) = Σ & . + Σ&* - ΣiV(ib) +

Now μ is the valence of the functional invariant and so invariant by
Corollary 2.5 and the sums are invariant by trace considerations.

Thus the Picard number is invariant.

Again, we remark that under generic isogeny fibre types need
not be preserved—see example in §3.

3* Computing monodromy and examples* Let X be a com-
plete smooth curve/C with function field C(z, w). Here w is given as
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an algebraic function of z by an irreducible polynomial
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(3.1) wn + + ao(z) = 0 , at(z) e C(z) .

Our purpose will be to give a method for computing the monodromy
of a basic surface E/X with functional invariant ^ = z. We begin
with the SiΓ-case, i.e., λ = 1.

Let T = K = o°, z2 = 0, z3 = 1, z4, , 2m} be the branch points
of (3.1) on the ^-sphere including ooy 0, 1. Pick a base point 20 and
another point z*; letting Γ* = Γ U {z*}. We suppose given slits Z^
from 2;* to zi9 i = 1, , m. Each slit has "two sides" A,, Z^ oriented
to run from z* to ^̂  with Bt being the side which maintains the
sphere to the left. So BxA±lB.Aΐ1 BmA^ is positively oriented
closed curve about z0 on the sphere.

Let wlf - - , wn be n distinct function elements at z0 of w. Assume
given permutations πl9 , πm of {1, , n) where analytic continua-
tion of wk across L5 from Bό to Aά leads to wπ.{k). Consider the
free group Π on πu , πm, and fix a function element say wλ at 2;0.
Let Xo = X - {all points over T*}.

Now we look at the ^-sphere less T*.

(3.3)
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We can slit the z-sphere from 0 to co and 0 to 1 so that the differ-
ential equation

d2f 1 df ((31/144)^-1/36). _ Q

dz2 z dz z\z - I)2

has single-valued solutions on the remaining part of the ^-sphere.
Further we can select a branch so that the monodromy across the

slits is (Q -J j or ί * Λ as indicated:

X

(1 1\ 0 / 0 1\ 1
vo lj V-i o;

The above choices for Li9 Ai9 Bif z09 z* and the slits above can
all be made so that the picture becomes:

Let ΠWl c Π be all words y such that l γ = 1, i.e., the isotropy of 1
under the action of 77 on {1, , n}. (Note πγ πm acts like the
identity.) Now let xλ xr be the points of X over T* i.e., X — Xo =
{xu '- ,xr}. Choose words yu * , τ r and Cl9 —'9Cg, D19 •• ,A 7 in
the π/s which lie in ΠWl and represent a basis for TΓ^XQ, WJZQ).

Thus 7i represents a simple loop about x^ Cu D/s are various cycles
and as permutations

Π C.D&'Di1 Π 7* = identity .
i=l i=l

THEOREM 3.1. We can select a K = basis of solutions colf ω2 of
our SK-equation on X at wjzo so that ^ — J(a)ί/ω2) and if Ίiy Ci9 Dt

is πε/ω - 7ϋef(q)9 Si = ± 1 , fU) e{l, , m}, as a word, then the mono-
dromy matrix for ωlf ω2 is:

(_\ J) = (J -iχ_J J), * = (_« J).
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Proof. Obvious. Essentially we have pulled our single-valued
branch of the solutions back to a single-valued branch on X minus
some slits:

We are also able to keep track of how these solutions of our SK-
equation change as we cross a slit.

Now adding λ to get the general ϋΓ-equation amounts to changing
sign around a path if λ changes sign.

We now apply this and/or similar techniques to calculate certain
global monodromy representations. Let us work on the ^-sphere,
taking ^ = 1/(1 - znk). We take the Sif-case so that the only
singular fibres are of type /x at the 12&-roots of 1. Note J? = 0
at z = oo and ^f = 1 at z = 0 but the fibres are good. On Ph — {°°}
the family is

n.i _ 4^3 _ 27 27

Note this appears to be bad at z = 0 but taking

g = ^- then ^ = 8 and *"-f£-= a* .

So

also describes the family (Sasai [10]). As usual we take a single-
valued branch on the ^^-sphere and lift:

(0 - l\ o l /O - l\

As J" = 1/(1 - z12*), the path from 0 to co in the ^f-plane lifts to
the radial lines from oo to a 12&-root of unity, and the path from
1 to oo lifts to the radial lines from 0 to a 12fc-root of unity. The
picture is shown on the following page.
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Pick a base point x as marked above. Let 7i
pictured. Then the representation is given by

o Y -x
- 1 0/\l 1

0 -1W 0 1
1 l / \ - l 0/

/I 1

\0 1

1 0

1 1

2Λ be the loops

Ύ1 2n

1 1

0 1
1 0
1 I

_L J.

(The reader will observe that this agrees with Sasai who obtains the
result in a different manner (Sasai [10]).)

We now consider the case of ΛiλtX) where ^ is unramified over
0, 1, oo, i.e., X~>Pc is unramified over 0, 1, co. This is in some
sense the general case. The reader should have no trouble seeing:

THEOREM 3.2. Let X be any curve and E/X any elliptic surface
with functional invariant ^ unramified over 0, 1, oo. Then the
global monodromy group Γ c SL2(Z) is in fact SL2(Z).

The reader should refer to Corollary 1.7 which shows that such
an E/X then has no iΓ(X)-rational division point on the generic fibre.
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Further, as is obvious, one can choose cycles on X so that the mono-

dromy *s (Q i ) around all cycles.

We present an example which will give us a case where the
isogeny phenomenon occurs. (See Ince [3] for details on differential
equations with regular singular points, local monodromy, exponents,
etc.) Let

~ _ 4 (1 - z + z2)3

^ 27 z\l - z)2

on the 2-sphere. ^ has a double pole at 0, 1, ©o, a triple zero at

e2πi/β a n ( j e-2πi/β^ a n ( j a double one at —1, 2, 1/2. An easy calculation
yields that the SiΓ-equation for this ^ has exponents ±1/2 at e2πi/β,

e-2πi/6 a n d y2, 3/2 at - 1 , 2, 1/2. At 0, 1, oo the exponents are 0, 0.
Let λ2 have divisor:

l(oo) + l(e2πm) + l(e-2πm) - 1(-1) - 1(2) - 1(1/2) .

The differential equation Aκ/yλ) with λ, ^f as above is holomorphic
at e2πm, e~2πi/\ - 1 , 2, 1/2 with exponents 0, 0 at 0 and 1 and exponents
1/2, 1/2 at oo. The equation is therefore the hypergeometric equation:

<i.i) + ( +

dz2 \z z — V dz ( )

which is that for 2^(1/2, 1/2; 1; z). The group is easily seen to be

Γ(2) in either case (with or without λ). Recall Γ(2) = jifcΓ e SL2(Z)

M Ξ (o I ) m o d 2 } L e t Γo(4) = {Me S L * ( Z ) M = (o *) m o d 4 }
Both Γ(2) and Γ0(4) are of index 6 in SL2(Z) and (-1/2 J)/X2)({j J) =

Γ0(4). As above take

χ „ 4 (1 - z + s2)3

^ 27 ^2(1 - ^)2

but instead take

λ 2 -

The iΓ-equation A = ^ ( j / > ; ) has global group Γ(2). The fibres are:

at co type I2 at —1 type ϊξ

at 0 type I2 at 2 type Io*

at 1 type I2 at 1/2 type I*

also the valence of ^ is 6. Applying the well-known formulas
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(Kodaira [12]) yields pa = 1, pg = 1, q = 0, that is, the surface E/X
(functional invariant ^) is KZ. We need to compute the global
representation. We first compute the monodromy of Equation (1.1).
We consider the usual fundamental domain for Γ(2);

* ̂ co

- 1 0

The Legendre function λ maps this region to the ^-sphere with
χ(ioo) —> 0, λ(l) —> oo, Λι(θ) -» 1 sending the imaginary axis ioo to 0 to
the slit 0 to 1 on the real axis, the arc 0 to 1 to the slit 1 to ^ on
the real axis, and finally the line Rer = 1 from 1 to ioo to the imagi-
nary axis oo to 0 (Robert [9]). Thus if we slit the ^-sphere along
the negative real axis and from 1 to co, we will be able to find a
branch of the quotient of solutions with values in this fundamental
domain. Continuation across the slit is obviously

-t- -t-
-2\ 0

)
(1 -2\
Vo i)

10\
-2i;

The trace is 2 (not —2) in both cases as the exponents at 0 and 1
are 0, 0. Choosing basis:

yields the representation

To
1 2

0 1

1 0

- 2 1

1 0W1

2 lΛo

- 2

1

1 - 2

2 - 3
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and (J i)(_2 l)Q -J) = (o l)' T h i s i s t h e m o n o d r o m y o f ϊ
tion (1.1). Note at oo the exponents are 1/2, 1/2 which corresponds

2 — 3/ Finally putting in λ (not to be confused
with Legendre's λ above) gives

7o

7-1, 72, 7i/2 '

1 2

0 1

1 0

- 2 1

- 1 2

- 2 3

- 1 0

0 - 1

which is the desired representation where the basis is:

Now if ωu α>2 is the Z-basis of A — Λ^Λ giving this representation

(jr = J(a>jωj)f then because fijf JV(2)(Q J) C SL2(Z) we have

( ώ ) = ( 0 l j ία)) a l s o a -^ '^ a s ' s ^^s n e w ' 3 a s i s sives another basic
elliptic surface E/X with representation:

- i , 72,

1 1

0 1

1 0

- 4 1

- 1 1

- 4

- 1

0

fibre type

fibre type /4

fibre type /2

fibre type Io*

Note valence ^ = J(ώi/ώ2) is 6. Thus E/X is also K3. We have a
map E -> J& of degree 2 which is a fibre by fibre isogeny almost
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everywhere. Further the map does not extend since the number of
irreducible components in the singular fibres do not agree. We remark
that this also proves that Esen (as well as Eeen) as an elliptic curve
over K(X) has a division point of order 2 rational over K(X).

The reader should note that when the monodromy is all of SL2(Z)
this isogeny phenomenon does not occur and we can conclude that
there are no iΓ(X)-rational division points on Esen and the isogeny
class of Esen over K(X) contains only ESG1\
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