
PACIFIC JOURNAL OF MATHEMATICS
Vol. 92, No. 2, 1981

OSCILLATION CRITERIA FOR GENERAL LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

TAKASI KUSANO AND MANABU NAITO

Lovelady has recently proved the following oscillation
theorem.

THEOREM. Let n ^ 4 be even and q: [α, oo) -> (0, oo) be con-

tinuous. If I tn~2q(t)dt < oo and the second order equation

is oscillatory, then the nth order equation

x(n) + q(t)x=0

is oscillatory.
In this paper the above theorem will be extended to a

class of differential equations of the form

pn{t) dt pn-Λt) dt dt Pi(t) dt po(t)

Let % ^ 4 be an even number, let pif 0 5Ξ i <^ n, and q be positive
continuous functions on [a, oo), and consider the linear differential
equation

( 1 ) Lnx + q(t)x = 0 ,

where Ln denotes the general disconjugate operator

/ o \ T 1 d 1 d d i d *
pn(t) dt pn-i(t) dt dt pλ(t) dt pQ(t)

We introduce the notation:

( 3 } D*(x; Po, ' f Py)(ί) = - ^ ^ ^ J - X ( ^ ; Po, , Py-i)(«) ,

l ^ i ^ n .

The differential operator Ln defined by (2) can then be rewritten as

L n = D n ( ; p O f •••, p n ) .

The domain S&(Ln) of L% is defined to be the set of all functions
x: [a, oo) —> R such that D3'(x; p0, , p3){t), 0 <. j ^ n, exist and are
continuous on [α, oo). By a solution of equation (1) we mean a func-
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tion xej2?(Ln) which satisfies (1) on [α, oo). A nontrivial solution
of (1) is called oscillatory if the set of its zeros is unbounded, and
it is called nonoscillatory otherwise. Equation (1) itself is said to
be oscillatory if all of its nontrivial solutions are oscillatory.

The study of the oscillatory behavior of higher-order ordinary
differential equations goes back to Kneser [12] and has received a
great deal of attention up to the present. For typical results on the
subject we refer to the papers [1, 2, 4-6, 8, 10, 11, 13, 14, 16, 18].

In what follows we are primarily interested in the situation in
which equation (1) is oscillatory. We have been motivated by the
observation that there are very few effective criteria for equation
(1) with general Ln to be oscillatory, though equation (1) and its
nonlinear analogue have been the object of intensive investigations
in recent years. The desired oscillation criterion is established in
§ 2. It generalizes an interesting oscillation theorem of Lovelady
[15] for the particular equation x{n) + q(t)x — 0.

l Preliminaries* We begin by formulating preparatory results
which are needed in proving the main theorem in the next section.

Let ik G {1, , n — 1}, 1 ^ k <̂  n — 1, and t, s e [α, oo). Gener-
alizing upon notation introduced by Willett [19], we define

h — 1 9
( 4 ) f*

h(t, s; pt , ph) = I pik(u)I}c^(uf s; piJc_l9 , ph)du .
J s

It is easy to verify that for 1 <Ξ k ^ n — 1

( 5 ) Ik(t, s; pikf , ph) = (-1)*JΛ(8, t; ph, , pik) ,

( 6 ) Ik(t, s; pik, , ph) = ^ ph{n)Ik^{t9 u; piJc, , pi2)du .

For convenience of notation we put

(7 ) Jt(t, s) = po(t)Ut, s;pl9 - , pt) , Ji(t) = Ji(t, a) ,

( 8 ) Kit, s) - pn(t)Ut, s; pn_lf , pn_t) , Kt(t) - K&, a) .

LEMMA 1. Ifxe £&{Ln), then for t, s e [α, oo) and 0<^ί<k^n-

D*(x; po, ', Pύ(t) - D%x; p0, , p4)(«)

= Σ (-ly-'D^x; Po, , Pi)(«)/i-i(β, t; pj9 , p<+1)

Ik_i(u, t;pk, ••-, pi+

x Dk+\x;pQ, - , pk+1)(u)du .
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This lemma is a generalization of Taylor's formula with remain-
der encountered in calculus. The proof is immediate.

LEMMA 2. // there exists an eventually positive function y e

n) satisfying

(10) Lny + q(Jt)y ^ 0

for all large t, then equation (1) has an eventually positive solution.

This lemma exhibits an important relationship between the dif-
ferential equation (1) and the differential inequality (10). For the
proof see Canturija [3].

In what follows we assume that

(11) Γ Pi(t)dt = <χ> for 1 ^ i ^ n - 1 .

The operator Ln satisfying condition (11) is said to be in canonical
form. It is known that any operator Ln of the form (2) can always
be represented in canonical form in an essentially unique way (see
Trench [17]).

LEMMA 3. Suppose (11) holds. If x e &(Ln) satisfies x(t)Lnx(t)<0
on [t0, co)? then there exist an odd integer I, 1 <Ξ I ^ n — 1, and a
tλ > t0 such that

(12) x(t)D*(x; p 0 , , pβ)(t) > 0 o n [ t l 9 - ) f o r 0 ^ j ^ l f

(13) (~iy-ιx(t)DS(x; po,- , Pά)(t) > 0 on [tlf - )

for I + 1 ^ j ^ n .

This lemma generalizes a well-known lemma of Kiguradze [9]
and can be proved similarly.

2* Main Result* The best oscillation theorem known to date
for equation (1) is the following theorem due to Trench [18].

THEOREM A. Suppose (11) holds. If

(14) J00 JUWn-UtMVdt - oo for i = 1, 3, , n - 1 ,

then equation (1) is oscillatory.

A question naturally arises as to what will happen when condi-
tion (14) is violated. In fact, Theorem A cannot cover an important
class of Euler's equations of the form
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(15) — ta+m ^-^- + cta~mx = 0 , t ^ 1 ,

where α and c > 0 are constants with a + m ^ 1, since in this case
the integrals appearing in (14) converge.

An answer to this question is given in the following theorem,
which reduces the oscillation of equation (1) to the oscillation of a
certain set of second order linear differential equations.

THEOREM B. Suppose n ^ 4, (11) holds, and the integrals in (14)
converge. Define

(16) qtt) = p%+1(f) j " J^u, t)Kn_Uu, t)q(u)du ,

(17) qn^(t) = pn_2{t) £ Jn_z(u, t)K0(u, t)q(u)du .

Then equation (1) is oscillatory if the second order equations

(18) j - -\-ψ+ + &(«)* = 0 , i = 1, 3, -., rc - 1 ,

are oscillatory.

Proof. Suppose x(t) is a nonoscillatory solution of (1). We may
suppose x(t) is eventually positive. Let ί0 ^ α be such that x(t) > 0
for ί ^ ί0. Lemma 3 implies that there exists an odd integer ϊ,
1 <: Z <; % ~ 1, such that (12) and (13) hold for t ^ ί1? provided ίx > ί0

is sufficiently large.
Suppose 1 ^ I <, n — 3. Then, from Lemma 1 applied to x(t)

with i = I + 1, k — n — 1 and s ^ ί ^ t1 it follows that

I_,_2(u, ί; p^ ! , , pι+2)pn(u)D\x; p0, , p j(

Using (12) and (13) in the above and letting s —> oo, we have

(19) -Dι+I(x;po, ••

i-ln, t; pn_u ", pι+2)q(u)x(u)du

for ί ^ *!. If i Ξ> 3, then using Lemma 1 again (with i ~ 0, k — Z — 2,
s = ίx and ί ^ ίx) and (5), we get
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D\x; po)(t) - D\x;

= Σ {-iYD'{x; po, , piMdlfa, ί; pif • , vd

t Iι-2(u, t; pι_2y , vdPi-.i(u)Dl-\x\ p0,

1-2

= Σ D>'(x; p0, , PjKQIjit, t,; pl9 , ^ )
5 = 1

S h
t Iι-2(u, t; p^29 , Pι)Pι-ι(u)Dι-ι{x; pQ, , p^

Thus in view of (12) we obtain

(20) D°(x; po)0O ^ I 7,_2(ί, %; p19 , Pι-2)Pι-i(u)Dι-\x; po,hi

for t ^ ίlβ Combining (19) with (20) yields

S oo

t Pn(^)L-ι-2(u, t; pn_l9 , Pι+2)Q

Iι-2(u, v;p19 , ί>z_2)Pί-i(/y)-Dι"1(ίκ; 2>o, , Pι-i)(v)dvdu

h

S oo

^ pn{u)h-ι-2(u, t; pn_lf , Pι+2)q(u)po(u)

ί-2(tt, t/; Pi, , Pι-2)Pι-i(v)Dι-ι(x; pOf - , p^

t

for £ ί> ίlβ Since D 1 " ^ ; p0, , p ^ ) is increasing, we conclude from
the above that

S oo

t Pn(u)In-ι-2(u, t; pn_l9 ,

^ JΪ-2(W, v; Pi, , Pι-2)Pι-i(v)dvdu

S oo

^ Pn(u)In-ι-2(u, t; pn_l9 - ,

x Q^PMI^U, t;pu , Pι-ddu ,

where we have used formula (6). Let #(«) be given by

y(t) = Dι-\x; p0, - , ft^Xί) .

Note that y(Q > 0 and in view of (21)

(22) -Z?I+1(&; p0, , pI+1)(ί) ^ ί/(ί) ^ Kn+t(u, t)JUu, t)q(u)du
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for 3 ^ I < n - 1 and t ^ tt. That (22) is true for I = 1 follows
immediately from (19). Since dy(t)/dt = pι(t)Dι(x; p0, — -,Pι)(t), we
have

which together with (22) implies

where qt(t) is defined by (16). Now from Lemma 2 it follows that
the equation

has a nonoscillatory solution. But this is impossible by hypothesis.
Finally, suppose ϊ = w — 1. Integrating (1), we have

(23) Dn-\x; p0, , p^Oί*)

On the other hand, application of Lemma 1 to the case where i — 0,
k = n — 3, s = tx and ί ^ ίx shows that

(x; po)(t) - D\x;

= Σ ( - 1 ) ^ ^ ; Po, , PiWiWu *; Py, , Pi)
ii

/,_,(», ί; ϊ)M_3, , ί)1)p.-2(%)i)'1-2(a;; Po, , Pn-ύ(u)du

; p0, , PjXtJIjίt, tL; plf , py)
Σ

/»_8(ί, w; Pi, ,

This implies that

(24) Z?°(a;; po)(ί)

^ \ In-s(*, w; Pi, , P»-*)P»
J«i

for ί ^ ίlβ From (23) and (24) we obtain

^ \ Pn(u)q(u)po(u) \ In-Z(u, v;plt -, pΛ_s)pn_2

x
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^ ^ P (u)q(u)po(u) J t In-3(u, v;plf , pn^

x Dn~\x\ pOt - , pn_2)(v)dvdu

x Dn-\x;p

It follows that for t ^ ίx

- L (L \ pOf - ,

Integrating the above inequality from ίx to ί, we see that the positive

function w(t) — Dn~\x; p0, , pw_2)(ί) satisfies

Pn-ι(u) 1 qn^

for ί ^ t l f where ?„_!(*) is given by (17). Denote the right hand
side of (25) by y(t). By differentiation

dt PnS) dt

and so

Again by Lemma 2 we see that the equation

d 1 dz . „

dt JP—i(ί) dt

has a nonoscillatory solution, contradicting the hypothesis. This
completes the proof in the case I = n — 1.

REMARK. According to a classical oscillation criterion of Hille
[7] equations (18) are oscillatory if

(26) lim inf Γ pt(s)ds \ q^ds > — , i = 1, 3, , w — 1 .
ί->«> Jα Jί 4

It is not difficult to see that, when specialized to the particular
equation

(27) ϋ —i— 4^- + q(t)x = 0 ,
dtm pβ(ί) dtm
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Theorem B yields the following result which contains the theorem

of Lovelady stated at the beginning of this paper.

pm{t)dt = co. Suppose moreover

that:

( i ) if m = 2, then the equation

(28) | | + (pm(t) j " (u - t)q(u)du) z = 0

is oscillatory;
(ii) if m > 2 is even, then the equations

(29) § + (
(m - 1 ) ! (m - 3 ) !

x J" ( j " (w - v)m-χ(t; - *)—8pJv)dv) ί(w)dw) s = 0 ,

(30) 4 ί + (-, ^ Γ (̂  - ί)2*-3?^)^) » = 0
dί2 \(m-l)! (m-2)! J* /

are oscillatory; and
(iii) if m > 2 is odd, then the equations (29)

(31) T* -λ^ T* + (T ^h 5V7 Γ <* - ί ) 1 " - 8 ^ ) ^ ) « - o
dt p«(t) dί \(m — 1)! (m — 2)! Jί /

are oscillatory. Then equation (27) is oscillatory.

EXAMPLE. Consider the Euler equation

(15) — ta+m — + cta~mx = 0 , t > 1 ,

where a and c > 0 are real constants, and a ^ — m + 1.

It is a matter of easy computation to find that the second order
equations (28), (29), (30), and (31) associated with (15) reduce respec-
tively to

11
dt2 a(a -

.
dt2 (m - 1)! α(α - 1) (α - m + l)ί

(2m - 3)!
( 1 ) ! ( 2 )

and
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dt dt (m—1)! (m—2)! (α + m—2)(α + m —3) (a — m

Note that these are Euler equations of the second order. Conse-
quently, we conclude that equation (15) is oscillatory provided c is
so large that

( i ) when m = 2, c > (l/4)α(α - 1);
(ii) when m > 2 is even,

c > — max ](m — 1)! a(a — 1) (a — m + 1),
4 I

° }- {a + m - 2)(α + m - 3) (a - m
(2m — 3)!

(iii) when m > 2 is odd,

c > — max ί(m — 1)! α(α — 1) (a — m + 1),
4 ^

(2m — 3)!

Let us now turn to the case where a > — m + 1. To examine
this case we consider the fourth order equation

(32) -g- ta+* 4 1 + ct«-*x = 0 , ί ^ 1 ,
dt2 dt2

where we suppose that a > — 1. We observe that the differential
operator (d2jdt2)ta+2(d2/dt2) can be represented in canonical form as
follows:

(33) A r + 1 A ί-α A £α+14- ( - K α £ 0) ,
αί αί dt dt

(34) <« A t1-" — tβ — ί1-" — ία (0 < α < 1) ,
dt dt dt dt

Let 0 < a < 1, for example. Then in view of (34) equation (32) is
equivalent to

(36) A tι-a — ta A ί1- ^ . + ct~«-2y = 0 ,

and, as easily cheked, the second order equations (18) associated
with (36) reduce to the single equation
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(37) — t1-" — + — - — t~a-ιz = 0 ,
dt dt a + 1

which is an Euler equation of the second order. From the remark
following the proof of Theorem B equation (37) is oscillatory if

lim inf Γ s«-'ds • [° — ^ s'^ds = „, v ., > 4
ί->co J i Jj a

1_
+ 1 " "" a\a + 1) ' 4

Thus, in case 0 < a < 1, equation (32) is oscillatory if c > a2(a + l)/4.
Similarly, it can be shown that (32) is oscillatory if c > a\l — α)/4
in case — 1 < a <i 0 and if c > a(a + l)/4 in case a ^ 1. It follows
that equation (32) is oscillatory for every a provided c is sufficiently
large.

The canonical representation of the operator (dm/dtm)ta+m(dm/dtm)
with general m > 2 and a > — m + 1 is not known to us.
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