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LIE ALGEBRAS AND HOPF ALGEBRAS

JoHN H. REINOEHL

For a finite-dimensional Lie algebra L over a field of
characteristic 0, the structure of the Hopf algebra of re-
presentative functions of L, 2#£(L), is known in some detail
from Hochschild, Illinois J. Math., 1959 and 1960. Depending
on these results, we demonstrate sufficient conditions for a
Hopf algebra over an algebraically closed field of charac-
teristic 0 to be isomorphic to 2#(L) for some Lie algebra L.

Our Theorem 2.1 gives sufficient conditions for a Hopf algebra
A to be isomorphic to the algebra 57 (L) of representative functions
for some Lie algebra L, and describes how L may be obtained. To
accomplish this, we rely on Hochschild’s results concerning the struec-
ture of 2#(L) in [2] and [3]. For Theorem 2.1, suppose A is a Hopf
algebra over an algebraically closed field of characteristic 0 such that
(1) A is an integral domain, (2) there is a group isomorphism p from
the additive group of the primitive elements P of A onto the mul-
tiplicative group @ of the group-like elements of A, (3) there is a
finitely-generated subalgebra B of A such that A is a free B-module
with basis Q and v(B) T B® A, where v is the comultiplication of
A, and (4) the semisimple part B, of B is a Hopf subalgebra of A
and has no proper affine unramified extension in any Hopf algebra
containing B,. Then if L is the Lie subalgebra of the differentiations
on A consisting of those differentiations )\ satisfying n\(o(p)) = Mp)
for all elements p of P, A~ 2~ (L).

The preliminaries which follow define essential concepts and
describe the dualization process by which S#°(L) is obtained from
the universal enveloping algebra of L. Following the statement of
Theorem 2.1, the remainder of the paper, the subsequent propositions,
contribute to the proof of Theorem 2.1.

Since A is a Hopf algebra, the elements of A may be regarded
as representative functions of the Lie algebra of differentiations on
A, and hence by the restriction map, as representative functions of
L. In Proposition 2.2, we show that the map A — 52 (L) so defined
is injective by an argument which in effect shows that the restriction
of L is algebraically dense in any finitely-generated Hopf subalgebra
of A containing B. The remainder of the paper shows that our map
A — 2Z (L) is surjective. Proposition 2.8 shows that the image of
B, is that portion of 5#°(L) annihilated by the radical of L by left
translation. Proposition 2.4 shows similarly that the image of F[P, Q]
is the portion of 2#°(L) annihilated by [L, L] by left translation.
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In the proofs of the two propositions just named, the arguments
are concerned with a finitely-generated Hopf subalgebra of A con-
taining B, so the standard results of affine algebraic group theory
are available. Lemma 2.5 is a technical result based on decomposition
of submodules of 2#°(L). This contributes to an induction argument
that completes the demonstration that our map A — 2~ (L) is sur-
jeetive.

We rely on [4] for notation and basic results in the theory of
affine algebraic groups, and on [6] for results concerning pro-affine
algebraic groups. Analogous results were obtained for complex
analytic groups in [5]. This paper is a revised version of the author’s
doctoral dissertation. The author wishes to express his gratitude
for the many suggestions offered by Dr. G. Hochschild, his disseration
advisor. The referee has also made a number of helpful suggestions.

1. Preliminaries. Let L be a Lie algebra over a field F. An
element of the dual space of the universal enveloping algebra 7/ (L)
of I, which vanishes on an ideal of finite codimension is a represen-
tative function of L. The space of representative functions of L is
labeled 22(L). A Z/(L)-module structure for S#°(L) is defined for
elements u, ve Z (L) and f € £ (L) by (u- f)(v) = flou) and (f-u)(v) =
f(uw). The maps f —u-f and f— f-u are termed left and right
translations respectively.

An algebra will be assumed to have an identity element and a
Hopf algebra an antipode. A Hopf algebra structure may be defined
for #z7(L) and the algebra and Hopf algebra structures of 2#°(L) are
induced by duality. The comultiplication of Z/(L) is the F-algebra
homomorphism d: Z/ (L) — Z/ (L) ® Z (L) defined by d\) =1& N +
A1 for all neL. Hence for f, he 2~ (L) and ue (L), (fh)(w) =
(f ® h)(d(w)). Since d is cocommutative, the algebra multiplication
is commutative. If the elements of SZ°(L) R S (L) are regarded as
elements of the dual space of Z/ (L) ® /(L) in the natural way, the
comultiplication v: 22 (L) — 27 (L) Q &7 (L) is defined by the equation
vy )uw @®v) = f(uv). The antipode z on Z (L) is the F-algebra
antimorphism 2: /(L) — %/ (L) defined for neL by z(\) = —\, and
for f e (L) the antipode { is given by {(f) = foz. Details for
the above are found in [7].

Let A be a Hopf algebra with comultiplication v, counit ¢ and
antipode z over a field F. The F-algebra homomorphisms A — F'
constitute a pro-affine algebraic group labeled “(A4), with group
operations given by ¢.9, = (¢, R g)ov, g =goz and 1, =¢. If Ais
commutative and finitely-generated as an algebra, i.e., affine, £ (4)
is an affine algebraic group. The F-multiples of the identity element
of an algebra or Hopf algebra will be termed constants. The dif-
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Jferentiations on A are the linear maps A —» F which annihilate the
constants and satisfy for any elements a,, a, € A, é(a,a,) = d(a)e(a,) +
e(a)o(a,). The differentiations on A determine a Lie algebra labeled
F(A) or £ (£ (A) with Lie algebra bracket given by [6,, 6,] =
(51®52 - 82®51>°7-

2. Lie algebras and Hopf algebras. Prior to the statement of
our main result, we state some essential definitions. The primitive
elements of a Hopf algebra A over a field F' with comultiplication
v are those elements p such that v(p) =1 &® p» + p ® 1. These elements
form an F-submodule of A and also an additive subgroup, hence an
F-group. The group-like elements are those nonzero elements ¢
which satisfy v(q) = ¢ ® q. The group-like elements of A form a
subgroup of the group of units of A: if { is the antipode of A and
q is group-like, then ¢! = {(q).

The primitive elements of S (L) are those elements which
annihilate the constants and L*Z/(L). A primitive element p of
S77(L) may hence be regarded as a Lie algebra homomorphism L —
F. We then define exp(p) as the unique homomorphism of associative
algebras % (L) — F such that exp(p), = »;,, where the subscript
denotes restriction to L. A homomorphism of associative algebras
Z/ (L) — F' is a group-like element of 277(L).

If B is a subspace of a Hopf algebra A with comultiplication -,
B will be termed left stable or right stable if it satisfies, respectively,
v(BYCB® A or v(B)C A® B, and bistable if it is both left and right
stable. If B is bistable and closed under the antipode of A, B is
termed fully stable. If A is a Hopf algebra consisting of represen-
tative functions of a Lie algebra, these notions of right and left
stability are equivalent to stability under right and left translation,
respectively, by elements of % (L). This equivalence also holds for
translation by elements of < (4), where for g, g.€ £ (4) and ac A,
g:-a is defined by (g,-a)(g.) = a(g.9,), ete.

Let A be a Hopf algebra over a field F' such that <7 (A) separates
the elements of A4; i.e., for any two distinet elements a,, a,c 4, an
element g of < (A) exists such that g(a,) # g(a,). Label the F-space
generated by left translation of an element a of A by elements of
< (A) as [a]. If [a] is semisimple as a representation space of € (4),
a is called a semisimple element of A. If B is a left stable sub-
algebra of A and F is of characteristic 0, then B,, the space of
semisimple elements of B, is also a left stable subalgebra of B. B,
is termed the semisimple part of B.

By derivation we shall mean a linear map D from an algebra
A into an A-module M (usually also A) which annihilates the constants
and satisfies D(a,a,) = D(a)a, + a,D(a,), where a,, a,€¢ A. Let A and
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B be affine F-algebras such that A contains B and is finitely-generated
as a B-module. If for every A-module M, every B-linear derivation
A — M is the zero map, then A is termed an affine unramified ex-
tension of B.

THEOREM 2.1. Let A be a commutative Hopf algebra over an
algebraically closed field of characteristic 0 such that: (1) A s an
integral domain; (2) there is a group isomorphism p of the additive
F-group P of the primitive elements of A onto the multiplicative
group @ of the group-like elements of A; (3) there is a finitely-
generated left-stable subalgebra B of A such that A = B[Q] and A
18 a free B-module with basis Q; and (4) the semisimple part B, of
B is fully stable and has no affine proper unramified extension in
any Hopf algebra containing B,.

Label as L the Lie subalgebra of <#(A) consisting of those ele-
ments N which satisfy Ne®)) = n(p) for all peP. Then A is
1somorphic to 57 (L).

Before starting the proof, we remark that the necessity of
1)-(4), if A~ 57 (L) for some L, is known from [1], [2], and [3].
For (1), see [2, pg. 501]; for (2), [3, pg. 617-618]; for (3), [3, Thm.
1]}; and for (4), [2, Thm. 5.1] and [1, Thms. 3.1 and 4.1]. Hence
conditions (1)-(4) characterize those Hopf algebras A such that A ~
7 (L) for some Lie algebra L.

Proof. Let v be the comultiplication of A. For elements ac A
and 6 € £ (A), the left translate 6-a is defined to be (i ® §)ov(a), where
1 denotes the identity map; similarly, a-6 = (6 ®i)ov(a). If ¢ is
the counit of A, then the canonical homomorphism 8: A — S#° (< (A4))
is given, for ueZ (< (4)), by {#(a)}(w) = e(w-a). The translations
by elements of <(A) may be shown to be derivations on A.

Since F' is an algebraically closed field of characteristic 0 and 4
is an integral domain, (< (A)) separates the elements of A, hence
the canonical map 6: A — S (< (A)) is an injection. We define the
Hopf algebra map 9@: A — 5#°(L) by @(a) = 6(a),,- In what follows,
we shall identify an element a of 4 with its image by 6 and write
a(u) or u(a) for e(u-a). ’

We show PC B. Let p be a primitive element of A. Then p =
b, + >,b,g where b, and each b, are elements of B, and for each
¢,9g+#1. Wethushavev(p) =1Q@p+p&®1 =70, + 270,)q & 9.
Since B is left stable and the elements of @ are free over B, neces-
sarily v(b,) =1Q » + b, X 1. Consequently, if x is the algebra
multiplication of A, fte(e @ 7)ov(by) = by = (e X NA QX + b, Q1) =
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» + &(b,), hence p = b,.

Let 6 be a differentiation on A. To demonstrate the existence
of an element » e L which coincides with 6 on B, define first \(b) =
o(b) for all be B. Since PC B and p: P— @ is a bijective map, A
may be defined on @ by M(o(p)) = d(p) = Mp). This is verified to
determine a differentiation on F[Q] since for any group-like element
g of A, if ¢ is the counit of 4, e(¢g) =1. Since A = BR F[Q], \ is
a differentiation on A4, and evidently \; = 0; and A e L.

By the argument of [5, pg. 1145], which we don’t repeat, if C
is a fully stable subalgebra of A containing B, then C = B[Q N C].

Observe that for arbitrary elements pe P and qe @,

[Z(4), £(A)]p) = [ (4), £ (A)]@ =0.
Thus [Z(A4), L (A)]C L and L is an ideal of <(A).

PROPOSITION 2.2. The kernel of @ is (0).

Proof. Label the kernel of @ by I; I is an ideal of A. Assume
I is not (0) and let a = >\7,b.,q; € B[Q], with each b, # 0, be a non-
zero element of I chosen with % as small as possible. Since agq;i* e 1,
we may assume ¢, = 1. Let C be the smallest fully stable subalgebra
of A containing B[g,, ---, q.]. Since Blg,, - --, ¢,] is finitely-generated,
C is also finitely-generated. Since C contains B, the definition of
the Lie subalgebra L of <°(A) implies that the restriction map
L — L, is injective. Label £ (C) by G and let G, be the smallest
algebraic subgroup of G whose Lie algebra contains L,. Denote by
Y the stabilizer of CN I in G with respect to left translation; then
Y is an algebraic subgroup of G and <~(Y) is the stabilizer of C N I
in 2 (G) by left translation. Since L clearly stabilizes C N I, <~(Y)D
Lg, and thus YO G, so G, stabilizes C N 1.

We now show BNI=(0). Ly is an ideal of <2(G) hence for
any ue€Z (L;) and se (G), su = us + v, where vec%(L,). For
any element be BN I, we have (s:b)(w) = b(us) = b(su — v) = b(su) =
s(u-b). An element \ € L, exists such that \; = sz, whence s(u-b) =
AMu-b) = b(auw) = 0 so we we conclude that s-be BN I. This implies
that b is zero on Z (£ (G)), hence on G; thus b = 0and BN I = (0).

It follows that b, is nonzero on %/ (L,;) and hence on G,. Thus
translating our element a €eC NI on the left by an element of G,
it is seen that we may assume b,(1;) # 0, and multiplying by a
constant, that 5,(1;) = 1. Then for any geG,,

g-a=g-b + ;ﬂ(g'bi)qi(g)qi .

Since (¢g-b)a — b,(g-a) is an element of C I, we obtain from the
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minimality of »n that (¢-b,)a — b,(¢g-a) = 0. Hence for all ¢+ between
2 and =, (9-5,)b;(1;) = b,(9-b,)g,(9). Evaluating this expression for
g = 15, we obtain:

(1) b:(9)bi(1s) = bi(g)qi(9) for all geGy.

For the duration of this proposition, for any element ¢ € C, we shall
denote the restriction ¢;, by ¢’. Since b,(1;) =1,a # b, so n > 1.
There exists pe P such that o(p) =¢,+ 1, and thus p % 0. Then
for ¢ =2, we may write (1) as bb,(1g) = bjo(p)’. Now consider the
ideal K of B’ consisting of those elements b’ € B’ such that b'o(p)’ e
B’. Considering the left translates of b,0(p)’ by elements of G,
since B’ is left stable, it is seen that K has no zeros in G,. By a
previous remark, C = BQ F[Q N C], so for the polynomial algebra
C' of G,, we have C'=B'Q F[QNC]. Thus every F-algebra
homomorphism B’ — F' is the evaluation at an element of G,. Since
B’ is finitely-generated, it follows that K = B’ and thus p(p) € B’.

We now show the existence of a differentiation ¢ on C’ such that
o(p") # o(o(p)’). We accomplish this by showing that p’ and p(p)
are algebraically independent. In that case, p’ is algebraically free
over Flo(p), o(—p)'] and thus a differentiation ¢ may be defined on
FIp, o(p), o(—pY] such that 8(p") = 1 and d(o(p)) = 3(o(—p)) = 0.
Since F[p’, p(p), o(—p)'] is fully stable, applying first Theorem 6.4
and then Theorem 7.5 of [4], one shows that 6 may be extended to C’.

Assume that p’ and p(p)’ are algebraically dependent. Z/ (< (A))
separates the elements of A and any primitive element of A annihi-
lates F' and F(A)YZ (¥ (A)). Since p #* 0, there is necessarily a
o€ <¥(A) such that g(p) = 1. Choose v e L such that v, = g, then
v(p') = v(o(p)’) = 1. Translating on the left by v, we obtain a de-
rivation D on C'; D(p') = v-p" = 1 and D(o(p)") = v-p(p)’ = p(p)’. By
assumption, we have polynomials fi(t) € F[t] such that:

(2) 3 ()oYl = 0.

We choose m as small as possible with not all f; = 0. Since [o(p)']™ =
o(—p) €C’, we may assume that f(¢) # 0. Applying D k times to
(2), we obtain

2 fu@)lp®)T = 0, where fi(t) = fi(t) and fiu(t) = ifis(®) +
x(t); f* denotes the formal derivative of f.
For large enough k, necessarily f,(¢) = 0. The minimality of m then

implies that for each 1, f;,(t) = 0. From our recursion formula, it is
clear, if ¢ > 0 and 7 > 0, that if f;(¢) = 0, then f;;_,({) = 0, s0o = = 0.
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In this case, if f,(t) is of degree r, applying D » — 1 times to f,(p’) =
0, we obtain p’ = 0, a contradiction, so p’ and p(p’) are algebraically
independent.

Let ¢ be a differentiation on C’ such that 6(p") # d(o(p)") and let
7 be the restriction map C— C’. Then doxw is a differentiation on
C. On BcCC, dom coincides with some element ne L. Moreover,
since p(p)’ € B’, a b € B exists such that " = p(p)’. Since A annihilates
the kernel of =z, A induces a differentiation A° on C’ such that N\ o =
Ny for any ¢eC, A°(¢") = Me). Therefore:

@) = A (o(®)) = N(0) = Mb) = (@ em)(b) = o(b") = do(o(p)) .

Also: Mp) = (0om)(p) = 0(p"). Thus A(o(p)) # Mp). This is contrary
to the definition of L, so the assumption that I is nonzero is false.
This completes the proof of Proposition 2.2.

Label by J the subspace of <(A) consisting of those differentia-
tions which annihilate B. Then J is a Lie subalgebra of ¢“(4)
because B is left stable. Since the elements of J annihilate the
primitive elements of 4, J N L = (0), but since [J, J]C L, it follows
that J is abelian. For an element § ¢ <(A), let » be the element
of L such that §, = A,; then 6 — v eJ. Thus we obtain the semidirect
sum decomposition ¥ (A) = L + J. From now on, we label the
radical of <“(4) by R and the radical of L by N. 2z°(L)" signifies
the portion of 2#7(L) annihilated by left translation by V.

Let G and G’ be connected affine algebraic groups over an alge-
braically closed field of characteristic 0. Then a rational surjection
G' — G with a finite kernel is a group covering of G, and G is simply
connected if every group covering of G has a trivial kernel.

PROPOSITION 2.3. @(B,) = 77 (L)".

Proof. Let B* be the smallest fully stable subalgebra of A
containing B. Then B* is finitely-generated, hence the fully stable
sublagebra B, of B* is also finitely-generated. Label the represen-
tation of &2(4) on B, induced by left translation as z. From the
bistability of B, it follows that J annihilates B, by left translation
so J C ker(z).

From condition (4) of Theorem 2.1, <°(B,) is a simply-connected,
reductive, affine algebraic group [1, Thm. 4.1]. Hence < (B,)/[< (B,),
Z(B,)] is a simply-connected, reductive, abelian and therefore trivial
affine algebraic group [1, Thm. 2.3], so Z°(B, is semisimple. By
arguments analogous to [6, Thm. 2.1], every differentiation on B,
may be extended to a differentiation on A, because B, is fully stable.
Hence #(A)/ker(c) ~ ¥ (B,), so R C ker(z).
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Since L is an ideal of &¥(4), NCR, so Ncker(z)N L. We
now show ker(z) N L = N. Let S be any maximal semisimple Lie
subalgebra of L; then L = N + S and ker(z) N L = N + (ker(z)NS).
Since [S, S] = S, the action of S on @ by left translation is trivial.
Hence ker(z) NS acts trivially by left translation on B,[B* N @] which
is readily verified to be B¥, the semisimple part of B*. The kernel of
the restriction Lie algebra homomorphism <°(B*) — & (B?) is exactly
the Lie algebra of the unipotent radical of £ (B*), hence the action
of ker(z) NS on B* by left translation is locally nilpotent. On the
other hand, ker(z) N S is a semisimple Lie algebra so the action of
ker(z) NS on B* is trivial. Since S acts trivially on @, we have
ker(z) N S = (0), and hence ker(z) N L = N. It was observed that
J C ker(z), consequently [L(A), J]Cker(z) N N, hence J+ N is a
solvable ideal of .&#(A4). Therefore &£ (A)/(J + N) = (J+ L)/(J + N)~
L/N, and so R = J + N. Since ker(z)N L = N, we infer that
Z(B,) ~ LI/N. Since N C ker(z), we have @(B,) C 27 (L)".

The canonical projection %/ (L) — Z/(L/N) dualizes to the natural
Hopf algebra injection S#(L/N)— 57 (L), the image of which is
H(L)Y. Since & (5#(L/N)) ~ L/N [1, Thm. 6.1], the injection @: B, —
27 (L)Y induces a surjective rational homomorphism I": (57 (L)") —
& (B,) whose differential is a Lie algebra isomorphism. Hence I is a
group covering. But by hypothesis (4) and [1, Thm. 4.1], £ (B,) is
simply connected, hence @(B,) = S#°(L)". This completes the proof
of Proposition 2.3.

Label & (B*) as D. The Lie subalgebra L. of <~(D) is isomorphic
to L, hence unless otherwise noted, L will be identified with L.
‘The Lie subalgebra J,. of <(D) will be labeled J'; it is seen that
J’ consists of those elements of <~(D) that are 0 on B. Since the
restriction map is surjective [cf: 6, Thm. 2.1], we obtain the semidirect
sum decomposition (D) = L + J'. Since B is left stable, the
differentiations which are 0 on B coincide with those which annihilate
B by right translation. Therefore, if X denotes the right fixer of
B in D, then X is an algebraic subgroup of D whose Lie algebra is
J'. From the decomposition B* = B F[B* N Q], it may be inferred
that X and Z(F[B* N Q)) are isomorphic as affine algebraic groups.
Since F[B* N Q] is a fully stable subalgebra of B*, it follows that
F[B* N Q] is finitely-generated. Since F[B* N Q] is generated by its
group-like elements, X is a reductive, abelian, affine algebraic group.

Consider a standard semidirect product decomposition D = D,- M,
where M is a maximal reductive subgroup of D chosen to contain
X and D, is the unipotent radical of D. Since F(M)>DJ', we
have the semidirect sum decomposition (M) = (FM)NL) + J'.
If we label &(M)NL as S, since B, is fully stable, we obtain
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L(By) = L (M), = Sz, + Js, = Sp,. The reductive component M of
D is represented faithfully on B} = B,Q F[B* N Q], therefore, in
particular, S is also represented faithfully on B¥. For any primitive
element p e B*, p(M) =0, so p(S) =0. Thus, since SC L, for any
element ge B* N Q, we have ¢(S) = 0. Consequently, the represen-
tation of S on F[B* N Q] is trivial, and S is represented faithfully
on B,, Hence S~ S; = (B, and S is semisimple. It is clear
that S is a maximal semisimple Lie subalgebra of <~(D) and hence
of L.

If D, is the smallest algebraic subgroup of D whose Lie algebra
contains L, it follows from Proposition 2.2 that the D,-fixed portion
of B* is the constants. Thus D, = D, so by [4, Prop. 13.1], [&~(D),
Z(D)] = [L, L]. Label the radical [L, N] af [L, L] by T. Then T
is a nilpotent ideal of both L and (D) and T < <(D,); note also
that [L, L] =[S, S]+[L, N]=S+ T. We label by D, and Dy the
algebraic subgroups of D whose Lie algebras are T and S respectively.
It is seen that the algebraic subgroup DD, coincides with [D, D].
Since MD, D DD, it follows that MD, is a normal algebraic subgroup
of D and D/MD, is an abelian, unipotent affine algebraic group, i.e.,
an algebraic vector group. The polynomial functions of an algebraic
vector group are generated by the homomorphisms of that group
into F'*. This leads to the following result.

PROPOSITION 2.4. O(F[P, Q)) is the natural image of 57 (L[ L, L))
in 52 (L), and the exponential map of 57 (L) is given by @opod~*
on the primitive elements @(P) of 57 (L).

Proof. The F-space of primitive elements of B* is the space P
of primitive elements of A. Considered as functions on D, these
elements are exactly the elements of Hom(D, F*). Since the sub-
group MD, of D is necessarily in the kernel of any such homomor-
phism, one easily verifies that P = Hom(D/MD,, F'*). Thus F[P]
is the algebra of polynomial functions of D/MD, and ¥ (D/MD,) is
simply A (F[P]). Since D)=L+ J'=N+ S+ J', and &L (MD,) =
T+S+J’, we see that <2 (D/MD,) can also be written as (L/[L, L))z
or (N/T)zz. Thus O(F(P)) is the algebra of all Z/(L)-nilpotent
representative functions of L that are trivial on [L, L]. Further,
@(P) is the F-space of primitive elements of £ (L)™", which is
the image of S#°(L/[L, L]) by the natural injection.

Now consider the elements of o(P) = Q. For any element p of
P, if xeLc ¥(A), then by definition of L, AM(p) = AMpe(p)). Thus
@(o(p)) is a group-like element of S#°(L) with the property that
o(o(p))r. = @(p);. It follows from our remarks concerning the exponen-
tials of 2#°(L) in the introduction that @(o(p)) = exp(@(p)).
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From [2, pg. 519], &~ (L/[L, L]) is generated by its primitive
elements and the exponentials of its primitive elements. Thus
O(FP, Q)) coincides with the image of SZ(L/[L, L]) by the natural
injection. This completes the proof of Proposition 2.4.

Lemma 2.5 is necessary for the induction argument which follows.

LemMA 2.5. Let K be a finite-dimensional Lie algebra over F
and suppose there exists a semidirect sum decomposition K = H +V
where V is one-dimensional and H is an ideal of K. Let C, and C,
be any left V-stable 57 (K )-submodules of 57 (K) containing 57 (K)
such that (C)aun = (Cawum. Then C, = C,.

Proof. Since V is one-dimensional, the elements of *27#°(K) have
the form >.%, x,0’, where p is a nonzero primitive element and the
x,’s are linear combinations of the elements exp(ap) where ac F [2,
pg. 519].

Let o be an element of V such that o(p) = 1. Let E be the F-
algebra of F-linear endomorphisms of #2#°(K) that is generated by
left translation by ¢ and multiplication by elements exp(ap). We
shall show in two stages of induction that for any nonzero element
% of #27°(K), there is an element ¢ of E such that e(u) = 1. First
consider an F'-linear combination of elements exp(ap), say = =
Sk, B.exp(a,p), where each a,, B;€ F and the a,’s are distinet. If
k =1, an endomorphism e such that e(x) = 1 clearly exists. If k>1,
then s.x — a,x is a linear combination of & — 1 elements, so the
result follows in this case from the induction assumption.

Now consider u = >*, z,p° with each x, a linear combination of
elements exp(ap) and z, = 0. Our result is known in the case n =
0. If n >0, pick an element ¢ of E such that e(x,) =1. Then
a straightforward calculation shows that e(x,p™) = p" + {terms in
smaller powers of »}, so e(u) = p™ + >,"=+ xip’, with the x; being new
linear combinations of the exponentials. Translating by o, 0-e(u) =
(n+0o-wp_)p"* + {terms in smaller powers of p}. Since o-x;,_, cannot
be a constant other than 0, o-e(u) has degree n — 1 in p. Hence
the desired conclusion follows from the inductive hypothesis.

Let C be any left V-stable #57°(K)-submodule of 57 (K) containing
227 (K). We show C =757 (K)®C". Suppose that C contains
elements not in 727 (K)® C?. Then, since S#7(K) =757 (K) Q 5 (K)"
[2, pg. 515], we may pick a nonzero element ¢ = X, u, Q@ v, €
C\Fe7Z (K)® C" with u,e?2#(K), v,e 57 (K)” and r as small as
possible. From the minimality of », it is immediate that no v, is
contained in C” and the wu,’s are linearly independent. Necessarily
also, if » > 1, no nontrivial linear combination of the »,’s is contained
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in C¥. If this were so, multiplying by a constant and reordering if
necessary, we would have w = v, + >\/_, B;v, where we C” and B, F
for all 7. Then the element ¢ — w &® u, of C\?27(K)® C”, which is
nonzero since the u,’s are linearly independent, could be written as
the sum of » — 1 terms.

Choose an element e¢e F such that e(u,) = 1. Then from the
definition of E, e(c) = D=l e(u,) @ v; + w, € C. If for each 4, e(u,) € F,
then

e(e) = i e(u)v,eCN o7 (K) = C¥

an immediate contradiction, so we assume that some e(u;) ¢ F. Then
r>1 and

o-e(c) = Eo-e(ui) KRv,eC

is nonzero. Since o-e(¢) can be written with fewer than » terms,
o-e(c)e 27 (K) ® C". Thus if o-e(c) is written in the form
Do u; @ w; where the elements u; are F-linearly independent ele-
ments of “27(K) and the w;’s are nontrivial F-linear combinations
of the w,’s, necessarily each w;eC”. This is again a contradiction.

Thus in particular, C, = ?27(K) ® C/ and C, = 7o7(K) Q C, .
Combining these equations with our hypothesis, (CY)y i = (Cuwn =
(Coim = (Com. From the semidirect sum decomposition K =V +
H, the restriction maps C/ — (C!)z &, are bijective for ¢ = 1, 2. Thus
we obtain that CY = C} and C, = C,. This completes the proof of
Lemma 2.5.

Recall that N is the radical of L and consider a chain of F-
subspaces of L: H = Tc---cH,c---CcH, = N for which the
dimension of H,., is one greater than that of H, for all 7. Since
[H, HlC[H, H;.,)<[L, Nl T, H, is a Lie subalgebra of L and an
ideal of H,;, for all 7. We employ induction on ¢ to show that
G (L) = (PA)wmy, in particular for H; = N. By [2, pg. 516],
7 (L)zu, is the algebra of all representative functions of H; whose
restrictions to %/ (T) are nilpotent representative functions of 7, i.e.,
representative functions of T for which the F-space of left %/ (T)-
translates is nilpotent as a left %/ (T)-module.

Corresponding to the semidirect product decomposition D = M-D,,
we have the tensor product decomposition B* = B* ) B*"«, where " B*
is the right M-fixed part of B*. (YB¥),, is the algebra of polynomial
functions of the unipotent affine algebraic group D, hence, regarded
as representative functions on Z/(T), (¥ B*),, consists of the nilpotent
representative functions of T. Recall that A is the right S-an-
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nihilated part of A. Since SAD M,., it follows that (S4)., D> *B*), =
F (L) iy D (5A)sy, Which establishes the case ¢ = 0.

For k <m, if ¢ is any element of H,,,\H,, we choose V = Fo and
apply Lemma 2.5. Clearly (°A), ., and 27 (L)zx,,, are left V-stable.
Also, recalling from Proposition 2.4 that <2 (F[P]) can be written as
(N/T)zip, it is seen from [2, pg. 519] that

Hk%(Hk‘l'l) = (Hk(F[P, Q]))?/(Hk+1) C(SA)‘?/(IIk+1) .
Therefore the inductive hypothesis and Lemma 2.5 give
(SA)Z/(Hk.H) = %(L)Mﬁkﬂ) .

Thus we obtain (SA4), ) = &2 (L) w. In view of the semidirect sum
decomposition L = N + 8§, it follows that @A) =522 (L) ~ 572 (L)s -

Finally, @(A) = 0(5A)D(B,) = 527 (L)s# (L) = &#(L). Hence @
is surjective, and therefore @ is indeed a Hopf algebra isomorphism
A — 57(L) and the proof of Theorem 2.1 is complete.
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