POWER SERIES RINGS OVER DISCRETE VALUATION RINGS

JIMMY T. ARNOLD

If V is a discrete valuation ring with Krull dimension m, it is shown that the power series ring $V[[x_1, \dots, x_n]]$ has Krull dimension mn + 1.

Throughout the paper all rings are assumed to be commutative with identity and the ring R is not considered to be a prime ideal of R. In [1] the author defines a ring to have the SFT (strong finite type) property if for each ideal A of R there exists a finitely generated ideal B and a positive integer k such that $B \subseteq A$ and $a^k \in B$ for each $a \in A$. It is shown in [1, Theorem 1] that if R fails to have the SFT-property then the power series ring R[Y] has infinite Krull dimension. On the other hand, if D is a Prüfer domain with $\dim D = m$ and if D has the SFT-property then dim D[Y] = m+1 [2, Theorem 3.8]. Recall that a valuation ring V with finite Krull dimension is discrete if and only if $P \neq P^2$ for each nonzero prime ideal P of V [5, pp. 190-192]. A valuation ring V has the SFT-property if and only if it is discrete [2, Proposition 3.1]. Thus, if V is a valuation ring and $\dim V = m$ then either V is discrete and $\dim V \llbracket Y \rrbracket = m + 1$ (this specific result was proved by Fields in [4, Theorem 2.7]) or V is nondiscrete and dim $V[Y] = \infty$. For dim R = m the author asks in [1, p. 303] if either dim R[Y] = m + 1 or dim $R[Y] = \infty$. We show that the answer is no for ring $V[x_1, \dots, x_{n-1}]$, where V is a discrete valuation ring with dim $V \ge 2$. Specifically, we prove the following theorem.

THEOREM. If V is a discrete valuation ring with Krull dimension m then the power series ring $V[x_1, \dots, x_n]$ has Krull dimension mn+1.

Proof. The proof is by induction on m and the case m=1 is well-known since, in this case, V is Noetherian (cf. Lemma 2.6 of [4]). Thus assume that $m \geq 2$, that the theorem holds if $\dim V = m-1$, let $\dim V = m$, and suppose that $(0) = P_0 \subset P_1 \subset P_2 \subseteq \cdots \subseteq P_m$ is the set of prime ideals of V. Throughout the proof X denotes the set $\{x_1, \cdots, x_n\}$ of analytic indeterminates over V, V[X] denotes the power series ring $V[x_1, \cdots, x_n]$, $p \in P_1 \backslash P_1^2$, $W = V_{P_1}$, $U = V/P_1$, $F = W/P_1W$ and, even though $P_1 = P_1W$, we write $\mathscr P$ to denote the ideal P_1W . We note that W is a rank one discrete valuation ring with maximal ideal $\mathscr P = pW$, F is the quotient field of U, and for each integer $k \geq 1$

we have $P_1^{k+1} \subseteq p^k P_1$. If $\xi \in (W[X])_{W\setminus\{0\}}$ then there exists a nonzero element a in W such that $a\xi \in W[X]$. But then $pa\xi \in V[X]$ and $pa \in V$ so $\xi \in (V[X])_{V\setminus\{0\}}$. This shows that $(W[X])_{W\setminus\{0\}} \subseteq (V[X])_{V\setminus\{0\}}$ and the reverse containment is obvious so equality holds. It follows that the correspondence $Q \to Q \cap V[X]$ is a bijection from the set

$$\{Q\in\operatorname{Spec}(W\llbracket X\rrbracket)\,|\,Q\cap W=(0)\}$$

to the set $\{Q' \in \operatorname{Spec}(V[\![X]\!]) \mid Q' \cap V = (0)\}$ which preserves set containment. Thus, if $Q \in \operatorname{Spec}(W[\![X]\!])$ and $Q \cap W = (0)$, then rank $Q = \operatorname{rank}(Q \cap V[\![X]\!])$ and it follows that $\operatorname{rank} Q' \leq n$ for each $Q' \in \operatorname{Spec}(V[\![X]\!])$ such that $Q' \cap V = (0)$.

Let $(0) \subset Q_1 \subset \cdots \subset Q_t = P_m + (X)$ be a maximal chain of prime ideals of $V[\![X]\!]$ and choose k so that $Q_k \cap V = (0)$ while $Q_{k+1} \cap V \neq (0)$. Then, as we have already observed, $k = \operatorname{rank} Q_k \leq n$. Since $p \in Q_{k+1}$ we have $(P_1[\![X]\!])^2 \subseteq P_1^2[\![X]\!] \subseteq pP_1[\![X]\!] \subseteq Q_{k+1}$ and hence $Q_{k+1} \supseteq P_1[\![X]\!]$.

We first consider the case in which $Q_{k+1} \neq P_1[X]$. It follows from Theorem 3.14 of [3] that there exist elements $\lambda_1 = x_1, \lambda_2, \dots, \lambda_n$ in $x_1F[x_1]$ such that the $U[x_1]$ -homomorphism $\phi: U[X] \to U[\lambda_1, \cdots, \lambda_n]$ determined by $\phi(x_i) = \lambda_i$, $1 \le i \le n$, is an isomorphism. But ϕ extends to an $F[x_1]$ -epimorphism $\bar{\phi}\colon F[X] \to F[x_1]$ and if \bar{Q} is the kernel of $ar{\phi}$ then depth $ar{Q}=1$, rank Q=n-1 [6, Corollary 1, p. 218], and $ar{Q}\cap U\llbracket X
rbracket=(0). \hspace{0.2cm} ext{Since} \hspace{0.1cm} F\llbracket X
rbracket=(W/\mathscr{S})\llbracket X
rbracket\cong W\llbracket X
rbracket/\mathscr{S}\rrbracket X
rbracket \hspace{0.1cm} ext{and} \hspace{0.1cm} U\llbracket X
rbracket\cong W$ $V[X]/P_1[X]$, Q determines a prime ideal Q of W[X] such that depth Q=1, $\operatorname{rank}(Q/\mathscr{S}[X])=n-1$, and $Q\cap V[X]=P_1[X]$. Therefore, rank $Q \ge n$ and, since dim W[X] = n + 1, it follows that rank Q = n. If we choose $f_1, \dots, f_{n-1} \in XW[X]$ such that the corresponding elements $ar{f}_1,\cdots,ar{f}_{n-1}$ in F[X] form a regular system of parameters for $(F[X])_{\overline{Q}}$, then $\{f_1, \dots, f_{n-1}, p\}$ is a regular system of parameters for $(W[X])_Q$ and the ideal $N_i' = (f_1, \dots, f_i)(W[X])_Q$ is a prime ideal of $(W[X])_Q$ for $1 \le i \le n-1$ (cf. Corollary 1, p. 302 and Theorem 26, p. 303 of [6]). In particular, $N_{n-1}=N'_{n-1}\cap W\llbracket X
rbracket$ is a prime ideal of $W\llbracket X
rbracket$ such that rank $N_{n-1}=n-1$, $N_{n-1}\subset Q$, and $N_{n-1}\cap W=(0)$. We now $\text{have} \hspace{0.2cm} P_{\scriptscriptstyle 1} \llbracket X \rrbracket = Q \cap V \llbracket X \rrbracket \supset N_{\scriptscriptstyle n-1} \cap V \llbracket X \rrbracket \hspace{0.2cm} \text{and} \hspace{0.2cm} \text{rank} \hspace{0.2cm} (N_{\scriptscriptstyle n-1} \cap V \llbracket X \rrbracket) =$ rank $N_{n-1} = n - 1$ —that is, rank $P_1[X] \ge n$. Therefore, k+1 = n $\operatorname{rank} Q_{k+1} \geq 1 + \operatorname{rank} P_1[X] \geq n+1$. We have already seen that $k \leq n$, so k = n and rank $(Q_{k+1}/P_1\llbracket X \rrbracket = 1$. Thus, $P_1\llbracket X \rrbracket/P_1\llbracket X \rrbracket \subset$ $Q_{k+1}/P_1\llbracket X
rbracket \subset Q_t/P_1\llbracket X
rbracket$ is a maximal chain of prime ideals in $V[X]/P_1[X] \cong U[X]$ of length t-k. By assumption t-k=(m-1)n+1and since k = n this implies that t = mn + 1.

We now consider the case in which $Q_{k+1} = P_1 \llbracket X \rrbracket$. It follows from the previous argument that $n \leq \operatorname{rank} P_1 \llbracket X \rrbracket = \operatorname{rank} Q_{k+1} = k+1$. We will show that equality holds. Let $\mathscr V$ be a valuation overring of $V \llbracket X \rrbracket$ with prime ideals $(0) \subset Q_1' \subset \cdots \subset Q_{k+1}'$ such that $Q_i' \cap V \llbracket X \rrbracket = Q_i$

for each i. Since $Q_k \cap V = (0)$ we may assume that $Q'_{k+1} = \operatorname{rad}(p\mathscr{Y})$ and, by localizing if necessary, we assume that Q'_{k+1} is the maximal ideal of \mathscr{V} . We wish to show that $\mathscr{V} \supseteq W[X]$. If this is not the case then there exists $h \in W[X]$ such that $h^{-1} \in Q'_{k+1}$. If f = ph then $f \in P_1[X]$, $h^{-1} = p/f$, and there exists an integer s such that $h^{-s} =$ $p^s/f^s = p\zeta$ for some $\zeta \in \mathcal{Y}$. But $f^s \in (P_1 \llbracket X \rrbracket)^s \subseteq p^{s-1}P_1 \llbracket X \rrbracket$ so we have $p\zeta = p^s/p^{s-1}f_1$ for some $f_1 \in P_1\llbracket X
rbracket$. Therefore, $1/f_1 = \zeta \in \mathscr{Y}$ contrary to the assumption that $P_1[\![X]\!] \subseteq Q'_{k+1}$. It follows that $W[\![X]\!] \subseteq \mathscr{Y}$ and if $Q_i'' = Q_i' \cap W[X]$ for $1 \le i \le k+1$ then $(0) \subset Q_1'' \subset \cdots \subset Q_{k+1}''$ is a chain of prime ideals of $W\llbracket X
rbracket$ such that $Q_i''\cap V\llbracket X
rbracket=Q_i$. In particular, $Q''_{k+1} \cap V[X] = P_1[X]$. Since $[\mathscr{S} + (X)] \cap V[X] = P_1 + (X)$ it follows that $Q_{k+1}^{"}$ is not maximal in W[X]. Thus, $n+1 > \operatorname{rank} Q_{k+1}^{"} \ge 1$ k+1 — that is, k < n. It follows that k = n-1 and this together with the previous argument shows that, in either case, rank $P_1[X] =$ We now have that $P_1[\![X]\!]/P_1[\![X]\!] \subset Q_{k+2}/P_1[\![X]\!] \subset \cdots \subset Q_t/P_1[\![X]\!]$ is a maximal chain of prime ideals in $V[X]/P_1[X] \cong U[X]$ of length t-(k+1)=t-n. By assumption, t-n=(m-1)n+1, so t=mn+1.

REMARK. The proof of the theorem shows that if $(0) = P_0 \subset P_1 \subset \cdots \subset P_m$ is the set of prime ideals of a discrete valuation ring V then each of the prime ideals $P_i[x_1, \cdots, x_n]$ can be included in a maximal chain of prime ideals of $V[x_1, \cdots, x_n]$ and for 0 < i < m we have rank $(P_i[x_1, \cdots, x_n]/P_{i-1}[x_1, \cdots, x_n]) = n$.

REFERENCES

- 1. J. T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc., 177 (1973), 299-304.
- 2. ——, Power series rings over Prüfer domains, Pacific J. Math., 44 (1973), 1-11.
- 3. _____, Algebraic extensions of power series rings, Trans. Amer. Math. Soc., to appear.
- 4. D. E. Fields, Dimension theory in power series rings, Pacific J. Math., 35 (1970), 601-611.
- 5. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- 6. O. Zariski and P. Samuel, *Commutative Algebra*, Vol. II, D. Van Nostrand Company, Princeton, 1960.

Received March 19, 1980 and in revised form August 25, 1980.

Verginia Polytechnic Institute and State University Blacksburg, VA 24061