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POWER SERIES RINGS OVER DISCRETE
VALUATION RINGS

JiMMY T. ARNOLD

If V is a discrete valuation ring with Krull dimension
m, it is shown that the power series ring V[x,, - -+, 2,]] has
Krull dimension mn + 1.

Throughout the paper all rings are assumed to be commutative
with identity and the ring R is not considered to be a prime ideal
of R. In [1] the author defines a ring to have the SFT (strong finite
type) property if for each ideal A of R there exists a finitely gen-
erated ideal B and a positive integer & such that B< A and ofe B
for each a € A. It is shown in [1, Theorem 1] that if R fails to have
the SFT-property then the power series ring R[Y] has infinite Krull
dimension. On the other hand, if D is a Pruifer domain with dim D=m
and if D has the SFT-property then dimD[Y ]=m+1 [2, Theorem 3.8].
Recall that a valuation ring V with finite Krull dimension is discrete
if and only if P = P? for each nonzero prime ideal P of V [5, pp.
190-192]. A valuation ring V has the SFT-property if and only if
it is discrete [2, Proposition 3.1]. Thus, if V is a valuation ring
and dimV = m then either V is discrete and dimV][Y ] = m + 1 (this
specific result was proved by Fields in [4, Theorem 2.7]) or V is
nondiscrete and dimV[Y] = co. For dim R = m the author asks in
[1, p. 303] if either dim R[Y ] =m + lor dim R[Y] = . We show
that the answer is no for ring V][« ---, x,_.], Where V is a discrete
valuation ring with dimV = 2. Specifically, we prove the following
theorem.

THEOREM. IfV s a discrete valuation ring with Krull dimension
m then the power series ring V[x, ---,2,] has Krull dimension
mn + 1.

Proof. The proof is by induction on m and the case m =1 is
well-known since, in this case, V is Noetherian (cf. Lemma 2.6 of [4]).
Thus assume that m =2, that the theorem holds if dimV =m —1, let
dimV = m, and suppose that (0) = P, P,.CcP,<---< P, is the set of
prime ideals of V. Throughout the proof X denotes the set {x,, - - -, x,}
of analytic indeterminates over V, V[X] denotes the power series
ring V[, ---, x,], pe P\P}, W=V,, U=V/P, F=W/P,W and, even
though P, = P,W, we write & to denote the ideal P,W. We note
that W is a rank one discrete valuation ring with maximal ideal
F = pW, F is the quotient field of U, and for each integer » =1
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we have P C p*P,. If £e(W[X])y then there exists a nonzero
element ¢ in W such that afée W[X]. But then pase V[X] and
pacV so £€(V[X])rnw- This shows that (W[X])ww & (V[X]Dro
and the reverse containment is obvious so equality holds. It follows
that the correspondence @ — Q@ N V[X] is a bijection from the set

{QeSpec(W[X]) QN W = (0)}

to the set {Q €Spec(V[X])|Q NV = (0)} which preserves set con-
tainment. Thus, if @ € Spec(W[X]) and @ N W = (0), then rank Q =
rank (@ N V[X]) and it follows that rank @ <= for each Q'€
Spec(V[X]) such that @ NV = (0).

Let (0)c@Q,c---cQ,= P, + (X) be a maximal chain of prime
ideals of V[X] and choose k¥ so that @, NV = (0) while Q... NV #
(0). Then, as we have already observed, & = rank @, < ». Since
PEQy we have (P[X])?< PHX] < pP[X] S Qv and hence
Qi =2 P[X].

We first consider the case in which Q.+, # P.[X]. It follows
from Theorem 3.14 of [3] that there exist elements \; = %, Ny, =+, Ny
in 2,F[x,] such that the U[«,]-homomorphism ¢:U[X] —U[\,, - - -, N.]
determined by ¢(x;) = \;, 1 = 7 < m, is an isomorphism. But ¢ extends
to an F[x,]-epimorphism ¢: F[X] — F[x,] and if @ is the kernel of
$ then depth @ =1, rank@ =x — 1 [6, Corollary 1, p. 218], and
QN U[X]=(0). Since F[X]=(W/A)[X]=W[X]/L[X] and U[X] =
VIX]/P[X], @ determines a prime ideal Q of W[X] such that depth
Q =1, rank(Q/F[X]) =n — 1, and QN V[X] = P,[X]. Therefore,
rank Q@ = » and, since dimW[X] = n + 1, it follows that rank @ = n.
If we choose fi,-++, fu_: € XW[X] such that the corresponding elements
fie vy fusin F[X] form a regular system of parameters for (F[X])z,
then {f}, - -, fa_1, D} is a regular system of parameters for (W[X]),
and the ideal N; = (f,, -+, f)(W[X]), is a prime ideal of (W[X]),
for 1<t <m —1 (cf. Corollary 1, p. 302 and Theorem 26, p. 303 of
[6]). In particular, N,, = N,_,N W[X] is a prime ideal of W[X]
such that rank N, , =% — 1, N,_,C@, and N,_, N W = (0). We now
have P[X] =QNV[X]DN,_,NV[X] and rank (N,,NV[X]) =
rank N,_, = » — 1—that is, rank P,[X] = n. Therefore, £t + 1=
rank Q... =1 + rank P,[X]) =n + 1. We have already seen that
k<mn, so k=mn and rank (Q,+,/P.,[X] =1. Thus, P[X]/P[X]C
Q.. /P[X]c---Cc@Q/P.[X] is a maximal chain of prime ideals in
VI[X]/P[X]=U[X] of length t—k. By assumption t—k=(m—1)n+1
and sinece k = n this implies that ¢ = mn + 1.

We now consider the case in which Q.+, = P,[X]. It follows
from the previous argument that » < rank P,[X] = rank Q,+,=k + 1.
We will show that equality holds. Let #° be a valuation overring
of V[X] with prime ideals (0)CQ;C - - - CQ;., such that QN V[X]=Q,
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for each 4. Since @, NV = (0) we may assume that Q;., = rad(p?")
and, by localizing if necessary, we assume that Q,, is the maximal
ideal of 7 We wish to show that 7" 2 W[X]. If this is not the
case then there exists # € W[X] such that 2'€ Q.- If f = ph then
feP[X], h~* = p/f, and there exists an integer s such that 2—° =
p°lf* = p{ for some L€ 7. But f*e(P[X]) < »p* P, [X] so we have
ol = p*/p*'f, for some f,€ P,[X]. Therefore, 1/f, = (€7 contrary
to the assumption that P,[X] & Q... It follows that W[X] < 7
and if Q' =Q,NW[X] for 1<i=<k+1 then 0)CQ/'c---CQ/.,
is a chain of prime ideals of W[X] such that @' NV[X] =@Q,. In
particular, Q). N V[X] = P[X]. Since [Z + (X)]|NV[X] =P, + (X)
it follows that @}, is not maximal in W[X]. Thus, % + 1>rank Q>
k + 1—that is, k < n. It follows that £ = n — 1 and this together
with the previous argument shows that, in either case, rank P,[X] =
n. We now have that P[X]/P,[X] C Qu+./P.[X]C - CQJP[X]
is a maximal chain of prime ideals in V[X]/P,[X] = U[X] of length
t—(k+1) =t —=n. By assumption, t —nw=(m — 1)n +1, so t =
mn + 1.

REMARK. The proof of the theorem shows that if (0) = P,
P,c-.-CP, is the set of prime ideals of a discrete valuation ringV’
then each of the prime ideals Pz, ---,z,] can be included in a
maximal chain of prime ideals of V[x, ---, 2,] and for 0 < 7 < m we
have rank (PJx, ---, «,]/P:_i[, - -+, €,]) = n.
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