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POWER SERIES RINGS OVER DISCRETE
VALUATION RINGS

JIMMY T. ARNOLD

If V is a discrete valuation ring with Krull dimension
m, it is shown that the power series ring Fi fe, •••, xn]] has
Krull dimension mn + 1.

Throughout the paper all rings are assumed to be commutative
with identity and the ring R is not considered to be a prime ideal
of R. In [1] the author defines a ring to have the SFT (strong finite
type) property if for each ideal A of R there exists a finitely gen-
erated ideal B and a positive integer k such that B £ A and ak eB
for each ae A. It is shown in [1, Theorem 1] that if R fails to have
the SFT-property then the power series ring R[YJ has infinite Krull
dimension. On the other hand, if D is a Priifer domain with dimJ9~m
and if D has the SFT-property then dimD[Γ] =m + l [2, Theorem 3.8].
Recall that a valuation ring V with finite Krull dimension is discrete
if and only if P Φ P2 for each nonzero prime ideal P of 7 [5, pp.
190-192]. A valuation ring V has the SFT-property if and only if
it is discrete [2, Proposition 3.1]. Thus, if 7 is a valuation ring
and dimF = m then either V is discrete and dimF[F] = m + 1 (this
specific result was proved by Fields in [4, Theorem 2.7]) or V is
nondiscrete and dim VI Yj — <>o. For dim R = m the author asks in
[1, p. 303] if either d i m i ^ Γ ] = m + 1 or dim R[Y] = <*>. We show
that the answer is no for ring V\_xu , #Λ_J, where 7 is a discrete
valuation ring with dimFΞ> 2. Specifically, we prove the following
theorem.

THEOREM. If V is a discrete valuation ring with Krull dimension
m then the power series ring V[xlf , xnj has Krull dimension
mn + 1.

Proof. The proof is by induction on m and the case m — 1 is
well-known since, in this case, V is Noetherian (cf. Lemma 2.6 of [4]).
Thus assume that m ̂  2, that the theorem holds if dimF = m — 1, let
dimF = m, and suppose that (0) = P0(zP1(zP2 £ C Pm is the set of
prime ideals of F. Throughout the proof X denotes the set {x19 ••-,#„}
of analytic indeterminates over F, V[XJ denotes the power series
ring Vlxlf , xj, V e P\Pl W= VPi, U= V/Plf F= W/PλW and, even
though P1 = PXW, we write & to denote the ideal PtW. We note
that W is a rank one discrete valuation ring with maximal ideal
& = pW, F is the quotient field of U, and for each integer k ^ 1
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we have Pf+1 £ phP1. If ξG(W[XJ)W\{0) then there exists a nonzero
element a in W such that aξ e WIXJ. But then paζ e F[X] and
p e F s o ί e ( F [ X ] W This shows that (TPpΓflW, £ (F[X])FN(0)

and the reverse containment is obvious so equality holds. It follows
that the correspondence Q —> Q Π V[XJ is a Injection from the set

{Q 6 Spec(TF[XJ) | Q n TF = (0)}

to the set {Q' e Spec(F|[XJ) | Q' Π F = (0)} which preserves set con-
tainment. Thus, if Q e Spec(TF[XJ) and Q n W = (0), then rank Q =
rank(Q n F[X]) and it follows that rank Q' ^ n for each Q'e
Spec(F[X]) such that Q'f)V= (0).

Let (0) c Qx c c Qt = Pm + (X) be a maximal chain of prime
ideals of F[X] and choose fc so that Qkr\V = (0) while Qk+1 V\V Φ
(0). Then, as we have already observed, k = rank Qk <£ w. Since
P 6 Qfc+i we have (P^XJ)2 £ Pi2fX] S pP,[XJ Q Qk+i and hence

We first consider the case in which Qk+1 Φ PX[XJ. It follows
from Theorem 3.14 of [3] that there exist elements λi = xl9 λ2, , λ»
in XχFlxJ such that the ί/fej-homomorphism φ:U\_XJ —>ϊ7|[λ1, , λ j
determined by (̂cc€) = λέ, 1 ^ ί ^ τι, is an isomorphism. But φ extends
to an i^J-epimorphism φ: F\_XJ —> F[^J and if Q is the kernel of
φ then depth Q = 1, rank Q = n — 1 [6, Corollary 1, p. 218], and
QΠ UlXJ = (0)._ Since F[X]-(T7/^)[X] = TF[X]/^[XJ and C/[X]^
VIXJ/PJX], Q determines a prime ideal Q of TΓ[JC] such that depth
Q = 1, rank(Q/^[X]) = n - 1, and Q Π F[X] - P^XJ. Therefore,
rank Q ^ n and, since dimTFfXJ = n + 1, it follows that rank Q = n.
If we choose flf - ,Λ_i 6 XT7[X] such that the corresponding elements
fu''' f fn-ι in F[XJ form a regular system of parameters for (F[XJ)Q,

then {/i, ••-,/»_!, p} is a regular system of parameters for (W[XJ)Q

and the ideal Nί = (fl9 - - -, ft)(W[XJ)Q is a prime ideal of {WIXJ)Q

for 1 ^ i ^ w - 1 (cf. Corollary 1, p. 302 and Theorem 26, p. 303 of
[6]). In particular, Nn_x = NLi Π TF[XJ is a prime ideal of TF[X]
such that rank J V ^ = n — 1, iV^ c Q, and Nn^ n TΓ = (0). We now
have PX[XJ = QΠ V[X] 3 Nn_, n F[XJ and rank (N^ Π F[X]) -
rank Nn_L = n - 1—that is, rank Px [XJ ^ n. Therefore, k + 1 =
rank Qfc+1 ^ 1 + rank P^XJ) ^ ^ + 1. We have already seen that
k ^ n, so k = n and rank (Q.+VPJXJ = 1. Thus, P^XJ/P^X] c
Qk+i/PiE-STJ c c Qt/PilXJ is a maximal chain of prime ideals in
VIXJ/P1[XJ = U[XJ of length t-k. By assumption ί-fc = (m-l)Λ + l
and since k = n this implies that t = mn + 1.

We now consider the case in which Qk+1 = Pt[XJ. It follows
from the previous argument that n ^ rank Pλ[XJ = rank Qk+1 — k + 1.
We will show that equality holds. Let Γ be a valuation over ring
of V[XJ with prime ideals (O)cQJc c Q U such that QJ Π F[X] = Qt
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for each i. Since Qk Π V — (0) we may assume that Q'k+1 = rad(p^)
and, by localizing if necessary, we assume that Q'k+1 is the maximal
ideal of T. We wish to show that T SW[XJ. If this is not the
case then there exists h e W[XJ such that h'1 e Q'k+1. If / = ph then
fePilXJ, h~λ = p/f9 and there exists an integer s such that h~s =
VΊΓ = ί>C for some ζe T. But / s e (PJX])S £ F ^ P ^ X ] SO we have
pζ = p'lp-1^ for some Λ e P ^ X ] . Therefore, 1/Λ = ζ e ^ contrary
to the assumption that P J X ] £ Qi+i It follows that W[X] Q T
and if Q\' = Qί Π TΓfX] for 1 ^ i ^ fc + 1 then (0) c Q[' c c Q;'+1

is a chain of prime ideals of W[X] such that Q't' D F[XJ = Qt. In
particular, Qi'+1 n V[XJ = PJXJ. Since [ ^ + (X)] n V[XJ = Px + (X)
it follows that QJ.'+1 is not maximal in WIXJ. Thus, n + 1 > rank Qί'+1^
fc + 1 — that is, k < n. It follows that & = n — 1 and this together
with the previous argument shows that, in either case, rank PλlXJ =
n. We now have that P^XJ/P^XJ c Q^/P, [X] c - c Qe/P^X]
is a maximal chain of prime ideals in VIXJ/P^XJ = ί7[XJ of length
ί — (fc + 1) = t — n. By assumption, t — n = (m — l)w + 1, so ί =

1.

REMARK. The proof of the theorem shows that if (0) = Po c
P1d - - - d Pm is the set of prime ideals of a discrete valuation ring F
then each of the prime ideals Pi[xlf •••,#»] can be included in a
maximal chain of prime ideals of V\xu •••,#»] and for 0 < ί < m we
have rank (Pt[xlf , x J / P ^ i f e , , x j ) = w.
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